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ABSTRACT 

Climate change is one of the greatest challenges for water resources 

management. Intensity and frequency of extreme rainfalls are increasing due to 

enhanced greenhouse gas effect caused by climate change. A lot of research has been 

done in developing innovative methods for assessing the impacts of climate change 

on rainfall extremes. Climate change strongly depends on General Circulation Model 

(GCM) outputs since they play a pivotal role in the understanding of climate change. 

However due to their coarse resolution, statistical downscaling is widely applied to 

match the scale between the GCM and the station scale. This research proposed to 

establish statistical downscaling model that was able to generate hourly rainfall data 

for future projection of hourly extreme rainfall in Peninsular Malaysia. An Advanced 

Weather Generator (AWE-GEN) built on stochastic downscaling principles was 

applied for simulating hourly rainfall data. The model construction involved 40 

stations over Peninsular Malaysia with observations from 1975 to 2005. To account 

for uncertainties, an ensemble of multi-model namely GFDL-CM3, IS-CM5A-LR, 

MIROC5, MRI-CGCM3 and NorESM1-M were obtained from the dataset compiled 

in the WCRP’s, CMIP5. The projections of extreme precipitation were based on the 

RCP 6.0 scenario (2081-2100). To address the problem of unavailability of rainfall 

data at remote areas over Peninsular Malaysia, this research also examined the 

spatial variability of rainfall and temperature parameters using Locally Weighted 

Regression. Results of the AWE-GEN showed its capability to simulate rainfall for 

Peninsular Malaysia. Both hourly and 24 hour extreme rainfall showed an increase 

for future. Extremes of dry spell was projected to decrease in future whereas 

extremes of wet spell was expected to remain unchanged. Simulations of present 

climate using interpolated parameters showed promising results for the studied 

regions. 
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ABSTRAK 

Perubahan iklim adalah salah satu cabaran terbesar bagi pengurusan sumber 

air. Intensiti dan kekerapan hujan ekstrim semakin meningkat disebabkan 

peningkatan kesan gas rumah hijau yang disebabkan oleh perubahan iklim. Banyak 

kajian telah dilakukan dalam membangunkan kaedah inovatif untuk menilai kesan 

perubahan iklim ke atas hujan ekstrim. Perubahan iklim sangat bergantung kepada 

output Model Edaran Umum (GCM) kerana ia memainkan peranan penting dalam 

pemahaman perubahan iklim. Walaubagaimanapun, oleh kerana resolusi GCM yang 

kasar, kaedah penurunan statistik digunakan secara meluas untuk padanan skala 

antara GCM dan skala stesen. Kajian ini mencadangkan untuk membina model 

penurunan statistik yang mampu menjana data hujan seterusnya mengunjur hujan 

ekstrim pada selang masa satu jam di masa depan untuk Semenanjung Malaysia. 

Kaedah Penjana Cuaca Termaju (AWE-GEN) yang dibina atas prinsip stokastik 

digunakan untuk simulasi data hujan setiap jam. Pembinaan model melibatkan 40 

stesen di Semenanjung Malaysia dengan data cerapan dari tahun 1975 hingga 2005. 

Bagi mengambil kira ketidaktentuan, pelbagai model iaitu GFDL-CM3, IS-CM5A-

LR, MIROC5, MRI-CGCM3 dan NorESM1-M telah diperolehi daripada WCRP’s, 

CMIP5. Unjuran hujan ekstrim adalah berdasarkan senario RCP 6.0 (2081-2100). 

Bagi menangani masalah ketiadaan data hujan di kawasan terpencil, kajian ini juga 

mengkaji ubahan ruang parameter hujan dan suhu dengan menggunakan kaedah 

Regresi Tempatan Wajaran. Keputusan hasil AWE-GEN menunjukkan keupayaan 

untuk menjana simulasi hujan di seluruh Semenanjung Malaysia. Kedua-dua siri 

hujan ekstrim bagi satu jam dan 24 jam menunjukkan peningkatan pada masa akan 

datang. Musim kering ekstrim dijangka berkurangan sementara musim hujan ekstrim 

dijangka kekal tidak berubah. Hasil bagi simulasi iklim semasa menggunakan 

parameter berinterpolasi menunjukkan keputusan yang agak memberangsangkan 

bagi rantau kajian. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Climate change is a crucial problem as it requires us to adapt our activities to 

uncertain future climate scenarios. Several sectors such as water resources, 

agriculture, energy and tourism face the severe impacts caused by climate change. 

Climate change and global warming occur when the global atmospheric 

concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) 

increases due to human activities. Consequently, the observed global average 

temperatures has also been increasing since the mid-20
th

 century due to the rise of 

anthropogenic greenhouse gas (GHG) concentrations (IPCC, 2007). The warming 

has been shown to affect many natural systems which includes notable changes in 

snow, ice and frozen ground, increased runoff and changes in both terrestrial and 

marine ecosystems (Tangang et al., 2012),  changes in rainfall and risks of flooding 

(Willem et al., 2011) and changes of occurences of extreme precipitation (Huang et 

al., 2011). Besides that, the notable changes in marine and freshwater ecosystems are 

also related to changes in temperature. Among the major impacts of global warming 

are the increased frequency and intensity of extreme rainfall events (Sen Roy, 2009; 

Cheng et al., 2011). Extreme rainfall is one of the main causes of natural disasters 

such as flooding. Therefore, to date, considerable attention has been paid to the 

modeling of extreme rainfall for preventive measures of massive flooding as well as 

for projecting future extreme rainfall (Chu et al., 2012). This has led to numerous 

collaborations between meteorologist and hydrologists to establish hydrological 

model of spatial and temporal precipitation extremes. 
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General Circulation Model (GCM) are widely used in providing outputs of 

global climate across the world which consist of hydrometeorological variables such 

as precipitation, air temperature, relative humidity, wind speed, geopotential height 

and cloud cover. GCM is a numerical model which comprises of different earth 

frameworks; for example, air, sea, surface area and ocean ice. Information on the 

important processes about global and continental scale atmosphere can be projected 

by GCM for future atmosphere under different emission scenarios. Despite 

numerous uncertainties in different GCMs (Chu et al., 2010), these outputs provide 

hydrologists with the desired information. Unfortunately, GCMs are usually at 

resolution that is too coarse for many climate change impact studies (Fowler et al., 

2007; Hessami et al., 2008; Hashmi et al., 2009; Chu et al., 2010; Hashmi et al., 

2010; Fatichi et al., 2011). The internal relationships between the model’s variables 

produced from GCM also may not always be the same as those found in the 

observational data. As a result, their simulations of current regional climate can often 

be inaccurate for sub-grid scales (Chu et al., 2010; Guo et al., 2011).  

 

The discrepancy between the GCM scale and the scale that is required for 

most impact studies has led to the development of downscaling methodologies. In 

order to match the scale between the GCM outputs and hydrological process at 

smaller scale, downscaling must be employed. In particular, downscaling is used to 

model the hydrometeorological variables, at a smaller scale from a large scale. There 

are two approaches for downscaling: dynamical downscaling and statistical 

downscaling. Dynamical downscaling or known as Regional Climate Model (RCM) 

simulates climate at resolution of 50 km or less where the GCMs provide the 

boundary conditions to RCMs (Fowler and Wilby, 2010). Meanwhile, statistical 

downscaling is an empirical method that defines the statistical relationships between 

the large-scale climate features and the hydrological variables (Wilby et al., 2004; 

Sunyer et al., 2011). There are various discussions and debates on these two 

approaches. However, statistical downscaling requires less computational effort and 

is cheaper to employ (Wilby and Wigley, 2000; Huang et al., 2011). Advantages of 

statistical downscaling also include the opportunity to use ensemble GCM results 

which takes into account average results from more than one model. Projections 

from ensemble model is better as compared to projections from individual model 
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where the uncertainties from different GCM models could be taken into account 

(Wibig et al., 2015).  

 

Previously, future projections are based on Special Report of Emission 

Scenarios (SRES) scenarios. All SRES scenarios are non-intervention scenarios with 

an increasing forcing path during the 21
st
 century while Representative 

Concentration Pathways (RCP) span a large range of stabilization, mitigation and 

non-mitigation pathways (Rogelj et al., 2012). There are some similarities and 

differences between temperature projections for SRES scenarios and RCPs. As 

stated in Rogelj et al. (2012), the RCP 8.5 is equivalent to SRES A1F1 scenario 

which represent high-emission, non-mitigation future where by 2100 the range of 

temperature is between 4.0 to 6.0 ºC. RCP 6.0 temperature projections are equivalent 

to SRES B2. Likewise, RCP 4.5 temperature projections are equivalent to SRES B1. 

However, the lowest RCP scenario is basically different from the SRES scenario. In 

spite of having similarities, there are some particular differences between these two 

scenarios in terms of the rate of median temperature rises.  

 

For instance, the median temperatures in RCP 8.5 rise slower than in SRES 

A1F1 during the period between 2035 and 2080, and faster during other periods of 

the 21
st
 century. On the other hand, the median temperatures in RCP 6.0 rise faster 

than in SRES B2 during the three decades between 2060 and 2090 while slower 

during other periods of the 21
st
 century. Similarly, the median temperatures in RCP 

4.5 rise faster than in SRES B1 until mid-century, and slower afterwards. RCP 

scenarios are more focusing on process begins with pathways of radiative forcing, 

yet not detailed socioeconomic narratives or scenarios as in SRES scenarios. Table 

1.1 summarizes the definition of each RCP scenarios which will be the baseline of 

the future climate condition. The basis of the scenario name is according to their 

2100 radiative forcing level based on the forcing of greenhouse gases and other 

forcing agents. 
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Table 1.1: Definition of RCP scenario 

Name Radiative 

forcing
1
 

Concentration
2
 Pathway SRES 

temperature 

anomaly 

equivalent 

RCP 8.5 >8.5 W/m
2
 in 

2100 

> approx. 1370 

CO2-eq in 2100 

Rising SRES A1F1 

RCP 6.0 Approximate 6 

W/m
2
 at 

stabilization 

after 2100 

Approximate 

850 CO2-eq 

(at stabilization 

after 2100) 

Stabilizing 

without 

overshoot 

SRES B2 

RCP 4.5 Approximate 

4.5 W/m
2
 at 

stabilization 

after 2100 

Approximate 

650 CO2-eq 

(at stabilization 

after 2100) 

Stabilizing 

without 

overshoot 

SRES B1 

RCP 2.6-

PD
3
 

peak at 

approximate 

2.6W/m
2
 

before 

2100 and then 

decline 

peak at 

approximate 490 

CO2-eq before 

2100 and then 

decline 

Peak and 

decline 

None 

  1
Approximate radiative forcing levels were defined as ±5% of the stated level in W/m

2
.                                 

Radiative forcing values include the net effect of all anthropogenic GHGs and other forcing 

agents. 

      2
Approximate CO2 equivalent (CO2-eq) concentrations. The CO2-eq concentrations were     

 calculated with the simple formula Conc = 278 * exp (forcing/5.325). Note that the best 

 estimate of CO2-eq concentration in 2005 for long-lived GHGs only is about 455 ppm, 

 while the corresponding value including the net effect of all anthropogenic forcing agents 

 (consistent with the table) would be 375 ppm CO2-eq. 

       3 
PD = peak and decline. 

1.2 Problem Statement  

Malaysia experiences massive floods occurred during monsoon seasons and 

flash floods brought by convective rainfall occurred during intermonsoon seasons. 

Flash floods are frequently associated with convectional storms which tend to be of 

short durations (IASH, 1974; Jamaluddin, 1985). Major concern on flash floods 

include structural and erosional damage, loss of life and property and disruption of 

socio-economic activity (Jamaluddin, 1985). This is an indication that Malaysia will 

face a higher probability of damages from extreme rainfall in the future. Thus, 



5 

 

 

 

understanding the patterns of extreme rainfall and their future behaviour is of 

importance to policy makers in Malaysia.  

 

Malaysia currently ranks 52
nd

 in the Climate Change Performance Index 

2015 according to their emissions level, emissions development, renewable energy, 

efficiency and policy (CCPI, 2015). The change of rainfall patterns as well as 

temperature changes in future might be useful inputs to policy makers to initiate the 

mitigation and adaptation strategies in order to adapt with the future uncertain 

climate change. Due to the weaknesses of GCM as mentioned earlier, downscaling is 

used to match the scale between the GCM and the station scale since the GCM scale 

is much coarser compared to station scale. Two approaches of downscaling known 

as dynamical and statistical are extensively applied by the climatologist and 

hydrologist. In this study, the statistical downscaling approach will be adopted. 

There are three types of statistical downscaling methods: regression, weather typing 

scheme and weather generator. Weather generators involve stochastic process (Wilks 

and Wilby, 1999) that can be used to produce long time series of simulated weather 

variables and simulating future climate by perturbing weather parameters or by 

fitting to perturbed statistics (Michelle et al., 2012). This study uses the hourly 

rainfall data as inputs to the weather generator. Research done by Fatichi et al. 

(2011) have demonstrated the capacity of an hourly climate generator in reproducing 

a wide set of climate statistics over a range of temporal scales including extreme 

variables. This method adopts stochastic models, often referred as stochastic 

downscaling. The absence of such methodology being used in climate projections for 

Malaysia is the basis of undertaking this study. Projection of future extreme rainfall 

events for the country is crucial, and the appropriate method for that purpose needs 

to be developed. 

1.3 Aim and Objectives of Research 

The overall aim of this research is to establish the statistical downscaling 

model that is able to generate hourly rainfall data at present climate and project the 

future hourly extreme rainfall in Peninsular Malaysia. This research also aims to 
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examine the potential of spatial variables in the model for simulation of ungauged 

sites using locally weighted regression.  

 

The objectives of the research are:  

1. To study on statistical downscaling model focusing on the Advanced 

Weather Generator (AWE-GEN) method. 

2. To explore the ability of AWE-GEN method in projecting future extreme 

rainfall events in Malaysia using new model parameters.  

3. To investigate and determine spatial interpolation methods using physical 

elements as variables for simulating extreme rainfall events for ungauged 

sites. 

1.4 Scope of Research 

This research will focus on one of the statistical downscaling model which is 

the weather generator. The weather generator that will be used in this research is the 

hourly AWE-GEN which combines the physically-based and stochastic approaches. 

The precipitation that will be considered in this research is hourly rainfall. Other 

meteorological data required in this study are hourly air temperature, hourly wind 

speed, hourly relative humidity, hourly atmospheric pressure, hourly cloud cover and 

hourly solar radiation. Hourly rainfall, temperature, wind speed and relative 

humidity data are from the Malaysia Meteorological Data (MMD). Meanwhile, 

hourly atmospheric pressure, cloud cover and solar radiation are adopted from 

Fatichi et al. (2011). Data will be limited to sites in Peninsular Malaysia. GCMs 

realizations will be obtained from the dataset compiled in the World Climate 

Research Programme’s (WCRP’s), Coupled Model Intercomparison Project phase 5 

(CMIP5). An ensemble of multi-model (i.e. more than one GCM model will be used) 

in this study. They are GFDL-CM3 (United States), IS-CM5A-LR (Paris), MIROC5 

(Japan), MRI-CGCM3 (Japan) and NorESM1-M (Norway). RCP 6.0 scenario will 

be used for future projections.  
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1.5 Significance of Research 

Recognizing the needs and significance of having adequate rainfall data, this 

research attempts to propose a suitable hourly weather generator model which could 

generate a wide set of climate statistics over a range of temporal scales, from 

extremes to low-frequency inter-annual variability for the whole of Peninsular 

Malaysia. Such information would be beneficial especially to hydrologists and 

environmentalists. Moreover, realizing the importance of understanding and 

predicting climate change, this research also attempts to simulate the future climate 

scenarios, as inferred from climate models, using the proposed model. The proposed 

model is able to quantify uncertainties by estimating the weighted averages based on 

outputs of different climate models using Bayesian theories. Having insufficient 

climate data is a critical problem in hydrological studies (Ming Kang and Fadhilah, 

2012). Thus, the output of this study which will be simulated time series of climate 

data will be able to alleviate this problem. This study will also extend the application 

of AWE-GEN by interpolating the AWE-GEN parameters to simulate weather time 

series at remote areas where meteorological data do not exist. This will be invaluable 

for hydrological studies done in such locations.  

1.6 Summary 

This chapter discusses issues of climate change occurring around the world, 

including Malaysia. Problems related to climate change which are of concern to the 

policy makers were also discussed. GCM ouputs which provides information on 

climate at global scale need to be downscaled to finer scale in order to match scale 

required for hydrological modeling at local scale. Therefore, statistical downscaling 

will be applied in this study. This chapter outlined the aim and the objectives of the 

research, the scope and the significance of the research. Therefore, Chapter 2 will 

cover the literature reviews of rainfall studies as well as statistical downscaling 

studies. In addition to that, past researches done on spatial interpolation methods will 

also be discussed in Chapter 2. Next, the methodology to be applied in this research 

will be discussed in detail in Chapter 3 including the theories and assumptions 
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involved. The discussions of results will be given in Chapters 4, 5 and 6. Finally, 

conclusion and recommendations will be discussed in Chapter 7. 
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7.3 Recommendations for Future Work 

Further research could identify the best fit distribution to represent rain cell 

intensity in AWE-GEN besides the Gamma distribution. For instance, Weibull, 

Generalized Pareto, Exponential and Mixed-Exponential distributions could be fitted 

to the rain cell intensity. Malaysia has different seasonal variation of rainfall and 

different geographical where local climates are affected by the presence of mountain 

ranges throughout Malaysia which can be divided into three groups which are the 

highlands, the lowlands, and coastal regions. For the spatial interpolation methods, 

further research could also identify the relationship between the rainfall and 

temperature parameters with longitude and latitude of the stations.  

 

Furthermore, other variables such as geographical and seasonality factors 

could be incorporated in LWR in order to establish a more robust interpolation 

model for Peninsular Malaysia. Moreover, besides rainfall and temperature, other 

parameters such as solar radiation and wind speed could also be considered to be 

incorporated in the model. The range of future changes of extreme climate under 

certain level of radiative forcing with certain level of economic and population 

growth would be more beneficial for climatologists and meteorologists for designing 

the mitigation plan and coping with the future risks. Further research could also 

project future extreme precipitation under other different RCP scenarios such as RCP 

2.6, RCP 4.5, RCP 6.0 and RCP 8.5. The results from the different scenarios could 

be assessed and a range of future values developed to give a more comprehensive 

projection of future extreme values. 
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