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ABSTRACT 

 

 

 

 

 In enzyme production industries, the major challenges that hinder the efficient 

and economic commercial scale application of proteases are their stability in broad 

range of pH, temperature, salinity, as well as their optimal activity in the presence of 

metal ions, organic solvents and detergents.  Moreover, the enzyme purification steps 

also contribute to the cost of production.  To overcome this problem, characterization 

and production of crude protease with attractive properties from wild bacterial isolate 

could be an alternative as it is a more cost-effective way compared to production of 

protease that involves purification steps and protein engineering approach.  Therefore, 

crude protease of Virgibacillus sp. CD6 isolated from salted-fish was characterized in 

this study using azocasein assay and bioinformatics tools.  Protease production was 

found to be highest when using soybean meal and yeast extract as nitrogen source 

compared to other organic nitrogen sources.  The protease exhibited vast range of 

stability with optimum activity at 10.0 % (w/v) NaCl, 60ºC, pH 7 and 10, indicating 

its polyextremophilicity.  The enzyme activity was enhanced by Mg2+, Mn2+, Cd2+ and 

Al3+.  Both PMSF and EDTA hindered protease activity, denoting the presence of 

serine protease and metalloprotease properties respectively.  High protease stability 

(>80%) was demonstrated in presence of organic solvents and detergent constituents 

investigated, and surprisingly it is exceptionally compatible with commercial 

detergents.  Phylogenetic analyses revealed that proteases of Virgibacillus sp. 

demonstrated far distance relationship with other species, which worth for further 

exploration.  Attributes of this protease can actualize necessity of searching superlative 

enzymes from extremophiles for diverse applications, particularly in detergent 

industry. 
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ABSTRAK 

 

 

 

 

Dalam industri penghasilan enzim, cabaran utama yang menghalang aplikasi 

komersial protease yang cekap dan ekonomi adalah ciri-ciri protease yang stabil dalam 

pelbagai pH, suhu, kadar garam serta aktiviti optimum dalam ion logam, pelarut 

organik, dan unsur detergen.  Selain itu, proses penulenan enzim juga menyumbang 

kepada kos penghasilan.  Bagi mengatasi masalah ini, pencirian dan penghasilan 

protease dari bakteria tanpa melibatkan proses penulenan boleh menjadi alternatif 

kerana ia adalah cara yang kos efektif berbanding dengan penghasilan protease yang 

melibatkan penulenan enzim dan kejuruteraan protein.  Oleh itu, protease daripada 

Virgibacillus sp. CD6 yang dipencilkan daripada ikan masin telah dicirikan dalam 

kajian ini dengan penggunaan azocasein assay dan alat bioinformatik. Penghasilan 

protease didapati paling tinggi apabila menggunakan kacang soya dan ekstrak yis 

sebagai sumber nitrogen berbanding dengan sumber nitrogen organik yang lain.  

Protease tersebut mempamerkan luas kestabilan dengan aktiviti optimum pada 10.0% 

(w/v) NaCl, 60ºC, pH 7 dan 10, menunjukkan ciri poli-ekstremofi.  Aktiviti enzim 

telah dipertingkatkan oleh Mg2+, Mn2+, Cd2+ dan Al3+.  Kedua-dua PMSF dan EDTA 

didapati menghalang aktiviti protease, menandakan ciri protease serine dan 

metalloprotease masing-masing.  Kestabilan protease yang tinggi (>80%) telah 

ditunjukkan dalam pelarut organik dan unsur detergen, serta amat serasi dengan bahan 

pencuci komersial. Analisis filogenetik menunjukkan bahawa protease daripada 

Virgibacillus sp. mempunyai hubungan yang jauh dengan spesies lain, bernilai untuk 

penerokaan selanjutnya.  Sifat-sifat protease ini boleh merealisasi keperluan mencari 

enzim cemerlang dari esktremofi untuk pelbagai aplikasi, terutamanya dalam industri 

detergen. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

Halophilic bacteria has been recognized as one of the extremophiles that has 

valuable applications in industry and environment (Oren, 2010; Edbeib et al., 2016; 

Yin et al., 2015).  They are found in natural saline and hypersaline habitats such as 

seawater, salt marshes and lagoon.  Occurrence of halophiles can be from seawater to 

brines (Brock, 1979), some habitats include Dead Sea between Israel and Jordan and 

also Great Salt Lake in Utah (Oren, 2006).  Besides that, salty environments inhabited 

by halophilic and halotolerant bacteria include food products such as salted fish and 

fermented food (Enache et al., 2012), and these type of foods are commonly found in 

Malaysia.   

  

 

Well-adapted strategies in saline environments utilized by halophilic bacteria 

made them useful in industrial applications.  These halophilic bacteria has been used 

for production of valuable metabolites and solutes such as stress protectants 

(DasSarma and DasSarma, 2006), saline wastewater treatments (Shivanand and 

Mugeraya, 2011) and biodegradation of organic pollutants in environmental 

biotechnology (Le Borgne et al., 2008). Halophilic bacteria can be classified under 

different phyla.  Under different phylum, halophilic bacteria have different 

physiological requirements such as compatible solute used and salt concentration 

required.  This diversity makes the halophilic bacteria as one of the source of 

opportunity and abundance, including industrial enzymes.  
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One of the enzymes produced by halophilic bacteria is protease, which is a type 

of hydrolase.  Protease can be produced from animal, plant and microbial source.  

Protease from microbial source has been extensively used in various application 

especially in detergent industry since 1960 (Rao et al., 1998) due their effectiveness 

in removing protein stains (Karn and Kumar, 2015).  Until today, proteases contributed 

approximately 60% of the global industrial enzymes market (Anithajothi et al., 2014).  

While from this amount, microbial proteases constitute 40% of total enzyme 

production (Raval et al., 2014) which applied in various industries.  The largest market 

undeniable is detergent industry, as this industry contributed to production of 13.5 

billion tons per year (Adrio and Demain, 2014).   

 

 

Apart from that, use of eco-friendly protease recovered from industrial sludge 

for bio-conversion of proteinaceous waste material into value-added products has 

become an increasingly concern due to it is a cost effective process (Karn and Kumar, 

2015).  And also, protease has been engineered using rational design and directed 

evolution approach to improve its properties and functions to be applied as therapeutic 

agents and in food processing (Li et al., 2013).  Based on huge demand of protease 

market and its application, new candidate of protease remained a worth for further 

discovery.   
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1.2 Problem statement / significance of study 

 

 

Halophilic bacteria produce polyextremophilic enzymes that may have useful 

application in various biotechnological field.  For instance, protease can act as 

fibrinolytic agent and also removing protein based stains such as blood and sweat 

effectively (Karn and Kumar, 2015).  Most of the commercial bacterial proteases used 

in detergent industry are produced from Bacillus sp. (Gupta et al., 2002b), lesser 

investigation on protease from Virgibacillus sp., and until today, no commercial 

protease is originated from genus Virgibacillus as well.  Furthermore, expenditure cost 

in detergent industry such as purification, production (Niyonzima and More, 2015b) 

and protein engineering to increase protease efficiency (Li et al., 2013) are expensive.  

To sort out these problems, a single step of production with the use of crude enzyme 

is required (Niyonzima and More, 2015a), a more cost effective way compared to 

purification.   Moreover, exploration on novel enzymes with extraordinary properties 

from extremophiles is always in demand and continuously in research field.  Therefore, 

this study was conducted to characterize extracellular protease produced from a 

halophilic bacterium, Virgibacillus sp. strain CD6 that is potentially to be applied in 

various industries, especially in detergent formulation. 

 

 

 

 

1.3 Objectives of study 

 

 

The objectives of this research are: 

i. To select the best nitrogen source for protease production. 

ii. To assess the effect of physico-chemical factors on the activity and stability of 

protease from Virgibacillus sp. CD6. 

iii. To analyze extracellular protease sequences encoded for Virgibacillus sp.  

 

 

 

 

 

 

 

 

 



4 
 

1.4 Scope of study 

 

 

The previously isolated halophilic bacteria, Virgibacillus sp. strain CD6 was 

initially screened for extracellular protease activity by using qualitative approaches, 

(skim milk agar and gelatin liquefaction).  After that, medium for protease production 

was formulated and effect of nitrogen sources on protease production was investigated.  

The optimum conditions of protease activity and its stability in terms of pH, 

temperature and salt concentration were determined.  Then, protease stability in 

presence of metal ions, inhibitors, detergent constituents and organic solvent was 

assessed.  Compatibility of protease with commercial detergents and substrate 

specificity of protease were also investigated.  Lastly, annotated protein sequences of 

extracellular proteases of Virgibacillus sp. were analyzed using bioinformatics 

approach and phylogenetic protein tree was constructed. 
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