
CLASSIFICATION OF CROSS SITE SCRIPTING WEB PAGES USING 

MACHINE LEARNING TECHNIQUES 

FAISAL SALEH NASSER AL-ASWER 

UNIVERSITI TEKNOLOGI MALAYSIA 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199242286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CLASSIFICATION OF CROSS SITE SCRIPTING WEB PAGES USING 

MACHINE LEARNING TECHNIQUES 

FAISAL SALEH NASSER AL-ASWER 

A project report submitted in partial fulfillment of the  

requirements for the award of the degree of 

Master of Science (Information Security) 

Faculty of Computing 

Universiti Teknologi Malaysia 

JANUARY 2017 



 iii 

I dedicate this project to my beloved parents, brothers and sisters for their endless 

support and encouragement you have given me throughout all the time 

To my respected supervisor, Dr. Anazida Zainal 

To my beloved country, Yemen 

To all my friends 



 iv 

ACKNOWLEDGEMENT 

First and foremost, all prais and thanks are due to Allah, the peace and 

blessings be upon his Messenger, Mohammed (Peace Be Upone Him). Next, I would 

like to express my heartfelt gratitude to my supervisor Dr. Anazida Zainal for her 

constant support during my study at UTM. She inspired me greatly to work in this 

project. Her willingness to motivate me contributed tremendously to my project. I have 

learned a lot from her and I am fortunate to have her as my mentor and supervisor. 

Special thanks to Dr. Hamza Hentabli and Dr. Faisal Alsamet for their remarkable help 

and guidance. I also want to greatly thank my parents, brothers and sisters who cheered 

me on from the beginning of my study. I thank my dear friend, Eyad for his continuous 

encouragement and support throughout my project. Last but not least, I am grateful to 

all my friends for their warm encouragement and support. 



 v 

ABSTRACT 

There are many web application threats such as SQL injection and Cross Site 

Scripting. According to OWASP 2013 security report, Cross Site Scripting came in 

third place. Cross Site Scripting is an attack that targets web applications which lack 

security countermeasures against untrusted data that is provided by the user, and this 

attack take advantage of these web applications because they do not apply any input 

validation or output sanitization methods. Few previous works which used machine 

learning to detect cross site scripting attacks via classification of the web pages into 

two classes; malicious or benign. The previous works used too many features which 

considered as irrelevant and noise data because they do not have significant value on 

accuracy ratio which would cause complexity and decrease the performance of the 

classification process. They also used URL features which considered unnecessary 

since URL is considered as the entry point of the attack but cannot activate it since all 

the different kinds of cross site scripting get activated and run inside the HTML source 

code. In this study, we focus on how to implement feature selection through 

Information Gain (IG) to select the most significant features that lead to better 

performance and less execution time. The selected features used to classify the datasets 

with three different classifiers to test the performance of these features. The features 

used in this study were used by previous works, however with IG feature selection, we 

selected 14 features as the most significant features and the accuracy obtained by using 

these features was 95.78% compared to when using all features which was 93.11%. 

The recall was also improved from 88% when all features used to 92.33% when only 

using the 14 selected features. 
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ABSTRAK 

Terdapat banyak ancaman aplikasi web seperti suntikan SQL dan manipulasi 

skrip antara laman web. Mengikut laporan sekuriti OWASP 2013, manipulasi skrip 

antara laman web berada di tempat ketiga. Manipulasi skrip antara laman web adalah 

serangan yang menyasarkan aplikasi web tanpa perlindungan terhadap data tidak sahih 

yang diberikan pengguna, dan serangan ini mengambil peluang terhadap aplikasi web 

tanpa sebarang langkah pengesahan input dan sanitasi output. Beberapa kajian 

terdahulu menggunakan pembelajaran mesin untuk mengesan manipulasi skrip antara 

laman web melalui pengklasifikasian kepada dua kelas, iaitu merbahaya atau tidak 

merbahaya. Kajian terdahulu turut menggunakan terlalu banyak ciri-ciri tidak relevan 

dan tidak bernilai kerana tidak mempunyai nilai ketara dalam perkadaran ketepatan 

lalu merumitkan dan melambatkan proses klasifikasi. Mereka turut menggunakan ciri-

ciri URL yang dianggap tidak perlu apabila URL ditetapkan sebagai pintu masuk 

serangan tetapi tidak boleh diaktifkan apabila serangan manipulasi skrip antara web 

dilancarkan dan beroperasi di sebalik kod HTML. Dalam kajian ini, kami 

memfokuskan bagaimana untuk mengimplementasi ciri-ciri pilihan melalui dapatan 

maklumat untuk memilih ciri-ciri paling ketara yang meningkatkan prestasi dan 

menyingkatkan masa pelaksanaan. Ciri-ciri terpilih digunakan untuk pengklasifikasian 

kumpulan data dengan tiga klasifikasi berbeza bagi menguji prestasi ciri-ciri tersebut. 

Ciri-ciri dalam kajian ini turut digunakan dalam kajian terdahulu, namun dengan ciri-

ciri pemilihan dapatan maklumat, kami memilih 14 ciri-ciri sebagai yang paling ketara 

dan ketepatan diperolehi menggunakan ciri-ciri tersebut adalah 95.78% berbanding 

menggunakan kesemua ciri-ciri iaitu 93.11%. Bacaan kali kedua turut meningkat 

kepada 88.0% apabila kesemua ciri-ciri tersebut digunakan berbanding hanya 92.33% 

dengan menggunakan 14 ciri-ciri yang terpilih. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

With the growing of the World Wide Web (WWW) and the Internet-based 

systems, the web applications are becoming more sophisticated and dynamic. For 

better user experience and optimized interaction between web applications and their 

users, functionality and dynamicity of those web applications need to be implemented. 

However, those web applications might bring threats to the security of the users’ data, 

businesses and the web application itself, and with the increasing growing of web 

applications, it opens many opportunities for attackers targeting those web services 

that left vulnerable due to the lack of security awareness and unsecure web 

development. 

An example of a web page that is being requested by a user, the web application 

server fetches details and information of that web page and sends the response to the 

web browser that belongs to the requesting user, this response then is interpreted using 

browser built-in engines such as HTML and JavaScript interpreting engines which will 

display the web page in the window of the browser. Now, embedded codes give users 

enhanced experience by implementing dynamic interaction between user and web 

application, between web application components and web application and the 

browser as well, such as dynamic menus that response to mouse movement or click 

and list all options, automatic change of content, hiding or displaying parts of the web 
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page according to automatic configuration or user action involvement, and storing user 

information such as cookies in the web browser itself for later use such as re-

authentication. Such dynamicity and functionality make web application more 

interactive, assistive and easy to use, however, attackers who target web applications 

abuse JavaScript (used for enabling dynamicity and functionality) and use it against 

those web applications for different goals and intentions such as stealing sensitive 

information (cookies), misinformation, account hijacking, Denial of Service (DoS), 

web defacement and many other attacks that are either damaging or just to disturb the 

users of the website such as meaningless pop up alerts. 

There are many attacks that target the vulnerabilities existed in web 

applications where attackers commit these attacks through JavaScript such as Cross-

Site Request Forgery (CSRF), Cross-Site Scripting, Malware Injection and many 

more. According to OWASP (Open Web Application Security Project) 2013 web 

security report (OWASP, 2013); a security report released every 3 years cycle, Cross-

Site Scripting attacks ranked 3rd in the list. Full list is shown below: 

1) Injection flaws: such as SQL injection attacks 

2) Broken Authentication and Session Management 

3) Cross-Site Scripting (XSS) 

4) Insecure Direct Object References 

5) Security Misconfiguration 

6) Sensitive Data Exposure 

7) Missing Function Level Access Control 

8) Cross-Site Request Forgery (CSRF) 

9) Using Components with known Vulnerabilities 

10) Unvalidated Redirects and Forwards 

Cross-Site Scripting (XSS) attacks are based on using JavaScript code to attack 

vulnerable websites that have no validation mechanism for user input and no 

sanitization for the output coming from the server. More details about XSS, its types 

and how it works is provided in Chapter 2 of this report. 
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The best approach to tackle such attacks is to embrace the need of secure web 

development where developer should be aware of such security threats and have skills 

to implement security countermeasures to defend against web applications attacks. 

However, due to large scopes and unawareness of security, some web applications are 

left unsecure in some parts of the application code and easily attacked by XSS attacker. 

Although a great amount of research and many techniques have been introduced to 

mitigate XSS vulnerabilities and attacks and intensive care of implementing security 

during development, many of those solutions and web applications still suffer from 

XSS attacks due to the complexity and sophistication level of attacking approaches 

and mechanisms. 

1.2 Problem Background 

Many solutions and approaches have been developed to mitigate XSS either 

by detect and alert (client side: browser), detect and prevent (client side) or developing 

secure web applications (server side). For detecting XSS on client side, many 

techniques had been proposed such as modifying web browser, modifying JavaScript 

engine, proxy based solution where HTTP request and response get scanned before 

processed by server (request) and client (response). 

A less focused-on approach that is used to detect XSS depends on Machine 

Learning (ML) techniques. According to the literature reviewed, only few academic 

papers that highlighted the use of ML in detecting XSS (Likarish et al. (2009), Nunan 

et al. (2012) and Krishnaveni and Sathiyakumari (2013)). These papers use ML 

algorithms (such as Naïve Bayes or Support Vector Machine) to classify a web page 

into two classes which is either malicious (infected by XSS) or benign (non-XSS). The 

authors try to detect XSS by classifying HTML code (HTTP response loaded from the 

server) depending on features which are used to recognize XSS attacks. These features 

extracted from a dataset and applied on the data (HTML code or HTTP response) 

provided to the classification algorithm in the training and the testing phases. The 
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authors used too many features including unnecessary ones such as URL features. 

URL features were used by the authors because some XSS attacks involve embedding 

the attack pattern into the URL. However these patterns to be activated they must be 

passed into the HTML source code and if that web page is secured against XSS then 

these attacks will not run, thus by just having attack patterns in URL it does not mean 

that the web page is vulnerable and also all the XSS attacks either based on URL or 

stored in the web page server, they all get activated inside the HTML source code, so 

it is important to focus only on the XSS features found in the HTML source code and 

ignore the URL features which were used in the previous studies. 

Training and testing a dataset to develop a robust classifier depends highly on 

the features extracted and selected from the HTML code which contributes to the 

accuracy of the classification results (Janecek, 2008). Features extraction depends on 

what attributes from the data can be used to classify it into classes, and usually these 

attributes or features have some redundancies or noise which affect the performance 

of the classifier (Khanna, 2014). The selection of the relevant and most significant 

features can enhance the accuracy of the classification and lead to a shorter training 

time which can be done by removing redundant or irrelevant features (noise data). 

Thus, building a robust classifier depends highly on how the features (of the 

data that need to be classified) are extracted and selected, and how can the feature 

selection process can be optimized so only relevant features are used which will 

increase the accuracy of identifying at which class a web page (in the dataset) belongs 

to, XSS or Benign. However, using too many features or irrelevant features in order to 

detect XSS web pages can unfortunately have bad impact on the results. Therefore, 

decreasing the performance of the classification algorithm (Khanna, 2014). 

To improve the performance of the classification it is very important to invest 

a good effort on the features selection and apply different techniques such as PCA 

(Principal component analysis), PSO (Particle swarm optimization) or IG (Information 

Gain) to choose the best and most significant features that lead to a better and more 

efficient classification performance. The previous works (Likarish et al. (2009), Nunan 
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et al. (2012) and Krishnaveni and Sathiyakumari (2013)) had no clear method for 

features selection, and by applying such techniques, we believe the number of features 

they used can be reduced to a smaller subset that will lead to same or better results, yet 

shorter training and testing times. 

1.3 Problem Statement 

Most of recent XSS classification approaches proposed their ML techniques 

based on too many features extracted from both URL and web page document. These 

approaches did not include a feature selection to reduce the number of the used 

features. Using too many features without feature selection and including unnecessary 

features lead to an increase of the computation time and complexity of the classifier 

because of including redundant, irrelevant or unnecessary features causing a decrease 

in classification performance due to not properly selected by good features selection 

methods. URL features are considered unnecessary since the environment that is used 

to run the attack is the HTML source code (web page content), therefore it is important 

to focus only on the features of XSS based on the HTML document since all the XSS 

attack types get activated only inside the source code. 

1.4 Purpose of Study 

This research identifies most significant features of XSS web pages to be used 

for enhancing classification performance, detection accuracy, decrease false positive 

and categorize web pages (dataset) into two categories (XSS or Benign) by 

implementing the features selection via Information Gain (IG) technique. 
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1.5 Project Objectives 

The objectives of this project are listed below: 

 

i. To extract all possible features from the dataset based on the features used 

in the literature review (Likarish et al. (2009), Nunan et al. (2012) and 

Krishnaveni and Sathiyakumari (2013)). 

ii. To use Information Gain (IG) technique for features selection in order to 

select the most significant features that lead to a better classification 

performance and better results. 

iii. To implement and compare data classification via ML algorithms Naïve 

Bayes (NB) and Support Vector Machine (SVM) using the selected 

features on the training and testing datasets. 

 

1.6 Scope of Study 

The scope of this project is as follows: 

i. The study focuses on using Information Gain (IG) features selection 

technique that produce the most significant features which will lead to high 

percentage of accuracy and better performance from the classification 

algorithms. 

ii. Classifying XSS web pages based on features obtained from HTML code 

only (web page source code). 

iii. The study will use a dataset for the malicious class from XSSed 

(www.xssed.com) which was used by most of the previous works. For the 
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benign class, a crawler plugin used to crawl web pages from Google search 

results where this data is verified to be XSS-free using Vega (a software to 

scan web page looking for vulnerabilities such as XSS and SQL injection). 

iv. The classification process is done using RapidMiner 2016; which is an 

open source data mining software. 

 

1.7 Organization of Report 

The significance of this study underlies on how important it is to improve the 

feature selection which would lead to a better classification where then we can build 

better security applications to detect XSS with a small to none false alarm rate. Another 

significance of this study is to increase the awareness level among researchers and web 

applications developers on the nature of XSS, how its attacks happen and the threat 

they can bring to the security of the web applications used by many industries such as 

ecommerce, educational institutes, banks and governmental agencies which should 

motivate them to build secure web applications from the scratch and not be only 

detective but defensive and preventive against these attacks. 

1.8 Organization of Report 

The rest of this report is organized as follows: Chapter 2 provides a literature 

of the problem studied and what has been done so far to solve it, Chapter 3 is about 

the project methodology and a brief on how the data is collected, handled and 

processed. The design and implementation of the experiments for features extraction 

and selection is thoroughly explained in Chapter 4. Classification experiments and 

results are explained in Chapter 5. Finally, conclusion and future work are provided in 

Chapter 6. 
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