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ABSTRACT

As current trend of miniaturization in computing technology continues, modern
computing devices would start to exhibit the behaviour of nanoscopic quantum objects.
Quantum computing, which is based on the principles of quantum mechanics, becomes
a promising candidate for future generation computing system. However, modelling
quantum computing systems on existing classical computing platforms before the
realization of viable large-scale quantum computer remains a major challenge. The
exploration on the modelling of quantum computing systems on field programmable
gate array (FPGA) platform, which offers the potential of massive parallelism and
allows computational optimization at register-transfer level, is crucial. Due to the
exponential growth of resource utilization with the increase in the number of quantum
bits (qubit), existing works on modelling of quantum systems on FPGA platform
are restricted to simple case studies using small qubit sizes. This work explores
the modelling of quantum computing for emulation on FPGA platform based on
two types of data structure: (a) state vector model and (b) Heisenberg model.
For the conventional state vector modelling approach, an efficient datapath design
that is based on serial-parallel hardware architecture, which allows resource sharing
between unitary transformations, is proposed. Heisenberg model has been proven
to be efficient in modelling stabilizer circuits, which are critical in error correction
operations. In the effort to include the consideration of vital quantum error correction
in practical quantum systems, a novel FPGA emulation framework that is based on
the Heisenberg model is proposed. Effective algorithms for accurate global phase
maintenance are proposed to facilitate the modelling of quantum systems based on the
Heisenberg representation. The feasibility of the proposed state vector and Heisenberg
emulation models are demonstrated based on a number of case studies with different
characteristics, which include quantum Fourier transform, Grover’s search algorithm,
and stabilizer circuits. Based on the state vector approach, this work has demonstrated
the advantage of FPGA emulation over software simulation where hardware emulation
of 7-qubit Grover’s search is about 3 × 104 times faster than the software simulation
performed on Intel Core i7-4790 processor running at 3.6GHz clock rate. In contrast
to the 8-qubit implementation based on the state vector model, the proposed FPGA
emulation framework based on the Heisenberg model has successfully modelled
120-qubit stabilizer circuits on the Altera Stratix IV FPGA. In summary, the proposed
work in this thesis contributes to the formulation of a proof-of-concept of efficient
FPGA emulation framework based on the state vector and Heisenberg models.
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ABSTRAK

Dengan trend pengecilan berterusan dalam teknologi pengkomputeran,
peranti komputeran moden mula mempamerkan ciri-ciri objek kuantum nanoskopi.
Komputeran kuantum yang berasaskan prinsip-prinsip mekanik kuantum menjadi
calon yang berpotensi untuk sistem komputeran generasi masa depan. Walau
bagaimanapun, pemodelan sistem komputeran kuantum dengan penggunaan platform
komputeran klasikal sedia ada sebelum pengrealisasian komputer kuantum berdaya
maju berskala besar masih menjadi cabaran utama. Penerokaan pemodelan sistem
komputeran kuantum dengan penggunaan platform tatasusunan get bolehaturcara
medan (FPGA) yang menawarkan potensi keselarian besar dan membolehkan pengop-
timuman pengkomputeran pada aras pindah-daftar adalah amat penting. Disebabkan
penggunaan sumber yang meningkat secara eksponen dengan penambahan saiz bit
kuantum (qubit), kerja-kerja sedia ada pemodelan sistem kuantum atas platform
FPGA adalah terhad kepada kes-kes kajian yang mudah dengan saiz qubit yang
kecil. Kerja ini meneroka pemodelan komputeran kuantum untuk perlagakan di
atas platform FPGA berdasarkan dua jenis struktur data: (a) model vektor-keadaan
(b) model Heisenberg. Bagi cara konvensional iaitu model vektor-keadaan, reka
bentuk laluan data yang cekap berasaskan seni bina perkakasan siri-selari yang
membolehkan perkongsian sumber antara transformasi unitari dicadangkan. Model
Heisenberg terbukti berkesan dalam pemodelan litar penstabil yang kritikal dalam
operasi pembetulan ralat. Dalam usaha untuk mempertimbangkan pembetulan ralat
yang amat penting dalam sistem kuantum yang praktikal, satu rangka kerja perlagakan
FPGA yang baru berdasarkan model Heisenberg dikemukakan. Algoritma yang
berkesan untuk penyelenggaraan fasa global yang tepat dicadangkan untuk pemodelan
sistem kuantum berdasarkan perwakilan Heisenberg. Kebolehlaksanaan model-
model perlagakan vektor-keadaan dan Heisenberg yang dicadangkan diperlihatkan
berdasarkan beberapa kes kajian dengan ciri-ciri yang berbeza termasuk kuantum
jelmaan Fourier, algoritma carian Grover dan litar penstabil. Berdasarkan model
vektor-keadaan, kerja ini telah menunjukkan kelebihan perlagakan FPGA berbanding
dengan simulasi perisian di mana perlagakan algoritma carian Grover 7-qubit adalah
kira-kira 3 × 104 kali lebih cepat daripada simulasi perisian yang dilakukan dengan
pemproses Intel Core i7-4790 yang beroperasi pada kadar jam 3.6GHz. Berbeza
dengan pelaksanaan 8-qubit yang berdasarkan model vektor-keadaan, rangka kerja
perlagakan FPGA yang dicadangkan berdasarkan model Heisenberg telah berjaya
memodelkan litar penstabil 120-qubit menggunakan Altera Stratix IV FPGA. Secara
ringkasnya, kerja-kerja yang dicadangkan dalam tesis ini telah menyumbang kepada
pembentukan rangka kerja bukti konsep perlagakan FPGA yang cekap berdasarkan
model-model vektor-keadaan dan Heisenberg.
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CHAPTER 1

INTRODUCTION

Conventional digital computers perform computations based on binary bits of
discrete values 0 and 1. In past few decades, computer technology has been advancing
drastically from thousands to billions of transistors on a single chip. However, as
current trend of miniaturization continues, modern computing devices would start to
exhibit the behaviour of nanoscopic quantum objects and existing computer science
principles may no longer be valid [1]. In this case, quantum computers that are build
upon the laws of quantum mechanics will become promising candidates for future
generation computing systems. However, to date, the physical realization of practical
large-scale quantum computers remains a real challenge, and research is still ongoing.
Meanwhile, the theoretical research of quantum computing applications are facilitated
using classical computing platforms through simulation and emulation methods [2–5].

1.1 An Introduction to Fundamentals of Quantum Computing Models

Quantum computing is based on the properties of quantum mechanics namely
superposition and entanglement. Superposition allows a quantum state to be in
more than one basis states simultaneously. An n-bit classical computer has a total
of 2n possible states, although it allows one basis state at any time whereas a
quantum computer with n-quantum-bit (qubit) can be in an arbitrary superposition
of 2n classical basis states. This superposition property facilitates massive parallelism
that enables exponential speed-ups to be achieved in the well-known integer factoring
and discrete logarithms algorithms [6], and quadratic speed-ups in solving classically
intractable brute-force searching and optimization problems [7, 8].

Entanglement is defined as a strong correlation between two or more qubits. If
two qubits are entangled, an action that is performed on one subset of qubit impacts on
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another. The entanglement property has been exploited for a wide range of applications
in quantum information processing – quantum teleportation [9] and quantum key
distribution (QKD) [10] are among the most popular ones. In the Einstein-Podolsky-
Rosen (EPR) QKD protocol proposed by Ekert [10], a sequence of entangled pairs of
qubits are generated and distributed to the sender and receiver. Each of them receives
one qubit of each pair. After that, both the sender and receiver measure the entangled
qubits regardless of sequence, based on the previously agreed basis. Since the qubit
pairs are entangled, when one measures a qubit, it collapses the corresponding qubit
of the other to the same random value. Hence, it results in a set of secret key that is
shared between the sender and receiver for future secure communication.

Another unique characteristic in quantum computation, which does not apply to
the classical approach, is the no-cloning theorem. Unlike in classical computing where
information can be duplicated as many times as desired, it is impossible to make a
copy of an unknown quantum state [11]. The well-known BB84 protocol [12] and B92
protocol [13] in quantum cryptography make use of the no-cloning theorem to detect
eavesdropping in the process of quantum secret key transfer.

1.1.1 Quantum Bit (Qubit)

In classical computing, the smallest unit of information is the bit. A bit can be
in either state 0 or state 1, and the state of a bit can be represented in matrix form as:

state 0 =
0
1

�
1

0

�
(1.1)

state 1 =
0
1

�
0

1

�
(1.2)

On the other hand, in quantum computing, the smallest unit of information is
the quantum bit or qubit. To distinguish the classical bit with the quantum qubit, Dirac
ket notation is used. Using the ket notation, the quantum computational basis states are
represented by |0� and |1�. The state of a qubit can be represented as:

|ψ� = α|0� + β|1� ≡ 0
1

�
α

β

�
(1.3)
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where both α and β are complex numbers, and |α|2 + |β|2 = 1. A qubit can
be in state |0�, or in state |1�, or in superposition of both basis states. However, on
measurement, the superposition is destroyed and the qubit returns to the classical state
of bit depending on the probability derived from the complex-valued state vector. |α|2

is the probability where the qubit is in state |0� and |β|2 is the probability where the
qubit is in state |1� upon measurement.

A qubit can be mapped to an arrow from the origin to a three-dimensional
sphere of radius 1 known as Bloch sphere (as illustrated in Figure 1.1). The Bloch
sphere provides a way of visualizing a single-qubit state. When a qubit is measured
in the standard basis, it collapses to either the north pole, |0� or the south pole, |1�.
As a quantum transformation that is represented by a unitary matrix is an isometry,
geometrically the transformation corresponds to a rotation or an inversion on the Bloch
sphere [14].

Figure 1.1: Bloch sphere for visualization of a single-qubit state [1].

1.1.2 Quantum Circuit Model

To describe the transformations in a quantum system, the quantum circuit
model, first proposed by Barenco et al. in [15] is widely used. A quantum circuit
is the interconnection of quantum gates with quantum wires. A gate transformation is
represented by a unitary matrix. For example, a Hadamard gate, H is represented in
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matrix form as:

H =
1√
2

�
1 1

1 −1

�
(1.4)

The Hadamard gate is one of the most useful (single-qubit) quantum
transformations. An N -by-N matrix U is unitary if UU † = U †U = IN where U † is
the adjoint (conjugate transpose) of U . All unitary matrices are invertible and the
product of unitary matrices as well as the inverse of unitary matrix are unitary. Since
all quantum transformations are reversible, quantum gate operations can always be
undone [14]. Table 1.1 shows graphical symbol of the basic quantum gates used in this
thesis. Detailed descriptions of the listed quantum gates are given in Subsection 2.1.3.

Table 1.1: Graphical symbol of basic quantum gates.

Gate Graphical Symbol

Hadamard H

Phase-Shift (Phase) P

Controlled Phase-Shift
R
k

Controlled-NOT

Toffoli

Swap

Measurement

1.1.3 State Vector Model

A quantum state vector is essentially a complex-valued vector that provides
the probability distribution of each possible measurement outcome of a one- or multi-
qubit system. An n-qubit quantum state vector contains 2n complex numbers, which
represent the measurement probability of each basis state. Tensor products and matrix
multiplications are the critical operations that are used to update the content of a
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quantum state vector based on the evolution (or transformations) of the quantum
system.

Tensor product (or Kronecker product) is the basic operation that is applied in
the formation of a larger quantum system and multi-qubit quantum transformations. A
quantum state vector that can be written as the tensor of two vectors is separable,
whereas a state vector that cannot be expressed as the tensor of two vectors is
entangled [14]. The tensor operation on two arbitrary 1-qubit transformations is as
follows:

�
a0 a1

a2 a3

�
⊗
�
b0 b1

b2 b3

�
=




a0b0 a0b1 a1b0 a1b1

a0b2 a0b3 a1b2 a1b3

a2b0 a2b1 a3b0 a3b1

a2b2 a2b3 a3b2 a3b3




(1.5)

The following example illustrates the application of Hadamard gates in
mapping a 2-qubit basis state |00� to superposition of basis states with equal
probability. Equation (1.6) denotes this transformation in Direc ket notation, whereas
(1.7) shows it in the state vector form.

|00� H⊗H−→ 1

2
(|00� + |01� + |10� + |11�) (1.6)

�
1√
2

�
1 1

1 −1

�
⊗ 1√

2

�
1 1

1 −1

��



1

0

0

0




=
1

2




1

1

1

1




(1.7)

1.1.4 Heisenberg Model

Heisenberg model (also known as stabilizer formalism)1 keeps track of the
symmetries of an object instead of representing the object explicitly [16]. Heisenberg
model is often used by physicists for describing atomic scale phenomena. Instead
of the state vector model, Gottesman in [17] proposed quantum circuit simulation
model based on the Heisenberg model, and has demonstrated that it is a more efficient
technique for the modelling of certain quantum circuits. In the context of quantum

1The terms Heisenberg model and stabilizer formalism are used interchangeably in this thesis.
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circuit simulation, the symmetries are operators derived from Pauli matrices:

I =

�
1 0

0 1

�
, X =

�
0 1

1 0

�
, Y =

�
0 −i

i 0

�
, Z =

�
1 0

0 −1

�
(1.8)

The Heisenberg model allows compact representations of certain quantum
states by keeping track of the Pauli operators that stabilize them. A quantum state |ψ�
is stabilized by an arbitrary unitary Pauli operator U if U |ψ� = |ψ�, i.e., |ψ� is a
1-eigenvector of U 2. The key concept behind the stabilizer formalism is to represent
an n-qubit quantum state by its stabilizer group. Stabilizer group is a group of Pauli
literals (n-by-n square matrix A) that stabilize the desired quantum state vector where
the eigenvector v is with eigenvalue λ equals to one.

An arbitrary n-qubit computational basis state can be represented in the form
of stabilizer matrix as shown in (1.9) where the ± sign of each Zj row (Z literal at
position j, I literal(s) elsewhere) designates whether the jth qubit of the state is |0� (+)
or |1� (-).

±
±
±
±




Z1 I . . . I

I Z2 I
...

... I
. . . I

I . . . I Zn




(1.9)

On the other hand, an entangled two-qubit quantum state as shown in (1.10)
can be specified uniquely by any of the stabilizer matrices given in (1.11).

|ψ� =
1√
2
(|00� + |11�) ≡




1√
2

0

0
1√
2




(1.10)

M1 =
+

+

�
X X

Z Z

�
; M2 =

+

−

�
X X

Y Y

�
; M3 =

−
+

�
Y Y

Z Z

�
(1.11)

These stabilizer matrices can be derived from each other through row
multiplication without altering the quantum state in which the original stabilizer matrix

2Recall that the eigenvalue λ and eigenvector v of an n-by-n square matrix A are defined as
Av = λv.
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represents. As shown in Table 1.2, multiplication of Pauli operators forms a closed
group that are in terms of I , X , Y , Z as well. For simplicity, the Pauli literals I , X , Y ,
and Z are represented by two-bit 00, 10, 11, and 01, respectively, during the quantum
circuit modelling process.

Table 1.2: Multiplication table for Pauli matrices. Products of two Pauli operators U1

and U2 are commutative if U1 ×U2 = U2 ×U1. Cells with anticommuting products are
denoted in gray.

I X Y Z
I I X Y Z
X X I iZ -iY
Y Y -iZ I iX
Z Z iY -iX I

As illustrated in (1.12), with reference to Table 1.2, stabilizer matrix M3 can
be easily derived from M1 by left-multiplying the second row by the first row and
replace the first row of M1 with the multiplication result.

(Z ⊗ Z)(X ⊗ X) = (ZX ⊗ ZX) (1.12)

= (iY ⊗ iY )

= −(Y ⊗ Y )

As Clifford/stabilizer gates transform Pauli literals to other elements in the
Pauli group, stabilizer circuits that are composed exclusively of Hadamard, phase and
controlled-NOT (CNOT) gates can be simulated efficiently on classical computing
platforms via stabilizer formalism. According to Gottesman-Knill theorem [16],
stabilizer circuit and single-qubit measurement in the computational basis can be
simulated efficiently on a classical computer. Efficient simulation of stabilizer circuits
is crucial as practical quantum circuits that are enriched with fault-tolerant modules
and error correcting codes are mainly made up of stabilizer sub-circuit and a small
number of non-stabilizer gates [17].

As shown in Table 1.3, transformations of stabilizer gates on Pauli matrices can
be performed through conjugation-by-action. CNOT gate operation on arbitrary Pauli
literals can be derived using the following approach:

X ⊗ X ≡ (X ⊗ I)(I ⊗ X)
CNOT�−→ (X ⊗ X)(I ⊗ X) = X ⊗ I (1.13)
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Table 1.3: Conjugation of Pauli literals by stabilizer gates. For CNOT gate, the control
and target qubits are denoted by subscript c and t, respectively.

Gate Input Output

Hadamard
X Z
Y -Y
Z X

Phase
X Y
Y -X
Z Z

CNOT

IcXt IcXt

XcIt XcXt

XcXt XcIt
IcYt ZcYt

YcIt YcXt

YcYt -XcZt

IcZt ZcZt

ZcIt ZcIt
ZcZt IcZt

Based on Table 1.3, Pauli literals in a stabilizer matrix M are updated by
column(s) according to the qubit position(s) of which the Clifford gate is applied in
a quantum circuit. Figure 1.2 depicts the application of Clifford gate in a quantum
circuit and the corresponding column(s) in the stabilizer matrix that requires update.

Quantum Circuit Stabilizer Matrix

- qubit

(a) Hadamard (single-qubit stabilizer gate)

Quantum Circuit Stabilizer Matrix

- qubit

(b) Controlled-NOT (two-qubit stabilizer gate)

Figure 1.2: Column(s) update in stabilizer matrix due to Clifford gate application.
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Based on the concepts described above, the Heisenberg representations that
correspond to the Hadamard gates operation described in (1.6) is:

+

+

�
Z I

I Z

�
H⊗I�−→ +

+

�
X I

I Z

�
I⊗H�−→ +

+

�
X I

I X

�
(1.14)

From (1.7) and (1.14), it can be observed that Heisenberg model provides
a more compact representation for a quantum state and allows efficient modelling
of Clifford gate operation compared to the state vector model that requires a vector
with 2n complex values for storage and involves compute-intensive matrix operations
for the transformations. However, Heisenberg model requires more sophisticated
bookkeeping algorithms to preserve the global phase such that accurate representation
of quantum state can be maintained throughout the modelling process. For example,
the resulted phase factor from the operation shown in (1.14), which is 1

2
, has to be

maintained separately from the stabilizer matrix.

1.2 Motivation Towards Proposed Research

Physical realization of a quantum computer is proving to be extremely
challenging [14]. Research works into viable large-scale quantum computers are still
ongoing, various technologies namely ion-trap [18], nuclear magnetic resonance [19],
and superconductor [20] have been attempted. In parallel to efforts to develop
physical quantum computers, there is also much effort in the theoretical research of
quantum algorithms and applications. Until large-scale practical quantum computers
become prevalent, such theoretical research is currently developed using the classical
computing platforms, which can be categorized into two types: (a) software simulation,
and (b) hardware emulation. The definitions of simulation and emulation vary across
different problem domains. In general, simulation reproduces the abstract model of
the targeted system to define its operating limit and control system, whereas emulation
generates close imitation to the actual behaviour and operation of the system [21].

In classical modelling of quantum computing system, software simulation
refers to algorithmic models that are executed on computing platforms with
conventional von Neumann architecture, which are inherently sequential in nature. On
the other hand, hardware emulation refers to the modelling of quantum systems using
field programmable gate array (FPGA) technology. Differing from the conventional
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hardware emulations, complete imitation of quantum computing systems on FPGA
platform is infeasible due to the underlying classical electronics that behave in a totally
different manner.

FPGA technology offers the potential of immense parallelism through
hardware emulation where significant improvement in speed over the equivalent
software simulation can be achieved. Furthermore, FPGA platform allows more
control over the parameters and computational optimization at the register-transfer
level (RTL) that can hardly be achieved through the software simulation approach.
However, since FPGA is still a form of classical digital computing, resource
utilization to model a quantum system on such a classical computing platform grows
exponentially as the number of qubits increases. The challenge is further compounded
by the fact that effective modelling of quantum systems using FPGA technology is non-
intuitive, and therefore difficult. In short, the aforementioned strengths and challenges
lead to the motivations of our research in this thesis.

1.3 Problem Statement

The main challenge in classical modelling of quantum computing systems
is related to the exponential increase in resource requirement (includes both
computational and memory resources) with the increase in the number of qubits. This
issue is inherent in the universal quantum computing modelling independently from
the used execution platform (classical computer, graphics processing unit (GPU) or
FPGA) [22]. The demand for scalability in the number of qubits is even more critical
and challenging for the highly resource-constrained FPGA platform. Although FPGA
gives a promising solution for fast execution speed, improving the execution time is of
minor interest in the absence of good scalability over larger number of qubits. In this
thesis, three main problems on the modelling of quantum systems are identified based
on the state vector and Heisenberg models.

The first problem is on FPGA emulation using the conventional state vector
approach. To the best of our knowledge, all reported works in literature on
FPGA emulation of quantum computing [4, 5, 23, 24] were implemented based
on the state vector approach. Using the state vector model, an arbitrary unitary
transformation is typically derived from the tensor product of unitary matrix (quantum
gate representation) and identity matrices. The arithmetic operations in the resulted
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unitary transformation matrix are then extracted to facilitate the implementation of
FPGA emulation model. However, the conventional tensor product method involves
compute-intensive matrix operations and the memory requirement for storing the
resulted large-dimension sparse matrix is enormous, which result in severe memory
and computational bottlenecks [25, 26].

On the other hand, to ensure efficient FPGA emulation of quantum systems,
the choice of suitable hardware architecture is crucial. Due to the strengths of high
throughput and low critical path delay, pipeline architecture is chosen by previous
works [4, 5, 23] for quantum hardware emulation purposes. However, pipeline
implementation requires enormous logic resources as for concurrent (parallel) design,
with additional registers to be inserted for pipelining purposes. This has highly
restricted the size of quantum system that can be supported by the resource-constrained
FPGA emulation platform. Hence, relevant prior works [4, 23, 24] were restricted to
small qubit sizes and simple case studies.

The second problem is on the algorithmic aspect of quantum system modelling
based on the Heisenberg representation. Similar to classical computing, errors exist
in quantum domain but at a larger extent due to decay and environmental noise – a
phenomena known as decoherence [27]. To ensure reliable computations on quantum
states, error-correcting codes and fault-tolerant procedures are vital in any practical
quantum computer. Therefore, error-correcting codes support is required to model
real error-prone physical quantum computing on classical platform. However, the
inclusion of error correction modules imply that more qubits are required, and hence,
the aforementioned scalability problem in classical modelling of quantum computing
systems is further compounded.

In the effort to tackle the scalability and error correction issues, Garcı́a [3, 28]
has proposed a more efficient representation of quantum states that is based on the
Heisenberg model for quantum circuit simulation. Garcı́a’s proposal, which is called
stabilizer frames data structure, offers a more compact storage than the conventional
state vector approach for certain quantum states. It also allows for efficient simulation
of error-correcting and fault-tolerant circuits that are mainly consist of stabilizer gates.

Nevertheless, with the approach using Heisenberg model, sophisticated and
compute-intensive bookkeeping algorithms are required to ensure accurate global
phases are maintained throughout the simulation process [3]. However, the details
on the critical operations in the global phase maintenance algorithm for stabilizer gate
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application are not revealed in [3]. The efficiencies of these operations are critical since
they significantly impact on the overall simulation and FPGA emulation performance
in terms of speed and resource utilization. Practical and universal quantum circuits
contain both stabilizer and non-stabilizer gates [27, 29]. However, the global phase
maintenance algorithm presented in [3] is restricted to the application of stabilizer
gates and the phase factor that is due to non-stabilizer gates operation is not taken into
consideration.

The third problem is on FPGA emulation based on the Heisenberg model.
Although error-correcting codes and fault-tolerant modules are crucial in practical
quantum circuits, emulating quantum computing systems with error correcting features
on FPGA platform poses highly challenging scalability issue if the conventional state
vector model is applied [22]. To include quantum error correction features and to
achieve more resource-efficient implementation, an FPGA emulation framework based
on the Heisenberg model is required. Nevertheless, direct mapping of the algorithms
presented by Garcı́a in [3] on the FPGA platform is impractical and inefficient due
to their inherent sequential computations that were designed for quantum circuit
simulations on classical computers. Thus, a new FPGA emulation modelling approach
based on the Heisenberg model is required.

1.4 Objectives

The goal of this research is to propose an efficient quantum computing model
on classical digital computing architecture based on FPGA. Hence, the main objectives
of this work are as follows:

1. To propose efficient algorithm and hardware architecture that facilitate the
development of quantum computing models based on the conventional state
vector approach targeted for resource-efficient FPGA emulation.

2. To propose effective algorithms that ensure accurate global phase maintenance
for the modelling of quantum systems based on the Heisenberg model.

3. To develop a novel quantum circuit modelling technique and scalable hardware
architecture based on the Heisenberg model for FPGA emulation.
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1.5 Scope of Work

The scope of the work presented in this thesis is as follows:

• Quantum circuit model is used to represent the evolution or transformations of
a quantum system.

• The proposed simulation and FPGA emulation modelling techniques are
developed based on the state vector and Heisenberg models.

• In this work, software simulation models are developed to serve as golden
reference models for the proposed FPGA emulation works. The implemented
simulation models are verified against the corresponding mathematical models
based on the selected case studies. The simulation models are developed using
C programming language without the use of any external library. They are
compiled using the GCC compiler under Ubuntu Linux operating system and
executed on personal computer (PC) with Intel Core i7 processor.

• SystemVerilog hardware description language (HDL) is used to design
the proposed FPGA hardware models. Hardware implementations are
compiled for Altera Stratix IV FPGA using Quartus II synthesis tool.
Design verification is performed using Modelsim-Altera software through
SystemVerilog testbenches. Board-level verification is out of the scope of this
work.

• Quantum Fourier transform and Grover’s search are the core of many useful
quantum algorithms that provide substantial speed-ups over the classical
approaches [30]. On the other hand, Gottesman-Knill theorem states that
an important subclass of quantum circuits, known as stabilizer circuits, can
be simulated efficiently on classical computing platforms [16]. Hence, the
case studies that are used to verify and analyse the performance of the
proposed models are (a) quantum Fourier transform (QFT), (b) Grover’s search
algorithm, and (c) stabilizer circuits.

1.6 Contributions

The proposed work in this thesis contributes to the formulation of a proof-
of-concept of efficient FPGA emulation framework based on the state vector and
Heisenberg representations. The proposed emulation models can be extended to model
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practical large qubit sizes quantum computing systems by deploying state-of-the-art
FPGA devices and also clusters of FPGAs. In summary, the main contributions of this
thesis are as follows:

1. Based on the state vector model, this thesis proposes an efficient extraction
method to obtain useful arithmetic operations from the unitary transformations
of arbitrary single-qubit gates and two-qubit controlled gates. The proposed
method generates the exact computation outcomes as the conventional tensor
product approach without the need for storing the large-dimension unitary
transformation matrix and requires only linear computation operations. In
addition, a serial-parallel FPGA emulation architecture is developed based on
the state vector representation where linear reduction in resource utilization
is achieved compared to pipeline implementations as found in previous
works [4, 5, 23]. The proposed serial-parallel architecture allows 7-qubit QFT
implementation whereas the pipeline implementation can only scale up to
5-qubit. Based on the state vector model, this work has also demonstrated
the advantage of FPGA emulation over software simulation where hardware
emulation of 7-qubit Grover’s search is about 3 × 104 times faster than the
software simulation performed on Intel Core i7-4790 processor running at
3.6GHz clock rate.

2. Unlike the previous work presented by Garcı́a in [3], which did not consider
the phase factor due to the non-stabilizer gates application in Heisenberg
model, in this thesis, global phase maintenance algorithms for both stabilizer
and non-stabilizer gates operations are proposed. Furthermore, the details of
the vital operations that facilitate the global phase maintenance process are
presented. These details are critical as maintaining global phase involves
compute-intensive operations that contribute most to the total execution time.

3. This work developed a novel FPGA emulation framework that is based on
the Heisenberg model. The related algorithms for modelling of quantum
circuit are redesigned to suit for efficient FPGA implementations. For this, a
custom hardware emulation architecture is proposed. With the proposed novel
FPGA emulator that is based on the Heisenberg representation, the emulations
of 120-qubit stabilizer circuit and 9-qubit QFT circuit are successfully
implemented.
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1.7 Thesis Organization

The rest of the thesis is structured as follows.

Chapter 2 provides the theoretical background and an overview of the quantum
computing research. Brief introductions to various quantum computing branches
namely quantum hardware, quantum information theory, quantum information
processing and communication, and quantum algorithms are given and relevant prior
works on quantum design automation are reviewed in detail.

Chapter 3 covers the methodology for the work presented in this thesis. It
includes the general approach taken in this research, as well as the tools and platforms
used for verification and implementation purposes. In addition, descriptions of the case
studies used to demonstrate the feasibility of the proposed work are presented here.

Chapter 4 describes the proposed method that facilitates efficient extraction of
useful arithmetic elements from the unitary transformation operations. In addition, the
modelling of the QFT and Grover’s search algorithm based on the state vector model
is presented. Furthermore, the advantages and disadvantages of different hardware
architectural choices are studied and that lead to the formulation of the proposed
serial-parallel architecture. Results and analysis on the efficiency of the proposed
emulation architecture against other hardware architectures as well as benchmarking
against related quantum computing simulation are given.

Chapter 5 presents the modelling technique and algorithms that are based on
the Heisenberg model. Here, the proposed algorithms for maintaining global phases for
both stabilizer and non-stabilizer gates operations are described in detail. Verifications
of the proposed algorithms are performed against the golden reference simulation
models that are developed using the state vector approach.

Chapter 6 details out the architectural designs and implementations of the
proposed FPGA emulation hardware based on the Heisenberg model. Experimental
results and discussion on the efficiency of the proposed emulation models as well
as benchmarking against the equivalent simulation models are presented. Detailed
analysis on the advantages and disadvantages of the state vector and Heisenberg
models for the modelling of quantum systems is provided in this chapter.
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Chapter 7 concludes the work done in this research, summarizes the
contributions, and suggests directions for future research.
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by optimizing the hardware architecture of the Heisenberg emulation models.

Stabilizer/Clifford gates by themselves do not form a universal set for quantum
computations [143]. It is shown that at least one type of non-stabilizer gate that does
not preserve the computational basis (such as T gate [143] or Toffoli gate [142]) is
required to form a complete universal quantum gates set. In order to facilitate the
modelling of universal quantum computations, it is crucial to include a quantum circuit
decomposition module [102, 144] in an FPGA emulation framework. The quantum
circuit decomposition unit converts arbitrary quantum gates in a quantum circuit to
the universal gate set (such as stabilizer gates and Toffoli gate) that can be modelled
efficiently on the developed FPGA emulation platform.

In a recent work by Smelyanskiy et al. [22], a parallel distributed-memory
quantum simulator, which can simulate up to 49 qubits on the TACC Stampede
supercomputer, was presented. To achieve comparable scalability on FPGA platform,
the use of clusters of state-of-the-art FPGAs has to be explored such that sufficient
computational and memory resources are available for hardware emulations of
such a scale. Along with the use of FPGAs clusters, the research into efficient
communications, interconnections, and logic circuit synthesis are vital. By improving
the scalability of an FPGA emulation framework, the modelling of real-world large-
scale quantum computing applications with error-correcting codes and fault-tolerant
procedures is feasible.
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