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ABSTRACT

Ultrasound machine is widely used in industrial and medical institutions. With
the purpose of avoiding the unwanted power exposed on human, ultrasound power
meter is employed to measure output power of ultrasound machine for diagnostic,
therapeutic and non-destructive testing purposes. The existing ultrasound power meter,
however, is high-cost, low-resolution and only for specific machine. Radiation balance
method consists of calculation and calibration complexity while the calorimetric
produces inaccurate result compared to the standard. On the other hand, application
of piezoelectric sensor in hydrophone-based measurement requires advancement
on processing device and technique. This work deals with the development of
ultrasound power measurement system on Field Programmable Gate Array (FPGA)
platform. Polyvinylidene Fluoride (PVDF) was employed to sense medical ultrasonic
signal. PVDF film’s behavior and its electro-acoustic model were observed. Signal
conditioner circuit was then described. Next, a robust low-cost casing for PVDF
sensor was built, followed by the proposal of the use of digital-system ultrasound
processing algorithm. The simulated sensor provided 2.5 MHz to 8.5 MHz response
with output amplitude of around 4 Vpp. Ultrasound analog circuits, after filtering and
amplifying, provided frequency range from 1 MHz until 10 MHz with -5 V to +5 V
voltage head-rooms to offer a wideband medical ultrasonic acceptance. Frequency
from 500 kHz to 10 MHz with temperature span from 10 oC to 50 oC and power range
from 1 mW/cm2 up to 10 W/cm2 (with resolution 0.05 mW/cm2) had been expected
by using the established hardware. The test result shows that the platform is able to
process 10 µs ultrasound data with 20 ns time-domain resolution and 0.4884 mVpp

magnitude resolutions. This waveform was then displayed in the personal computer’s
(PCs) graphical user interface (GUI) and the calculation result was displayed on liquid
crystal display (LCD) via microcontroller. The whole system represents a novel design
of low-cost ultrasound power measurement system with high-precision capability for
medical application. This may improve the existing power meters which have intensity
resolution limitation (at best combination, of all products, utilize: 0.25 MHz - 10 MHz
frequency coverage; 10 oC to 30 oC working temperature; 0 W/cm2 - 30 W/cm2 power
range; 20 mW/cm2 resolution), neither having mechanism to handle the temperature
disturbance nor possibility for further data analysis.
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ABSTRAK

Mesin ultrabunyi digunakan secara meluas dalam bidang perubatan dan
industri berat. Bagi mengelakkan para pengguna mesin ultrabunyi daripada terdedah
kepada kuasa elektrik yang tidak diingini, meter kuasa ultrabunyi digunakan untuk
mengukur kuasa keluaran mesin ultrabunyi diagnostik, terapi, dan ujian tanpa musnah.
Walaubagaimanapun, meter kuasa ultrabunyi yang sedia ada mempunyai kos yang
tinggi, beresolusi rendah dan digunakan secara khusus untuk jenis-jenis mesin tertentu.
Pengukur kuasa ultrabunyi sedia ada terdiri daripada beberapa jenis termasuk radiation
balance, calorimetric dan hydrophone. Kaedah pengukuran kuasa berdasarkan
teknik radiation balance adalah amat rumit manakala teknik calorimetric pula tidak
memenuhi piawaian pengukuran yang ditetapkan. Selain itu, teknik pengukuran
menggunakan hydrophone dengan penggera piezoelektrik pula memerlukan peranti
dan teknik pemprosesan yang kompleks. Oleh yang demikian, kajian ini memberi
fokus kepada pembangunan sistem pengukuran kuasa ultrabunyi berteraskan Field
Programmable Gate Array (FPGA) yang lebih tepat, mudah dan murah. Di
dalam kajian ini, polyvinylidene Fluorida (PVDF) digunakan untuk mengesan isyarat
ultrabunyi perubatan. Karakter filem PVDF dan model elektro-akustiknya telah dikaji
diikuti oleh pembinaan litar conditioning. Kemudian, pelindung penggera PVDF
berkos rendah yang teguh pula dibina. Kajian ini turut mencadangkan penggunaan
algoritma sistem digital untuk pemprosesan ultrabunyi. Simulasi penggera telah
menunjukkan respon pengukuran 2.5 MHz hingga 8.5 MHz dengan amplitud keluaran
sekitar 4 Vpp. Litar analog ultrabunyi, selepas penapisan dan penguatan, telah
memberikan julat frekuensi 1 MHz hingga 10 MHz dengan -5 V hingga +5 V ruang
voltan mampu menawarkan penerimaan ultrabunyi perubatan jalur lebar. Frekuensi
dari 500 kHz hingga 10 MHz dengan rentang suhu daripada 10 oC hingga 50 oC dan
nilai kuasa daripada 1 mW/cm2 hingga 10 W/cm2 (dengan resolusi 0.05 mW/cm2)
telah dijangka oleh perkakasan yang ditubuhkan. Hasil ujian menunjukkan bahawa
platform baru ini mampu memproses 10 µs data ultrabunyi dengan resolusi domain
masa 20 ns dan resolusi magnitud 0.4884 mVpp serta berkeupayaan untuk memaparkan
bentuk gelombang tersebut pada komputer melalui grafik antara muka pengguna
(GUI). Hasil pengukuran pula dipaparkan dalam paparan kristal cecair (LCD) melalui
litar mikropengawal. Keseluruhan sistem yang dibina di dalam kajian ini merupakan
sebuah rekabentuk baharu untuk sistem pengukuran kuasa ultrabunyi berkos rendah
dan berketepatan tinggi untuk digunakan di dalam bidang perubatan. Kaedah baharu
ini mampu meningkatkan meter kuasa sedia ada yang mempunyai kelemahan resolusi
kekuatan dan tidak mempunyai mekanisme untuk menangani gangguan suhu mahupun
ruang untuk data analisis lanjutan.
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CHAPTER 1

INTRODUCTION

The thesis is introduced with background, statement of problem, objectives,
scope, importance of the research, and the writing structure respectively.

1.1 Background

Ultrasound machine are widely used in medical technology. For the past
decade, it has been reported that there are about quarter of million diagnostic
ultrasound instruments spread over the world with an estimated quarter of billion
exams per year. Significant share of those are managing fetal exposures [1].
Ultrasound is managed at 1 MHz up to 10 MHz frequency for diagnostic use. While,
increasing between 1.5 MHz to 3.5 MHz of frequency comes in therapeutic application
with safety emission of 3 W/cm2. Signal to noise ratio of the image are improved
by increasing the ultrasound power. Absorption power in the body causes heating
effect which may harmful in excess. Therefore, best sufficient overall power is desired
to avoid any unintended outcomes. The ultrasound’s output power produced by
medical ultrasonic device represents safety boundaries [2]. In the beginning of 1960,
there was proposal for measuring the physiotherapy ultrasound machines and came
a specification and standard for those purposes by the International Electro-technical
Commission (IEC) [3]. Accuracy power values are needed to ensure the equipment is
complies with IEC standards. Medical devices are regulated under IEC61161-2 safety
standard [4].

Therapeutic modality using ultrasound was starting to emerge almost five
decades ago. The ability to heating a tissue up to some centimeters under the skin was
demonstrated back then [5]. Frequency from 0.7 to 3.3 MHz were used in common
therapy. Depending on the purpose of treatment, reversible or irreversible change is
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desired by therapeutic with continuous wave or tone burst exposures. For diagnostic,
images with good spatial and temporal resolution are desired using sufficient amplitude
of short repetition pulses to obtain acceptable signal to noise ratio. In contrast to
therapeutic, diagnostic application avoids biological effects [6].

The total energy produced by ultrasound beam is expressed with power in
term of watt. It has dependency upon frequency, amplitude, wave focusing, and its
uniformity. The medium through which ultrasound travels, such as tissue, is also
as of influential factor. The dosage can be varied by wave amplitude intensity that
is different for each machine’s setting [7]. That ability comes with undoubtedly
requirement for ensuring the correct treatment level and site. Furthermore, the accurate
methods to predict the ultrasound’s dose and monitor its performance are needed. Most
importantly, reliable measurement and characterization methods should be clearly
defined [3]. Consequently, ultrasound power meter is a device used to measure and
calibrate the output power and intensity of the ultrasound machine. The main objective
of inventing power meter is related to the safety awareness. At the same time, the
relationship between intensity and output power are able to be analyzed.

The difficulty to measure an output acoustic field of medical device was quoted
at more than twenty years ago. This paper [8] expressed, “The measurement of
the absolute output acoustic field intensity parameters of diagnostic and therapeutic
medical devices has always been difficult. In order to measure effectively, precise
mechanical positioning, sound field sensing, data acquisition and elaborate data
analysis are required. Additionally, a sophisticated, user friendly interface is important
if less experienced technical staff will be operating the instrument.” Therefore, to
eliminate uncertainties in converting acoustic pressure values, and to provide a direct
measurement of intensity for underpinning ultrasound safety standards, an intensity
measurement device is highly desired [9].

As improvements in performance of ultrasound system extended its power and
reliability, it has been shown that those situation is associated with arguably safety
concern. Heating due to absorption of energy is the most widely reported impact
on tissue. Another phenomenon such as cavitation in the presence of gas bubbles is
considered as non-thermal effect. The elevation of temperature in transducer because
of dissipation of electrical energy can also warm the adjacent tissues. The increase of
1.5o C within the normal human diurnal of 37o C is non-hazardous. But, exposures
that is rising embryonic or fetal temperature above 41o C for about more than or equal
to five minutes of diagnostic time are regarded as a very potential hazard [10]. One
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standard dictates the parameter to be displayed. Another limits the value of excess;
while surface transducer’s temperature is restricted in European standard [11].

On the other hand, in addition to piezoelectric ceramic material, piezoelectric
polymers also have potential for ultrasonic applications [12]. They are capable of
high ultrasound frequencies, broadband, and also short ring-down periods. Those
characteristics give advantage so that the sensor is possibly placed close to the observed
region in pulse-echo mode to produce high spatial resolution. Since the observation
of piezoelectric effect in polyvinylidene fluoride (PVF2 or PVDF), it found certain
usage in actuation works. Among others are pressure transducer, ultrasonic transducer,
pyroelectric transducer, and also audio transducer [13].

PVDF film is a flexible, light weight material that is available in variety of
thickness and large area. Also, it works in wide frequency range between 0.001 Hz
and 10 GHz. Low acoustic impedance that closely matches to the human tissue, water
and other organic materials are one among advantages of PVDF. Other properties of
PVDF are producing high output voltage and dielectric strength compare with other
piezo materials. Further, PVDF are moist resisting and can be fabricated into unusual
designs [14].

PVDF film has a natural capability to convert mechanical energy produced by
ultrasonic signal into electric energy. Hence, it is useful in detecting ultrasound field
for measurement purposes. To reduce the time required in analyzing result, resolution
should be enhanced. Necessity also lies in computational and modeling mechanism
which are can be much of contributions to evaluate the intensity of hydrophone
measurements more accurately [3].

As the medical use of ultrasound has developed, so has the need to quantify
acoustic field variable defining the extent of exposure [15] [16]. It was even said in
[17], "The availability of a precise technique for the measurement of ultrasonic power
is important in the calibration of transducers for medical use or for other measurement
applications.” An accurate measurement of relevant ultrasound field quantity is a prime
importance to assess an exposure, increase treatment effectiveness, and improve image
quality [18].
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1.2 Research Motivation

Having widely been used in medical diagnostic purposes, therapy, surgery and
cosmetology, ultrasound (US) methods introduced predicaments as well. In an attempt
of ultrasound equipment developers to increase the intensity of ultrasound radiation
on the one hand provides image visualization improvements, on the other hand can
lead to undesirable consequences, resulting from thermal and mechanical action of
ultrasound vibration (intense acoustic and radiation pressure, vibration acceleration,
cavitation and flow effects). Hence, radiation intensity is the main characteristic of
ultrasound medical equipment and requires verification to provide safety of diagnostic
and treatment [19].

There are two types of biophysical effects of the ultrasound: thermal effect
caused by absorption and non-thermal effect from scattering. The absorption of
ultrasonic energy causes tissue heating [20]. Absorption rate is proportional to
ultrasound frequency [6]. At 1 MHz and 3 MHz with both continuous and pulse mode,
studies proved time and dose dependency of ultrasound; the greater the frequency,
the faster the temperature increasing rate in tissue [21]. Continuous ultrasound has a
greater thermal effect but either form at low intensity will produce non-thermal effects
[7]. The change direction of ultrasound energy resulting in scattering phenomena
which gives the non-thermal effects [20].

Increases in transmitted ultrasound power improve the signal to noise ratio of
the image and the biomedical use. However, for ultrasound absorption in the body
causes heating which may be harmful in excess, high frequency ultrasound can be
dangerous to the human soft tissues. Therefore, it is important to keep the overall
power to a minimum sufficient to produce the needed therapeutic function. Literature
has shown some evidences that intense ultrasound radiation may damage bone as well
as delay healing process [6].

As an example, study in 2004 concluded that temperature increases in human
intramuscular by pulsed ultrasound have equivalent impact with continuous ultrasound
at half of intensity. That situation occur given the frequency and exposure time are
similar. Ter Haar [6] proposed the theoretical method applied to the variables in
the spatial-average temporal-average (SATA) intensity formula. Pulsed ultrasound of
3 MHz, 50% duty cycle at minimum value of 0.5 W/cm2 might impose temperature
increase of 3o C. Theoretically, such amount of temperature could accelerate the blood
flow which is risking to be detrimental during the acute stage of healing. Based on
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the study in [22], clinicians should cautiously consider the SATA level when selecting
pulsed ultrasound parameters.

Another distinctive impact of temperature increase is an acceleration of
biochemical reaction in which at 45o C denaturation of enzymes may occur. For
instance, aberrations in human lymphocyte chromosomes caused by commercial
ultrasound fetal pulse detector was reported in ’70s. In the end of that decade,
human lymphocyte sister chromatide exchange (SCE) frequency as an indication
of chromosome damage was increasing and suggested pertinent to exposure from
diagnostic ultrasound system. Accurate and precise procedure to measure the output
of ultrasound equipment was still lack. Consequently, that equipment was not
characterized to be used in identifying the exposure level on human [23]. Ramirez
et al. [24] reported cell destruction with the use of pulse 1 MHz ultrasound under
water at SATA intensity of 0.08 W/cm2 which is cited in [25]. Fahnestock et al. [26]
reported cell lysis caused by exposure on neuroblastoma cell lines with continuous
1 MHz at spatial peak dose of 1 W/cm2.

In adjacent case, for a given amount of energy, hyperthermia and cavitation
could be occured. These distinctive physical effects depend on the received acoustic
intensity. Long period exposure with low intensity (in treatment of benign prostatic
hypertrophy) may induce hyperthermia, while brief touch but high peak intensity (as
is during extracorporeal lithostripsy case) goes to cavitation [27].

Thermal effects of diagnostic ultrasound on the embryo / fetus have also been
a topic of strong interest. This consideration probably has resulted in better and
more versatile ultrasound systems. Apparently negligible damage can be done to
microvasculature by ultrasound at the lung surface at the highest outputs [28], as can
extremely focal vascular leakage from bubble oscillations in high-amplitude ultrasound
fields [29]. The only known location of a potentially substantial effect is in the kidney,
where the high blood pressure gradients can cause enough haemorrhage for loss of the
nephron [30].

Both diagnostic and therapeutic ultrasound energy can be described in terms
of acoustic pressure and also intensity. Calculation can be based on either maximum
pressure in field or averaged pressure in certain area. The former is often called spatial
peak and the latter is spatial average intensity. In addition to averaged pulse mode,
it should be considered whether the averaging is applied on active (on) or including
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inactive (off) time. According to those circumstances, the pulse average and the
temporal average become their label respectively [6].

Several intensity units are defined: ISPTA (spatial-peak temporal-average
intensity), ISATA (spatial-average temporal-average intensity) and ISPPA (spatial-peak
pulse-average intensity). The ISATA can be used as a good forecaster for heating effect.
For cavitation effect, peak negative pressure is the main parameter of such condition
[6].

The IEC standard for physiological equipment gives two kinds of restriction:
temperature and intensity. Temperature limit is 41o C when ultrasound probe is
operated in water with initial temperature of 25o C. The effective intensity of 3 W/cm2

should not be overcome. Extending that intensity could increase the temperature to
some level which damage tissue at the surface of bone. The protection of those
exposed ultrasound arises as responsibility of both manufacturer and operator. The
manufacturer should offer appropriate equipment design and the operator should offer
appropriate use. For that purpose, IEC standards have been made to ensure the used
acoustic quantity has been appropriately measured. IEC 61102 along with IEC 61220
deal with frequency range of 0.5-15 MHz for measurement of acoustic beams using
hydrophones in water. Therefore, manufacturer must meet the top limits on derated
spatial-peak temporal-average intensity ISPTA, attenuated spatial-peak pulse-average
intensity ISPPA, mechanical index (MI) and thermal index (TI) [31]. A test was
conducted in 2003 by Daniel and Rupert [32] found 44% of 45 ultrasound units at
chiropractic clinics failed either calibration or electrical safety inspection. Tests were
performed with a new Bio-Tek Instruments Model UW-4 wattmeter employing de-
ionised, distilled, and de-gassed water. Regulations established by the Food and Drug
Administration (FDA) [33] states that “the error in the indication of the temporal-
average ultrasonic power shall not exceed 20% for all emissions.” Power setting of
5 W is common therapeutic dosage. However, actual power output from 1.72 W up
to 7.1 W are concluded to 5 W by the failed devices. What worse was number of
those devices were one-third of units tested. Thirty seven percents failed because of
high output and another sixty three percents because of low output. Besides, at lowest
power setting, five units gave no power at all.

The need for regular calibrations of ultrasound equipment is of multi-
importants. The patient may be receiving no therapy effect when the actual output
is less than the indicator. On the other side, damage would occur because of thermal
effects when output is higher than indicated [32]. Another research described in [34]



7

tested 85 therapy machines with 81% had output error by more than 20%, and 69%
gave more than 30% error. Among them, newly devices under 5 years old gave 86%
error exceed 20%. The calibration standard for power output is considered by the
FDA code of federal regulation title 21, part 1050.10 which says that temporal-average
ultrasonic power shall not exceed ± 20% for all emissions greater than 10% of the
maximum value [33].

1.3 Problem Statement

Recent years of widespread availability of equipment still be acquainted with
poor calibration status of physiotherapy tools. Thus, it is beneficial to propose a simple
and inexpensive technique that can be applicable both at manufacturer and user side
[3]. Furthermore, the ultrasound therapy machine used in the hospital may be grossly
inaccurate. There are available products which are able to measure the machine’s
output parameters accurately to ensure the correct operation and safe uses of ultrasound
for specified applications. Monitoring of output power levels also provides a means
of monitoring the performance of the equipment. The products are the ultrasound
power meter. Yet, those products are mainly depend on radiation force balance which
introduces complexity in wave calculation and approximation. Another kind of power
meter employed great acoustic impedance and power-loss ceramic sensor. Moreover,
ceramic sensor does not closely match with low-impedance human tissue. There are
many devices in local south-east Asia with untested safety because of the ultrasound
power meter is expensive and manufactured overseas.

In complement, most of ultrasound transducers are made of high power
piezo-ceramic e.g. lead zirconate titanate 4 (PZT-4) [6]. Meanwhile, studies on
characterization of PVDF are being conducted for various fields of applications.
However, there is no specific characterization on ultrasound power meter application.
Equivalent circuit and power equation cannot be modeled and derived. Therefore, it is
important to describe an ultrasound system’s simulation for power measurement.

To sum up, there are several problems to solve in the current ultrasound power
measurement methods and products:

1. Limited only for high power and therapeutic purpose or low power diagnostic,
but not both.
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2. Only show accumulated result power.

3. No possibility for further analysis using software.

4. Not enhanced in real-time process

Overall, the most distinctive problem is lack of quickly applicable measurement
methods that also cost-effective at the point of treatment. Commercially available
radiation force with better than ±10% uncertainty of power level tends to be expensive
and needs expertise to set and operate. Those characteristics render them inappropriate
for end user. Therefore, there is a necessity for novel type of measurement device
which is compact and simple in construction, low-cost, easy and quick use, but still
provide a good output of ultrasonic quantity [35] [36].

Field-Programmable Gate Array (FPGA) technology promises to design and
prototyping the system quickly and cost-effectively. Since this work looks forward to
produce marketable device, the low non-recurring engineering and debugging cost of
FPGA are found to be very attractive. It consequently has shorter time-to-market.
Furthermore, device manufacturers can expect to supply updates to the product as
FPGA has the ability to be reprogrammed in the field of operation. This is very
beneficial in measurement system which needs frequent calibration and even to keep
on track with standardization especially regarding ultrasound exposimetry.

However, FPGA alone cannot acquire raw data so that external circuitry should
be responsible for signal acquisition. The front-end of system, which is the sensor,
need to be constructed in such manner so that the ultrasound signal could be captured
with acceptable signal-to-noise ratio. It has been occurring as design challenge since
the very beginning employment of actuation concept. Between them, interfacing of
analog and digital domain should also be considered. It might be common in digital
system to work with megahertz range. On the contrary, analog high frequency design
introduces much more restrictions, constrains, and trade-offs. Moreover, the bottle-
neck is being tightened when it comes to layouting in printed circuit board with discrete
components.

This thesis is trying to overcome the preceding issues. The work will be
exposed in each chapter with bottom-up point of view.
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1.4 Objective of the Research

Pulled from subsections before, there are various procedures to determine the
ultrasonic output power underwater. They are the radiation force balance technique
[37], the use of piezoelectric hydrophones [38], acousto-optic [39], thermo-acoustic
[40], calorimetry [41] and ultrasonic power through electro-acoustic efficiency of
transducers [42].

As will be explained in the next chapter (Chapter 2), radiation balance
method introduces calculation and calibration complexity while calorimetric come
with inaccurate result comparing to the standard. On the other hand, application of
piezoelectric sensor in hydrophone-based power measurement requires advancement
on processing device and technique. Therefore, objectives of the research are:

1. To design a receiver circuit and mechanical casing for PVDF sensor.

2. To develop an algorithm for ultrasound power conversion.

3. To design the architecture of ultrasound power measurement system and
prototype on an FPGA platform.

1.5 Scope of the Research

This project will develop a measurement system for novel low cost ultrasound
power meter. This includes investigation of optimized signal processing hardware for
ultrasound power meter and development of signal acquisition hardware to capture
signal from PVDF sensor, and result display panel. The algorithm to convert
ultrasound signal output to be intensity will be explored and implemented in FPGA
using Verilog HDL (Hardware Description Language).

This research output is a FPGA prototype of Ultrasound Power Meter (UPM).
The device contains sensors, analog circuit, digital circuit, personal computer (PC), and
embedded system implementation. It is prepared to measure 1 mW/cm2 – 10 W/cm2

power range with 0.05 mW/cm2 of minimum resolution while working frequency is
0.5 MHz up to 10 MHz. Two PVDF sensors plus one temperature sensor would be
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used. Ultrasound machine’s probe which is covered to be tested is 2.5 cm in radius non-
focused. Contact-mode measurement would use gel as medium; while water would be
tanked in immerse-mode.

Moreover, for monitoring purpose, each medical device has to display data that
is user-friendly. To fulfill that need, the Graphical User Interfaces (GUI) shall also be
developed onside hardware instrument. With further help from software application,
there are possibilities to do various analysis. The integrity will make the system
has a wide range of acceptance for practical implementation. An overall top system
architecture diagram is shown in Fig. 1.1.

Figure 1.1: Top System Architecture Diagram

Quartus II 9sp2 Web Edition and ModelSim PE Student Edition 10.1b would
be used to design the digital system as well as its performance evaluation. Those
softwares are used to verify whether the algorithm is correct and proper to download
the design into FPGA (Cyclone II starter development board). The software for PIC
(PIC18F452) would be built by PICC compiler using C language and the downloader
would be PICKit2. Computational software such as MATLAB (from MathWorks) will
be employed in characterization and modeling of sensor’s data. To build the GUI,
Microsoft Visual Studio will be used. Analog and mixed-signal simulation will be
done with SPICE family version 9.2 and SIMetrix Intro 6.10. For physical circuit
layout design, EAGLE Layout Editor 5.11.0 is going to be employed.
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1.6 Importance of the Research

The impact of new technologies on medical care and its costs is enormous.
Concerning costs provides a powerful incentive to look for new types of
instrumentation which may either be less expensive than present techniques, or allow
a breakthrough in accuracy, sensitivity or convenience.

The expected findings of the study are:

1. New sensor design for ultrasound power measurement using PVDF.

2. New algorithm to convert ultrasound sensor output signal to intensity.

3. New-improved ultrasound power measurement system.

This system would enable further data analysis, lessen the cost of ultrasound power
meter device, and improve its performance. Moreover, it shall increase the safety of
measurement using ultrasound machine for diagnostic and therapeutic purposes.

1.7 Thesis Organization

This thesis is organized as follows,

Chapter 1 Introduction - Background, motivation, problem statement, objective,
scope, and importance of the research.

Chapter 2 Reviews of Literatures and Related Works - This chapter will describe
a review about ultrasound power measurement. Several literatures, works,
patents, and theories are explained.

Chapter 3 Research Methodology - The work flows and the method which is used
to complete the work will be discussed in detail in this chapter.

Chapter 4 System Design and Algorithm - In this section, every part of design
will be discovered in detail. It explains system description, algorithm, and
software consideration.

Chapter 5 Characterization and Simulation - Elucidates simulation of system that
is useful to verify the preliminary design also forecast system specification and
hardware requirements
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Chapter 6 System Verification and Result Analysis - This chapter shows
implementation of sensor with analog signal conditioner, digital processing
circuit, and microcontroller module building the system and measurement
analysis.

Chapter 7 Conclusions - Summarizes the thesis, re-stating the contributions, and
suggests directions for future research.
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