IMPLEMENTATION OF CAPABILITY MATURITY MODEL® INTEGRATION (CMMI®) IN INGENUITY MICROSYSTEMS SDN BHD FOR MEASUREMENT AND ANALYSIS, RISK MANAGEMENT, INTEGRATED PROJECT MANAGEMENT AND INTEGRATED SUPPLIER MANAGEMENT

AIDA RIZAN BINTI OTHMAN

UNIVERSITI TEKNOLOGI MALAYSIA

IMPLEMENTATION OF CAPABILITY MATURITY MODEL® INTEGRATION (CMMI®) IN INGENUITY MICROSYSTEMS SDN BHD FOR MEASUREMENT AND ANALYSIS, RISK MANAGEMENT, INTEGRATED PROJECT MANAGEMENT AND INTEGRATED SUPPLIER MANAGEMENT

AIDA RIZAN BINTI OTHMAN

A technical report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Computer Science - Real Time Software Engineering)

Centre for Advanced Software Engineering
Faculty of Computer Science and Information System
University Technology Malaysia

OCTOBER 2005

To my beloved family especially to *Mak* and *Ayah*, CASE and MFT13 friends

ACNOWLEDGEMENT

In preparing this report, the intern has benefited from the help of a lot of people. The intern wishes to express her gratitude for that helps to the followings:

First of all, I owe deep thanks to all of my lecturers in Centre for Advanced Software Engineering (CASE), Universiti Teknologi Malaysia, especially to Prof. Dato' Dr. Norbik Bashah bin Idris and Mr. Mohd. Naz'ri bin Mahrin. It is a great pleasure to thank them for their beneficial comments and invaluable support in the process of understanding the CMMI® concept and practices.

A great appreciation also to the Process Engineering Group (PEG) of Ingenuity Microsystems Sdn Bhd (IMSB), especially to my Industrial Mentor, Miss Cindy Yaw Wai Kham and Mr. Wong Hun Liang for their unfailing advices and support during my internship. Thank you for giving me a chance to be part of the PEG team members.

I also would like to express my special thanks to those who are close to me – especially my beloved family and all CASE Student Batch 13, who have been very understanding, supportive and patient. Their constant encouragements were always at hand while I was doing the research and write up. Without them, I certainly would have lost of truthfulness in my life.

Lastly, my appreciation also goes to all those who have contributed either directly or indirectly in completing this technical report, but whom I have inadvertently failed to mention here.

ABSTRACT

Customer satisfaction has become the motto of many organizations attempting to survive and thrive in today's increasing competitive world. At the same that organizations are focusing on customer satisfaction, there is a growing perception that software quality is the weak link in developing high-quality products or in providing high quality services. Thus, in order to improve the software development process, Capability Maturity Model Integration (CMMI®) Model is the best solutions that can be choose by the organization. Besides it has been introduce by Software Engineering Institute (SEI), this model is a one of Software Process Improvement that can be used as a guidance to use when developing processes, manage the development, acquisition, and maintenance of products or services. According to that, Ingenuity Microsystems Sdn Bhd has decided endorsed the CMMI® model for improving the organization processes to satisfy the organization's business needs. Ingenuity has planned to achieve CMMI®/SW Maturity Level 3 using Staged Representation, road map for CMMI® implementation called 'Ingenuity's CMMI® Implementation Roadmap' which is derived from the IDEALSM life cycle and 'Process Area Work Flow'. This technical report provides experienced-based discussions on state-of-the-art and state-of-the-practice of CMMI® in the SPI Project implementation in Ingenuity especially on the Measurement and Analysis, Risk Management, Integrated Project Management and Integrated Supplier Management.

ABSTRAK

'Kepuasan pengguna' adalah suatu slogan bagi sesuatu organisasi untuk terus bertahan dan berkembang maju di dalam dunia perniagaan yang penuh dengan persaingan. Pada masa yang sama, persepsi mereka terhadap kualiti perisian yang lemah ketika membangunkan produk yang berkualiti tinggi dan memberi perkhidmatan yang berkualiti semakin diberi perhatian. Oleh yang demikian, untuk memastikan proses pembangunan perisian dapat dipertingkatkan dan berjalan seperti yang dijadualkan, Capability Maturity Model Integration (CMMI®) ialah salah satu model yang sangat sesuai untuk dipilih sebagai jalan penyelesaian. Selain telah diperkenalkan oleh Software Engineering Institute (SEI), model ini adalah satu Proses Kemajuan Perisian (SPI) yang boleh dijadikan sebagai panduan ketika pembangunan proses, pemerolehan dan menyelenggara perkhidmatan atau produk sedang dijalankan. Sehubungan dengan itu, Ingenuity Microsystems Sdn Bhd telah mengambil keputusan untuk menyokong dan mempraktik model CMMI[®] demi untuk meningkatkan proses yang akan dijalankan oleh organisasi dan memenuhi kehendak perniagaan organisasi. Ingenuity telah merancang untuk mencapai CMMI®/SW Maturity Level 3 dengan berasaskan 'Staged Representation', peta perjalan 'Ingenuity's CMMI[®] Implementation Roadmap' yang diaplikasikan daripada kitarhidup IDEALSM dan urutan kerja 'Process Area Work Flow'. Laporan ini berkisar tentang perjalanan CMMI® yang dilalui oleh pelatih ketika mengimplementasikan projek SPI di Ingenuity terutamanya tentang proses yang berkaitan dengan Measurement and Analysis, Risk Management, Integrated Project Management dan Integrated Supplier Management.

TABLE OF CONTENTS

CHAPTER	TITLE		
1	INTRODUCTION		
	1.1	Company Background	1
		1.1.1 MSC and Ingenuity	2
		1.1.2 Products and Services	2
		1.1.3 Research and Development	3
	1.2	Background of Project Involved	4
	1.3	Project Vision	5
	1.4	Project Objective	5
	1.5	Project Scope	6
	1.6	Planning	7
	1.7	Deliverables	7
2	LIT	TERATURE REVIEW	9
	2.1	Software Process Improvement (SPI)	9
		2.1.1 Type of SPI	10
	2.2	Capability Maturity Model® Integration (CMMI®)	13
		2.2.1 Why CMMI®	14
		2.2.2 Benefit of CMMI®	15
		2.2.3 CMMI [®] Bodies of Knowledge	16
		2.2.4 CMMI [®] Model Representation	18
		2.2.5 Process Area	19
		2.2.6 Engineering Process Group (EPG)	21
	2.3	A Comparison of CMMI® and ISO 9000	22
	2.4	A Comparison of CMMI® and SW-CMM®	24

	2.5	Comp	arison of	CMMI [®] , SW-CMM [®] and ISO 15504	
		(SPIC	E)		28
	2.6	The St	tudies on	Respective Process Areas Assigned	28
		2.6.1	Measure	ement and Analysis (MA)	29
			2.6.1.1	Goal Question Metric (GQM)	30
		2.6.2	Risk Ma	anagement (RSKM)	32
			2.6.2.1	Risk Management Process	33
		2.6.3	Integrat	ed Project Management (IPM)	35
			2.6.3.1	Integrated Project Management	
				Stages	36
		2.6.4	Integrat	ed Supplier Management (ISM)	37
	2.7	Proces	ss Assets	Library (PAL)	38
		2.7.1	Issues a	nd Challenges in Creating and	
			Deployi	ng a PAL	39
	2.8	Organ	izations I	Experience in CMMI®	41
		2.8.1	Kompal	car Inc Bhd	41
		2.8.2	Motoro	la Global Software Group	42
		2.8.3	Siemens	s Information System Ltd	42
	2.9	IDEA	L SM Mod	el Life Cycle	43
3	PRO	OJECT	METHO	DDOLOGY	48
	3.1	CMM	I® as a SI	PI Project Framework	48
	3.2	Ingenu	uity CMN	II® Implementation Roadmap	48
		3.2.1	Getting	Started	50
		3.2.2	Process	Writing	52
		3.2.3	Process	Deployment	53
		3.2.4	Assessn	nent	53
	3.3	Proces	ss Area W	Vork Flow	54
4	PRO	OJECT	DISCUS	SSION	59
	4.1	Proces	ss Definit	ion Document	59
	4.2	Proces	ss Area A	rtifact	65
	4.3	Proces	ss Area P	olicy	67

	4.4 Structure the Organization Asset Library (OAL)		67
	4.5	Constraints and Challenges	69
5	CO	NCLUSION	71
	5.1	Summary of the CMMI® Project	71
	5.2	Suggestion for Improvement	72
	5.3	Experience Gained	73
REFERENCES			74
APPENDICES			77

LIST OF TABLES

TABLE NO.	TITLE	
1.1	List of Process Area Assigned	6
1.2	Expected Deliverables for Each Process Areas	8
2.1	Types of Software Process Improvement (SPI)	11
2.2	The CMMI® Bodies of Knowledge	16
2.3	Continuous Representation versus Staged Representation	18
2.4	Process Areas for Staged Representation	20
2.5	The Comparison between ISO and CMMI®	23
2.6	General Assertions of CMMI® and SW-CMM®	25
2.7	The Comparison of PA between CMMI® and SW-	
	CMM [®]	26
2.8	Maturity and Capability Levels of CMM®, CMMI® and	
	ISO 15504	28
2.9	GQM Four-phase Process	31
2.10	The Description of Risk Management Process	33
2.11	Motorola Global Software Group Performance Result	42
2.12	Siemens Information System Ltd. Performance Result	42
2.13	The Overview of IDEAL SM Model	45
4.1	Measurement and Analysis Goals and Practices	60
4.2	Risk Management Goals and Practices	60
4.3	Integrated Project Management Goals and Practices	61
4.4	Integrated Supplier Management Goals and Practices	62
4.5	Example of Process Area Artifact	66

LIST OF FIGURES

FIGURE NO. TITLE		PAGE	
2.1	Structure of the CMMI® Staged Representation	19	
2.2	Life Cycle Relationship Among Process Areas	29	
2.3	4 Phases in Performing GQM	31	
2.4	Three Stages for Typical IPM Flow	36	
2.5	The IDEAL SM Model	44	
3.1	Ingenuity's CMMI® Implementation Roadmap	50	
3.2	Ingenuity Process Area Work Flows	56	
5.1	Relationship between Product and Process	72	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	Gantt Chart	78	
В	Real Cases on Software Mistakes	79	
C	Capability Maturity Model® (CMM®)	81	
D	Ingenuity's Process Engineering Group (PEG)		
	Team Members	82	
E	Typical Fundamental for Structuring the PEG		
	Team Members	83	
F	An Example of Process Definition Document		
	Template	85	
G	An Example of OAL Structure	87	
Н	An Example of QMS Structure	90	

LIST OF SYMBOLS

- Registered Mark
 **CMM and CMMI are registered in the U.S. Patent and Trademark
 Office by Carnegie Mellon University
- SM Service Mark

LIST OF ACRONYMS AND ABBREVIATIONS

AB – Ability to Perform

AM – Acquisition Management

CAR – Causal analysis and Resolution

CM – Configuration Management

CMM – Capability Maturity Model

CMU – Carnegie Mellon University

CMMI – Capability Maturity Model Integration

CMMI-SW - Capability Maturity Model Integration for Software

Engineering

CO – Commitment to Perform

CRM – Customer Relationship Management

DAR – Decision Analysis and Resolution

DI – Directing Implementation

EPG – Engineering process Group

FMS - Financial Management Solutions

GG – Generic Goal

GP – Generic Practices

GQM – Goal Question Metric

ICT – Information and Communications Technology

IDEAL – Initialize, Diagnose, Establish, Acting, Leveraging

IMSB – Ingenuity Microsystems Sdn Bhd

IPM – Integrated Project Management

IPPD – Integrated Product and Process Development

ISM – Integrated Supplier Management

ISO – International Standards Organization

IT – Integrated Teaming

KPA – Key Process Area

MA – Measurement and Analysis

MSC – Multimedia Super Corridor

N.A – Not Applicable

OAL – Organizational Asset Library

OEI – Organizational Environment for Integration
 OID – Organizational Innovation and Deployment

OPD – Organizational Process Definition

OPF – Organizational Process Focus

OPP – Organizational Process Performance

OT – Organizational Training

PA – Process Area

PAL – Process Assets Library

PEG – Process Engineering Group

PI – Product Integration

PMC – Project Monitoring and Control

PP – Project Planning

PPQA – Process and Product Quality Assurance

PSM – Practical Software and System Measurement

QAI – Quality Assurance Institution

QMS – Quality System Management

QPM – Quantitative Project Management

R&D – Research and Development

RD – Requirement Development

REQM – Requirement Analysis RFP – Request For Proposal

RMT – Risk Management Team

RSKM – Risk Management

SAM – Supplier Agreement Management

SCAMPI – Standard CMMI® Appraisal Method for Process Improvement

SDL – Software Development Library

SE – Systems Engineering

SEI – Software Engineering Institute

SEPO – Software Engineering Process Officer

SG – Specific Goal

SP – Specific Practices

SPI – Software Process Improvement

SPICE – Software Process Improvement and Capability dEtermination

SS – Supplier Sourcing

SW – Software Engineering

SW-CMM – Capability Maturity Model for Software

TS – Technical Solution

VAL – Validation

VE – Verifying Implementation

VER – Verification

CHAPTER 1

INTRODUCTION

1.1 Company Background

Ingenuity Microsystems Sdn. Bhd. is an IT company that prides itself as a single-source enterprise solutions provider. The principal activities of this company are business software development, customization and deployment of hardware, research and development, professional consultancy and systems integration services.

Ingenuity's solutions are designed to automate business processes as stand alone/ modular applications or as multi-user applications, and to provide customized end-to-end enterprise workflow solutions that integrate seamlessly into today's businesses.

Ingenuity is an MSC-Status company, operating from its head office in Kuala Lumpur, with a Research and Development Centre in Technology Park Malaysia, Bukit Jalil.

Ingenuity's research and development activities are endorsed by the Ministry of Science, Technology and the Environment and Multimedia Development Corporation through the MSC Research & Development Grant Scheme. The company has a distinguished panel of experts with significant experience in information technology research and consultancy for its R&D Advisory Panel.

With the capabilities to deliver comprehensive IT solutions for mid-tier to large businesses, Ingenuity is positioning itself as a leading enterprise software house that provides world-class, cost-competitive ICT products and services.

1.1.1 MSC and Ingenuity

In recognition of its ICT contributions to the MSC and Malaysia, Ingenuity was granted MSC-Status and was awarded the highly regarded Multimedia Grant Scheme for software R&D. The Ingenuity achievements in the MSC are:

- a. Contribution to the Borderless Marketing Flagship Application.
- b. Utilization of knowledge workers and technology transfer.
- c. MSC Smart Schools Flagship Application.
- d. R&D into Predictive CRM with Financial Data Protocol.

1.1.2 Products and Services

Ingenuity's range of software products, services and solutions under the INGENUITY® branding are:

- a. INGENUITY® CRM
- b. INGENUITY® Financial and Accounting Solutions (FMS)
- c. INGENUITY® College Management Software (CMS)
- d. INGENUITY® E-business Solution
- e. Enterprise workflow solutions
- f. Professional tax computation software
- g. Payroll and human resource management solutions
- h. Point-of-sale systems for retail and food & beverage (F&B) industries
- i. Hospitality solution with office and process automation

- j. System integration
- k. Software development services in client-server and Internet technologies

In addition, Ingenuity provides services in the areas of network solutions, data centre building and professional consultancy.

1.1.3 Research and Development

Ingenuity's involvement in the area of research and development (R&D) began when the company was awarded the MSC status in May 2000. Ingenuity's core emphasis of R&D is in the areas of:

- a. Business Intelligence Analytics and Predictive Customer Management
- b. Improved Human Computer Interaction through wireless applications
- c. Financial Application Data Interchange Protocol

A panel of experts in various industries guides the R&D team. The members of the R&D Advisory Panel are:

- a. Dr. Zahran bin Halim
- b. Dr. Zaidah binti Razak
- c. Prof Dato' Dr. Norbik Bashah bin Idris
- d. Dr. Cesar Montes
- e. Dr. Javier Segovia
- f. Ir. Azman Ahmad
- g. Mr. Yau Yat Hoong
- h. Mr. Wong Hun Liang

1.2 Background of Project Involved

"We realized that accreditation such as CMMI® is important for winning bids. Since then we have begun our application for CMMI® certification, and realize that the experience and expertise we have gained through this process needs to be shared with other local software developers."

"If there are more Malaysian developers who can compete globally it will definitely make it easier for other local developers to begin moving into the larger market place. Systematic change and configuration management needs to be in place in these organizations first before this can happen," said Executive Vice President of XYBASE Sdn Bhd, En Mohamed Izmi Md Said.

Source: Mr. Samuel Tan from About Communication Sdn Bhd, 2003

According to the above article, we may define that the CMMI[®] project is a project which act as a first step towards process improvement. Due to that, Ingenuity Microsystems Sdn. Bhd. endorsed the CMMI[®] model for software process improvement to satisfy the organization's business needs. The idea of CMMI[®] was mooted to free the software product from defects before the product is delivered. By applying CMMI[®], the product derived from the model is better able to fulfill the customer's satisfactions and meet demanding time-to-market goals. Besides, the organization can achieve a sustained competitive advantage in the local and international business by continuously built the well-trained engineers.

Therefore, a Process Engineering Group (PEG) was structured to organize the CMMI[®] project in Ingenuity. This team's is to drive and facilitates the CMMI[®] process until it comes to a point whereby in later stages, the organization can learn themselves how to further advance to higher CMMI[®] levels.

5

Ingenuity has decided to cover all the process areas in the CMMI[®] Maturity

Level 2 and Level 3. To assist itself in achieving that maturity level, Ingenuity has

officially appointed Quality Assurance Institution (QAI) as a professional consultant.

This organization was selected by the Ingenuity because it is the largest in Asia in

terms of Software Process Improvement (SPI), Capability Maturity Model[®] (CMM[®])

and Capability Maturity Model[®] Integrated (CMMI[®]) and among the top 3 in the

world in this domain.

1.3 **Project Vision**

The intern's task during the 5 months industrial attachment is to assist

Ingenuity in achieving the Capability Maturity Model Integration for Software

Engineering (CMMI®/SW) Maturity Level 3 by originating Process Definition

Document for process area in Maturity Level 2 and Maturity Level 3.

1.4 **Project Objective**

Ingenuity main objectives when implementing this software process

improvement by using CMMI[®] framework is to achieve CMMI[®]/SW Maturity Level

3 which is known as the Defined staged. Besides, Ingenuity also sets its expectation

in that.

"Through the CMMI® initiative, the company expects to develop a

structure process methodology within the company for total quality and

productivity improvement. This will improve the competency of the

organization to achieve its long term business goals in delivering high

quality and cost-competitive IT projects and solutions for world wide

market."

Source: Ingenuity Microsystems Sdn. Bhd.

To facilitate above major objective, the intern was required to develop her own objectives that can be achieved within 5 months industrial attachment duration. Henceforth, the following objectives were laid out:

- a. To define the respective process areas up to the Defined Stage of the CMMI those have been assigned by Ingenuity.
- b. To ensure that defined process areas can be implemented during CMMI® process implementation phase at Ingenuity.
- c. To implement the respective process areas in the Ingenuity pilot project.

1.5 Project Scope

Due to the Industrial Attachment period, the intern's has to set a scope those suites with the time frame, which is 5 months industrial attachment duration.

For the Staged Representation, there are 21 process areas which are included in the CMMI[®] Maturity Level 2 and Maturity Level 3. However, intern will only focus on several process areas that have been assigned by Ingenuity. Table 1.1 shows the list of process areas that been assigned to the intern.

Table 1.1: List of Process Area Assigned

No.	Process Area	Level
1.	Measurement and Analysis (MA)	2
2.	Risk Management (RSKM)	3
3.	Integrated Project Management (IPM)	3
4.	Integrated Supplier Management (ISM)	3

In order to define and ensure the readiness of the above process areas, the intern has to focus on below scope of work:

- a. Study the process areas and outlined the details for constructing the Process Definition Document.
- b. Prepare Process Definition Document that consist of purpose and scope, roles, related process area, process area procedure and measurement metrics for respective process area that have been assigned by Ingenuity.
- c. Develop document or form template for allocated process areas.
- d. Review the Process Definition Document with PA Owner, PA Lead and PEG team members.
- e. Deploy the first draft of Quality Management System.
- f. Perform the internal audit for document standard.

1.6 Planning

This industrial attachment project will be done within 5 months from 6^{th} April 2005 until 2^{nd} September 2005. The details of the task for this industrial attachment project are mentioned in the Gantt Chart on Appendix A.

1.7 Deliverables

The deliverables for CMMI[®]/SW project are different from other software development projects, which there are specific products to be delivered. This effort is complying with the process area; therefore it will be expected document to be published for Ingenuity benefits.

The entire work product is called as software artifacts and become as assets of Ingenuity. Table 1.2 will describe the expected deliverables for each process area that intern involve into.

 Table 1.2: Expected Deliverables for Each Process Areas

No.	Process Area	Deliverables
1.	Measurement and Analysis	a. Process Definition Document for MA.
	(MA)	b. Document and form template for MA.
2.	Risk Management (RSKM)	a. Process Definition Document for RSKM.
		b. Document and form template for RSKM.
		c. RSKM Policy.
3.	Integrated Project	a. Process Definition Document for IPM.
	Management (IPM)	b. Document and form template for IPM.
		c. IPM Policy.
4.	Integrated Supplier	a. Process Definition Document for ISM.
	Management (ISM)	b. Document and form template for ISM.
		c. ISM Policy.
5.	Organizational Process	a. Organization Assets Library (OAL)
	Focus (OPF)	

REFERENCES

- Boehm, Barry (1991). Software Risk Management: Principles and Practices. IEEE Software
- Charles H. Schmauch (1994) *ISO 9000 for Software Developers*. Irwin Professional Publishing
- Chrissis, Mary B., Konrad Mike and Shrum, Sandy. CMMI[®]: Guidelines for Process Integration and Product Improvement. Addison Wesley. 2003
- EI Toolkit Team (2003). Risk Management Process. Risk Management Plan (Template and Guide). 2: 18-28.
- Glazer, Hillel. What is CMMI and Why Should You Care? Entinex Columns, September 2003. Entinex, Inc: Entinex Translate. 2003.
- Goldenson, Dennis R. and Gibson, Diane L. (October 2003). *Demonstrating the Impact and Benefits of CMMI: An Update and Preliminary Result.* Carnegie Mellon University.
- Hefner, Rick and Manthey, Fred. Scale and Scope Implications for CMMI. *NDIA System Engineering Conference*. October 25, 2001. National Defense Industrial Association: TRW System. 2001. 1-14.
- Henry, Daniel., McCarthy, Larry and Chitnis, Sanjay. CMMISM Transition at Motorola GSG. CMMI Technology Conference. November 17-20, 2003. Hyatt Regency Tech Center. 2003. 1-26.

- Herve Rochecouste (2003). CMMI-Use the body of Knowledge to Create and Improve your System Integration Capability. University of Cambridge: MBA
- Humphrey, W. S. (1992). *Introduction to Software Process Improvement*. Pennsylvania: Carnegie Mellon University.
- Jim Kirk. SW-CMM or CMMI? Do Nuances Exist Beyond the Texts? CMMI Technology Conference & User Group. November 16, 2004. National Defense Industrial Association & Software Engineering Institute: Carnegie Mellon University. 2004. 1-17.
- Jing, Chiou Liou (2002). CMM and Software Process Maturity. AT&T Labs: PhD
- Jovanovic, V. and Shoemaker, D. (1997). ISO 9001 standard and software quality improvement. *Benchmarking: An International Journal*. 4 (2): 148-159.
- Kayuha, Robert J., Leclaire, Rishard C., Matthews, Robert H. and Henry, Leslie M. Integrated Project Management Handbook. Dayton Aerospace, Inc. 2002
- Kinnula, A. Software Process Engineering Systems: Models and Industry Cases. Finland: Oulu University Press. 2001
- McGrew, John F. and Bilotta, John G. (2000). The effectiveness of risk management: measuring what didn't happen. *Management Decision*. 38 (4): 293-301.
- Mutafelija, B. and Stromberg, H. (2003). *Systematic Process Improvement Using ISO 9001:2000 and CMMI®*. Norwood: Artech House, Inc.
- Myers, Mary., Lawless, Greg. and Nadeau, E.G. A Tool for Community Economic Development. *Cooperative Development Training Conference*. 1998. Mutual Service Fund of the MSI Insurance Foundation: University of Wisconsin Center for Cooperatives. 1998. Chapter 5.

- Pressman, Roger P. Software Engineering A Practitioner's Approach European Adaptation. 5th Edition. United Kingdom: Alfred Waller, Mc Graw Hill. 2000
- QAI Software Engineering Group. *CMMI in 24 Hours*. mfQ Asia: Quality Asia Institution. 2000
- Rick Hefner (2004). *Capability Maturity Model Integration (CMMI) Overview*. University of Southern California: PhD
- Simmons, J. Applying Goal Driven Measurement to CMMI Implementation. *CMMI Technology Conference*. November 14th, 2002. Integrated System Diagnostics Incorporated. 2002. 1-24.
- Thorton, S. (2003). Software Measurement The GQM Measurement Program. University of Calgary.
- Tonies, Charles C. and Jensen, Randall W. *Software Engineering*. Englewood Cliff, New Jersey: Prentice Hall, Inc. 1979
- Walker Royce. CMM vs. CMMI: From Conventional to Modern Software Management. *The Rational Edge Community*. (N.A). Rational Software Corporation: Rational Software 2002. 2002. 1-11.