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ABSTRACT 

Ultra-wideband (UWB) is a promising technology for achieving high data rate 

communications.  When UWB channel measurements are conducted, channel 

impulse responses (CIRs) are extracted from measured UWB waveforms using 

CLEAN deconvolution algorithm.  However, artifact paths that represent unreal 

received multipath components (MPCs) are generated during this process.  These 

artifact paths are registered as part of the measured CIRs representing a reflected 

signal from a scatterer.  In reality, these paths do not represent a real scattering 

environment and this affects accurate channel modeling.  Therefore, removal of the 

artifact paths is important to conserve better and have a more real scattering 

environment. In this work, an algorithm was developed to remove artifact paths from 

measured CIRs.  The algorithm development was achieved based on the concept of 

geometric elliptical modeling applied to wideband channels, where the effective path 

in each ellipse is utilized to represent the channel response of the ellipse.  Several 

UWB channel measurements were conducted to obtain the measured UWB 

waveforms.  In addition, the characteristics of the UWB channels were analyzed in 

terms of CIRs properties and their stationarity regions. The algorithm performance 

was evaluated by comparing the single-template CLEAN CIRs with the CIRs result 

from the application of the developed algorithm on single-template CLEAN CIRs. 

Results showed that the developed algorithm can successfully remove the artifact 

paths.  Besides that, an enhancement in the received power was achieved.  For a 

specific measured channel, the received power enhancement obtained was more than 

5%.  The algorithm is beneficial for enhancing accuracy of CIRs extracted from a 

single-template CLEAN algorithm. Consequently, more accurate channel 

characteristics are gained leading to improved channel modelling and different 

parameter extractions.   
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ABSTRAK 

Jalur lebar ultra (UWB) adalah teknologi yang menjanjikan pencapaian kadar 

data komunikasi yang tinggi. Apabila ukuran saluran UWB dijalankan, tindak balas 

saluran denyut (CIRs) diekstrak dari bentuk gelombang UWB yang diukur 

menggunakan algoritma penyahkonvolusi CLEAN. Walau bagaimanapun, laluan 

artifak yang mewakili komponen pelbagai arah (MPCs) diterima tidak dihasilkan 

dengan betul semasa proses ini. Laluan artifak ini berdaftar sebagai sebahagian 

daripada CIRs diukur mewakili isyarat terpantul dari penyelerak. Secara realiti, 

laluan ini tidak mewakili persekitaran berselerak yang sebenar dan ini memberi 

kesan  kepada model saluran yang tepat. Oleh itu, penyingkiran laluan artifak adalah 

penting untuk penjimatan lebih baik dan persekitaran serakan lebih nyata. Dalam 

kerja ini, algoritma dibentuk untuk membuang laluan artifak dari CIRs 

diukur. Pembentukan algoritma yang telah dicapai berdasarkan konsep pemodelan 

geometri elips digunakan untuk saluran jalur lebar  di mana laluan yang berkesan 

dalam setiap elips digunakan untuk mewakili tindak balas saluran elips. Beberapa 

ukuran saluran UWB telah dijalankan untuk mendapatkan bentuk gelombang UWB 

diukur. Di samping itu, ciri-ciri saluran UWB telah dianalisa dari segi sifat-sifat 

CIRs dan kawasan kepegunan. Prestasi algoritma dinilai menerusi perbandingan 

antara CIRs CLEAN templat tunggal dengan yang terhasil daripada penggunaan 

algoritma dibentuk atas CIRs. Keputusan menunjukkan bahawa algoritma dibentuk 

berjaya mengeluarkan laluan artifak. Selain itu, penambahbaikan dalam kuasa yang 

diterima juga dicapai. Misalnya, untuk saluran diukur tertentu, lebih  dari 5% 

daripada peningkatan kuasa diterima telah diperolehi. Algoritma yang dibentuk 

adalah bermanfaat untuk meningkatkan ketepatan CIRs diekstrak daripada algoritma 

CLEAN templat tunggal. Oleh yang demikian, ciri-ciri saluran yang lebih tepat 

diperolehi, membawa kepada pemodelan  saluran lebih tepat dan pengekstrakan 

parameter yang berbeza.  
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CHAPTER 1  

INTRODUCTION  

1.1 Introduction  

The wireless communications field represents a big engineering success in the 

recent two to three decades.  The success is not considered from the scientific view 

only, but from the economic and impact on society as well.  Many companies that were 

not known transferred to be a giant household due to their work on the wireless 

communications systems.  In addition, several countries are depending on the wireless 

communications industry as a main dominant part in their economical budget.  By 

observing the communications of information in history, wireless communications 

show its oldest form.  It started simply through shouts or jungle drums that were an 

innovative way of communications before civilization eras in order to transmit the 

information wirelessly.  No cable or wiring was used for this purpose.  Smoke signals 

were an example of a line of sight (LOS) communication that conveys a certain 

message to the receiving partner.  However, the wireless communication, as we know, 

started with the basis of electromagnetic signals transmission led by Maxwell and 

Hertz [1].   

The first publicized wireless communication was successfully conducted by 

Marconi in 1898.  The demonstration was achieved in the English Channel from a boat 

to the Isle of Wight.  The great achievement of Marconi led him to be recognized as 

the inventor of the modern wireless communications.  Nobel prize was awarded to him 

in 1909 due to this achievement [1].  It is noted that some talks advertise that Tesla 

was the first successful person in achieving the first wireless communications system 
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by demonstrating the transmission of the information through electromagnetic waves, 

but the stronger public relations of Maroni led him to be regarded as the inventor of 

the wireless communications system [1].  The utilization of radio communications (one 

direction) spread out throughout the whole world in the following years.  A wide 

network of transmission of information wirelessly was available by the late 1930s. 

Wireless communications advanced by the following decades, as the necessity 

for having a high data rate communication was available for the transmission of audio 

and video signals.  In this case, the idea of using signals of high bandwidth in the 

wireless communication systems started, where ultra-wideband (UWB) signals were a 

proposed option for this requirement, and the pioneering contribution in the field of 

UWB communications was achieved by Bennett and Ross in 1978 [2] and Harmuth in 

1981 [3].   A huge frequency band can be made from the UWB system that it ranges 

from 3.1 – 10.6 GHz [4].  This high bandwidth leads to high data rate communication 

according to what Shannon illustrated in his work [5]. 

In order to have a successful communication system, there are several 

parameters that need to be studied and modeled accurately.  One of these parameters 

is the wireless channel.  Indeed, the performance of the wireless communication 

system depends on the propagation condition between two entities that are the 

transmitter (Tx) and the receiver (Rx) where the channel represents the medium 

between them [6].  As the propagation channel is an important part in any 

communication system where it represents the environment in which the signal travels 

from the Tx to the Rx, understanding the behavior of the communication system 

channel is needed.  The transmitting and receiving devices need to make an agreement 

with the channel characteristics where the devices are operated to provide the ultimate 

outcome.  As a result, a prerequisite part of the UWB system design is the 

understanding of the UWB propagation channel.    

As the signal is transmitted through the channel to the receiving side, several 

scatterers are available which comprise the scattering environment of the particular 

channel.  The scatterers represent the interlacing objects (IOs) available in the channel 

between the transmitting and the receiving sides.  Due to the availability of the 
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different scatterers in the channel, multipath components are generated due to the 

reflection, diffraction or scattering of the propagated signal with the available 

scatterers.    

 Knowing the scattering environment is important for accurate channel 

modeling and characterization.  As the number of multi-paths can be approximated to 

be the same number of scatterers (considering a single scattering case), determining 

the real number of scatterers is crucial for knowing a particular channel behavior.  

Based on that, determining the accurate channel behavior in terms of its scattering 

environment is needed for accurate communication system design.  This can be 

achieved for different communication channels, where UWB channel is part of them.   

As the case of any communication system, the wireless channel (or simply 

referred as the channel) is a main part in determining the performance limit of wireless 

communication systems [7].  This case is applicable in any practical case, where the 

testing, design and improvement of the system depends on understanding the channel 

that signals propagate through.  In order to achieve this purpose, channel 

measurements are needed in order to study its effect on the propagated signals.   

Channel measurements are valuable in studying different channel 

characteristics.  The channel impulse response (CIR) is extracted from the received 

measured waveform obtained during the channel measurement campaign.  From the 

CIR, different channel parameters are extracted representing the different 

characteristics such as power, delay spread, and frequency dispersion.  The obtained 

parameters from the measurements are beneficial in studying and modeling the 

channel small scale and large scale characteristics. 

In the case of UWB channel measurements, CLEAN algorithm is used in order 

to extract the CIRs from the measured UWB waveforms.  In CLEAN, the data are 

processed by comparing the measurement information (dirty map) with a priori 

information (template).  Then the resulted CIRs , representing the clean map, are 

reconstructed based on cancelling the detected similarities [8].  However, the extracted 

CIRs usually contain artifact paths.  These artifact paths are registered as channel 
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response values representing a reflected signal from a scatterer.  In reality, these paths 

do not represent a real scattering environment and this affects accurate channel 

behavior [8], [9].  Therefore, removing the artifact paths is important to conserve better 

and more realistic scattering environment which results in more accurate channel 

characterization and modeling.   

In the literature, some approaches are available in developing the CLEAN 

algorithm through the removal of the artifact paths and getting better scattering 

environment.  The approaches focused on using multi-template CLEAN algorithm 

instead of the single-template one.  In the multi-template CLEAN, the deconvolution 

between the received waveform and the template is done with several UWB template 

waveforms instead of a single one in the single-template case.  These cases are seen in 

[8], [10], [11].  The proposed template waveforms are extracted from channel 

measurements in particular environments.  If the CIRs need to be extracted for other 

measurement environments, the template waveform should be found from that specific 

environment.  The template that is not proper for the deconvolution process may 

decrease the algorithm performance [12].  In this case, developing an approach that 

enhances the obtained outcome of the single-template CLEAN algorithm is beneficial 

for the general utilization in any environment with the same original undistorted 

template waveform.   

1.2 Problem Statement 

UWB channel measurement is conducted in order to study the channel 

behavior in a particular environment.  The CIRs are extracted from the measured UWB 

waveforms through the utilization of the CLEAN algorithm.  The method is based on 

a deconvolution process between the received UWB waveforms and a template 

waveform.  The resulted CIRs contain artifact paths that do not represent real multipath 

components (MPCs) and are generated during the deconvolution process.  Therefore, 

removing these artifact paths is needed to get more accurate scattering environment 

and, as a result, more accurate channel is observed.  Previous researches focused on 

the idea of using multi-template CLEAN to decrease the effect of artifact paths. 
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However, this method contains the challenges of the need of getting the UWB template 

waveforms from the measured environments [8], [10]–[12].  In addition, if the selected 

template accuracy is low, the extracted CIRs accuracy will decrease [12]. 

In order to address the main research problem given above, answers to several 

questions need to be provided as a prerequisite. 

1. What is the importance and the aim of this study? 

2. What is the theoretical framework that can be used to develop an 

algorithm to remove such artifact paths? 

3. How to do the UWB channel measurements, and what are the 

measurement techniques and devices that can be used? 

4. How to validate the research? 

5. What are the consequences of the application of the algorithm on the 

channel behavior? 

1.3 Research Aim and Objectives 

The aim of this study is to obtain accurate channel behavior based on cleaning 

the measured UWB CIRs from any artifact paths.  The results in removing artifact 

paths are important for modeling specific statistics [13] where accurate number of 

paths is crucial.  Extracting more accurate CIRs that represent the real scattering 

environment results in better channel characterization and modeling.  In the final 

outcome, better UWB communication system performance is achieved. 

In the purpose of providing the possible solutions to the presented problem 

statement, the objectives of this research are as follows: 
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 To measure and study the UWB channel through conducting outdoor 

and indoor measurement campaigns. 

 To extract measured CIRs using the single-template CLEAN algorithm. 

 To develop an algorithm to remove the artifact paths in addition to 

analyzing and evaluating the performance of the proposed algorithm. 

1.4 Scope of Research 

The scope of this research can be seen in the following points: 

 The algorithm is developed based on the theory of elliptical modeling where 

the wideband channel comprised of several delay taps. 

 The algorithm is used after the CIRs extraction by the single-template 

CLEAN algorithm. 

 UWB channel measurements are based on Time-Domain technique. 

 The equipment used in the measurements is PulsON 410 which is a UWB 

radio transceiver. 

 The frequency range of the UWB measurement is 3.1 – 5.3 GHz. 

 The transmitted UWB pulse bandwidth is 2.2 GHz, and the center frequency 

is 4.3 GHz. 

 The transmission power from PulsON 410 is -14.3 dBm. 
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 Channel measurements are based on single-input single-output (SISO) 

scheme, where two antennas are used in the measurement, one at the 

transmitting side and the other at the receiving side.   

 MATLAB® software is used for simulation results and analysis. 

 The UWB channel measurements are conducted in outdoor and indoor 

environments.  

 The conducted measurements have LOS communication. 

1.5 Research Contributions 

This research contributes to the huge field of UWB communications in terms 

of the UWB channel part.  The contribution goes to provide more accurate CIRs 

through clearing the measured CIRs (single-template CLEAN CIRs) from any artifact 

paths generated due to the utilization of the single-template CLEAN algorithm.  The 

contributions of this thesis are shown in the following subsections  

1.5.1 Removal of the Artifact Paths from the Measured CIRs 

The main contribution of this thesis is the development of an algorithm that 

removes the artifact paths from the measured CIRs.  The algorithm represents an 

enhancement to the CLEAN algorithm and will be run after getting the CIRs by 

CLEAN.  Thus, it can be used to structure the data after the CLEAN algorithm and get 

CIRs which are more practical and more likely to be empty from artifact (or phantom) 

paths. 

Two main phases have been developed in this algorithm: Firstly, the 

development of the algorithm based on the theory of the elliptical modeling has been 
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programmed.  In this stage, the removal of the artifact paths is the main purpose of this 

algorithm.  Secondly, In order to restore accurate time of arrivals (ToAs) of the 

received paths, phase 2 has been added, where another algorithm is developed for this 

purpose.  Based on that, the real channel values with their accurate ToAs have been 

preserved and any path that does not agree with the elliptical modeling theory has been 

removed.  Notice that the paths removal does not affect the real channel behavior as 

this removal agrees with practical cases stated in the literature. 

1.5.2 Sparse Indoor and Outdoor UWB Channel Measurements  

In order to understand and study the behavior of the UWB channel, several 

measurements have been conducted.  The measured data enhances the knowledge of 

the channel and is needed for the development of the algorithms.  The measurements 

were conducted in outdoor and indoor environments in order to have full insight on 

the difference in the measured CIRs that is caused due to the measurement 

environment.   

1.5.3 Stationarity Regions for UWB Channels 

The stationarity regions of the UWB channel have been extracted based on the 

correlation between the power delay profiles (PDPs) of the measured channel 

snapshots (one channel snapshot represents one measured UWB pulse with its received 

multi-paths).  The regions are studied based on the conducted measurement of the 

mobile run scheme and the statistical analysis has been achieved.  The knowledge of 

the stationarity regions assists in defining the distance steps where the channel has 

significance variation.   
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1.5.4 Channel Sparsity Determination using the Sparsity Index 

The sparsity index has been defined as the number of non-zero elements in the 

channel snapshots registered during the measurements.  The analysis of the sparsity of 

each channel is done by focusing on this parameter.  In addition, it has been used in 

order to calculate the received power of the channel in this type of sparsity behavior.   

1.6 Thesis Outline 

The thesis consists of six chapters. The outline of the remaining chapters is 

presented in this section. 

In Chapter 2, the literature review of the work is illustrated.  It starts from the 

explanation on the theory of the UWB communication.  The UWB channel is then 

illustrated in terms of the theory.  The different channel measurement techniques are 

elaborated along with the theory of the CLEAN algorithm and the CIR extraction.  

Finally, the chapter goes to the related works in this field. 

In Chapter 3, the methodology that has been used to achieve the research 

objectives is described.  The chapter starts with the method of conducting channel 

measurements in terms of the used equipment and the selected environment. Then the 

method of algorithm development is presented.    

In Chapter 4, the measurement campaigns that have been conducted in this 

research are elaborated.   Studying the channel behavior in detail has been achieved in 

terms of the effect of the different measurement environments.  In order to understand 

the UWB channel characteristics in terms of the measured CIRs in the measurement 

environments, indoor and outdoor measurements are conducted.  The chapter contains 

also the sparsity analysis of the UWB channel.  The sparsity index is defined and used 

for this purpose.  More details about the organization of this chapter and the reason for 

its sections hierarchy is shown in the Introduction section of the chapter.  
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In Chapter 5, the results of the developed algorithm is presented.  A comparison 

is shown between the results of the developed algorithm with the results of the single-

template CLEAN algorithm.  In addition, the effect of applying the developed 

algorithm on single-template CLEAN CIRs is shown in terms of the received power 

and the number of received paths. 

 In Chapter 6, the conclusion of the conducted research is contained, where the 

main points of the research are restated in addition to elaborating the research findings.  

An illustration of the objectives achievements has been included.  The limitations and 

challenges that are encountered in this research are presented.  Finally,   main points 

of the future work that can be conducted based on the lessons that are learned and 

understood from the research shown in this thesis have been included. 
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enhanced the power extracted from the CIRs, which is good for better Signal to Noise 

(SNR) values. The number of received paths shows the spread of the channel, where 

this research made enhancement in decreasing the number of paths due to the removal 

of any possible artifact paths. In this regard, other metrics can be evaluated in the 

future, such as the RMS delay spread to check how the difference of the number of 

paths affected this metric, the possible decrement of the RMS delay spread will be 

beneficial in getting better coherence bandwidth values, where the two metrics are 

inversely proportional.  
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