
CLASSIFICATION OF CROSS SITE SCRIPTING WEB PAGES USING

MACHINE LEARNING TECHNIQUES

FAISAL SALEH NASSER AL-ASWER

UNIVERSITI TEKNOLOGI MALAYSIA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199242286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CLASSIFICATION OF CROSS SITE SCRIPTING WEB PAGES USING

MACHINE LEARNING TECHNIQUES

FAISAL SALEH NASSER AL-ASWER

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Information Security)

Faculty of Computing

Universiti Teknologi Malaysia

JANUARY 2017

 iii

I dedicate this project to my beloved parents, brothers and sisters for their endless

support and encouragement you have given me throughout all the time

To my respected supervisor, Dr. Anazida Zainal

To my beloved country, Yemen

To all my friends

 iv

ACKNOWLEDGEMENT

First and foremost, all prais and thanks are due to Allah, the peace and

blessings be upon his Messenger, Mohammed (Peace Be Upone Him). Next, I would

like to express my heartfelt gratitude to my supervisor Dr. Anazida Zainal for her

constant support during my study at UTM. She inspired me greatly to work in this

project. Her willingness to motivate me contributed tremendously to my project. I have

learned a lot from her and I am fortunate to have her as my mentor and supervisor.

Special thanks to Dr. Hamza Hentabli and Dr. Faisal Alsamet for their remarkable help

and guidance. I also want to greatly thank my parents, brothers and sisters who cheered

me on from the beginning of my study. I thank my dear friend, Eyad for his continuous

encouragement and support throughout my project. Last but not least, I am grateful to

all my friends for their warm encouragement and support.

 v

ABSTRACT

There are many web application threats such as SQL injection and Cross Site

Scripting. According to OWASP 2013 security report, Cross Site Scripting came in

third place. Cross Site Scripting is an attack that targets web applications which lack

security countermeasures against untrusted data that is provided by the user, and this

attack take advantage of these web applications because they do not apply any input

validation or output sanitization methods. Few previous works which used machine

learning to detect cross site scripting attacks via classification of the web pages into

two classes; malicious or benign. The previous works used too many features which

considered as irrelevant and noise data because they do not have significant value on

accuracy ratio which would cause complexity and decrease the performance of the

classification process. They also used URL features which considered unnecessary

since URL is considered as the entry point of the attack but cannot activate it since all

the different kinds of cross site scripting get activated and run inside the HTML source

code. In this study, we focus on how to implement feature selection through

Information Gain (IG) to select the most significant features that lead to better

performance and less execution time. The selected features used to classify the datasets

with three different classifiers to test the performance of these features. The features

used in this study were used by previous works, however with IG feature selection, we

selected 14 features as the most significant features and the accuracy obtained by using

these features was 95.78% compared to when using all features which was 93.11%.

The recall was also improved from 88% when all features used to 92.33% when only

using the 14 selected features.

 v

ABSTRAK

Terdapat banyak ancaman aplikasi web seperti suntikan SQL dan manipulasi

skrip antara laman web. Mengikut laporan sekuriti OWASP 2013, manipulasi skrip

antara laman web berada di tempat ketiga. Manipulasi skrip antara laman web adalah

serangan yang menyasarkan aplikasi web tanpa perlindungan terhadap data tidak sahih

yang diberikan pengguna, dan serangan ini mengambil peluang terhadap aplikasi web

tanpa sebarang langkah pengesahan input dan sanitasi output. Beberapa kajian

terdahulu menggunakan pembelajaran mesin untuk mengesan manipulasi skrip antara

laman web melalui pengklasifikasian kepada dua kelas, iaitu merbahaya atau tidak

merbahaya. Kajian terdahulu turut menggunakan terlalu banyak ciri-ciri tidak relevan

dan tidak bernilai kerana tidak mempunyai nilai ketara dalam perkadaran ketepatan

lalu merumitkan dan melambatkan proses klasifikasi. Mereka turut menggunakan ciri-

ciri URL yang dianggap tidak perlu apabila URL ditetapkan sebagai pintu masuk

serangan tetapi tidak boleh diaktifkan apabila serangan manipulasi skrip antara web

dilancarkan dan beroperasi di sebalik kod HTML. Dalam kajian ini, kami

memfokuskan bagaimana untuk mengimplementasi ciri-ciri pilihan melalui dapatan

maklumat untuk memilih ciri-ciri paling ketara yang meningkatkan prestasi dan

menyingkatkan masa pelaksanaan. Ciri-ciri terpilih digunakan untuk pengklasifikasian

kumpulan data dengan tiga klasifikasi berbeza bagi menguji prestasi ciri-ciri tersebut.

Ciri-ciri dalam kajian ini turut digunakan dalam kajian terdahulu, namun dengan ciri-

ciri pemilihan dapatan maklumat, kami memilih 14 ciri-ciri sebagai yang paling ketara

dan ketepatan diperolehi menggunakan ciri-ciri tersebut adalah 95.78% berbanding

menggunakan kesemua ciri-ciri iaitu 93.11%. Bacaan kali kedua turut meningkat

kepada 88.0% apabila kesemua ciri-ciri tersebut digunakan berbanding hanya 92.33%

dengan menggunakan 14 ciri-ciri yang terpilih.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xiii

1

INTRODUCTION

1.1 Overview 1

1.2 Problem Background 3

1.3 Problem Statement 5

1.4 Purpose of Study 5

 1.5 Project Objectives 6

 1.6 Scope of Study 6

 1.7 Significance of Study 7

 1.8 Organization of Report 7

2 LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Overview on JavaScript 9

 2.3 Attacking Web Applications Using JavaScript 10

 2.4 Cross-Site Scripting 11

 viii

 2.4.1 Definition 11

 2.4.2 Types of Cross-Site Scripting Attacks 13

 2.4.3 Threats of XSS Attacks 23

 2.4.4 Impacts of XSS Attacks 25

 2.5 Approaches of Mitigating XSS 25

 2.6 Cross-Site Scripting Web Pages Classification by
Machine Learning Techniques

26

 2.7 Dataset 27

 2.8 Overview on Feature Extraction and Selection 28

 2.8.1 Feature Extraction 30

 2.8.2 Feature Selection 31

 2.9 Overview on Classification 34

 2.10 Related Works on XSS Web Pages Classification 35

 2.10.1 Classification Approaches Based on URL
Features

35

 2.10.2 Classification Approaches Based on Web
Page Document Features

36

 2.10.3 Classification Approaches Based on URL and
Document Features

37

 2.10.4 Discussion on Related Works 39

 2.11 Machine Learning Algorithms 40

 2.11.1 Naïve Bayes 40

 2.11.2 Support Vector Machine 42

 2.11.3 Generalized Linear Model 43

 2.12 Summary 44

3 METHODOLOGY

 3.1 Introduction 45

 3.2 Project Framework 45

 3.2.1 Phase 1: Collecting Features from Reviewed
Literature

47

 3.2.2 Phase 2: Building Up the Data Corpus 48

 3.2.3 Phase 3: Data Pre-processing 49

 3.2.4 Phase 4: Feature Extraction 49

 3.2.5 Phase 5: Feature Selection 51

 ix

 3.2.6 Phase 6: Data Classification and Result
Evaluation

51

 3.3 Tools and Techniques Used 53

 3.4 Summary 54

4 DATA PREPROCESSING AND FEATURE

EXTRACTION

 4.1 Introduction 55

 4.2 The Dataset 55

 4.3 Data Collection 56

 4.4 Data Verification 58

 4.5 Data Preprocessing 58

 4.5.1 Letter Case Transformation 59

 4.5.2 Frequency Normalization 59

 4.6 Feature Extraction Process 60

 4.6.1 Binary-Based Feature Extraction 63

 4.6.2 Frequency-Based Feature Extraction 66

 4.6.2 Frequency-Based Feature Extraction
(Normalized)

68

 4.6.4 Term Frequency (TF) Based Feature Extraction 70

 4.7 Summary 72

5 FEATURE SELECTION AND CLASSIFICATION

RESULTS

 5.1 Introduction 73

 5.2 Feature Selection Process by Information Gain (IG) 73

 5.2.1 Experimental Setup 74

 5.2.2 Process of Feature Selection Experiment 75

 5.3 Classification Process 76

 5.3.1 Experimental Setup 77

 5.3.2 Process of Classification Experiment 78

 5.4 Experimental Results 79

 5.5 Discussion 80

 5.5.1 Justification on Used Features 81

 x

 5.5.2 Comparing Performance Regarding Features
Selected

82

 5.5.3 Comparing Performance from the Used
Datasets

85

 5.6 Summary 89

6 Conclusion and Future Work 90

 6.1 Concluding Remarks 90

 6.2 Project Achievements and Challenges 91

 6.3 Future Works 92

 REFERENCES 93

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Peak ROC Values (Ramaswami and Bhaskaran, 2009) 33

2.2 Peak F1-Measure Values (Ramaswami and
Bhaskaran, 2009)

33

2.3 Components of Data Classification 34

2.4 Summary of Related Works 38

4.1 Normalization of frequencies of features 60

4.2 XSS Related Features 60

4.3 Sample of Extracted Features Based on Existence
(Binary)

65

4.4 Sample of Extracted Features Based on Number of
Occurrences (Frequency)

67

4.5 Sample of Extracted Features Based on Number of
Occurrences (Normalized Frequency)

69

4.6 Sample of Extracted Features Based on Term
Frequency

71

5.1 Parameters of Information Gain 74

5.2 Parameters of Select by Weight 75

5.3 Parameters of Cross Validation 77

5.4 Sample of the top 14 weighted features by IG
technique

80

5.5 Results of Binary.csv Dataset Classification 80

5.6 Results of Normalized Frequency Dataset
Classification

81

5.7 Results of Term_Frequency.csv Dataset Classification 81

5.8 Comparing Results of Using Feature Selection on
Binary.csv Dataset

83

 xii

5.9 Comparing Results of Using Feature Selection on
Normalized_Frequency.csv Dataset

83

5.10 Comparing Results of Using Feature Selection on
Term_Frequency.csv Dataset

83

5.11 Overall results of Accuracy 85

5.12 Overall results of Recalls 85

5.13 Comparing Accuracy Results 88

5.14 Comparing Recall Results 88

	

 xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Overview on How a basic XSS Attack Works (Lala,
2015)

12

2.2 Architecture of Stored XSS (Nithya et al., 2015) 14

2.3 Example of a malicious user’s comment containing
normal text and XSS payload to be stored in the server
of the vulnerable web application

15

2.4 Architecture of Reflected XSS Attack (Nithya et al.,
2015)

16

2.5 An URL containing XSS payload as a query value
which will be passed to and run in the insecure web
application

18

2.6 A snippet of HTML and PHP code, where the query
value (q) is passed from the malicious URL by PHP
GET method

19

2.7 An Input Field Vulnerable to Reflected XSS
(screenshot)

19

2.8 An example of dataset instances and features (Systems
Sciences, n.d)

28

2.9 Illustration of how classification is done using SVM 42

3.1 Project Framework 46

3.2 Screenshot of features file (features.txt) 47

3.3 The ratio of XSS to non-XSS web pages 48

3.4 Screenshot of Binary.CSV file (Sample) 50

3.5 Feature Selection Workflow 51

3.6 Classification Workflow 52

4.1 The ratio of malicious to benign web pages in the
dataset

56

4.2 General Process of Features Extraction 63

 xiv

4.3 Extracting features based on their existence (1 or 0) 64

4.4 Extracting features based on their frequency 66

4.5 Extracting features based on their term frequency 70

5.1 Feature Selection Workflow 75

5.2 Example of selecting features using weight by
Information Gain

76

5.3 Classification Workflow 79

5.4 Comparing accuracy results based on feature selection 84

5.5 Comparing recall results based on feature selection 84

5.6 Comparing Accuracy based on Dataset Used 86

5.7 Comparing Recall based on Dataset Used 87

	

CHAPTER 1

INTRODUCTION

1.1 Overview

With the growing of the World Wide Web (WWW) and the Internet-based

systems, the web applications are becoming more sophisticated and dynamic. For

better user experience and optimized interaction between web applications and their

users, functionality and dynamicity of those web applications need to be implemented.

However, those web applications might bring threats to the security of the users’ data,

businesses and the web application itself, and with the increasing growing of web

applications, it opens many opportunities for attackers targeting those web services

that left vulnerable due to the lack of security awareness and unsecure web

development.

An example of a web page that is being requested by a user, the web application

server fetches details and information of that web page and sends the response to the

web browser that belongs to the requesting user, this response then is interpreted using

browser built-in engines such as HTML and JavaScript interpreting engines which will

display the web page in the window of the browser. Now, embedded codes give users

enhanced experience by implementing dynamic interaction between user and web

application, between web application components and web application and the

browser as well, such as dynamic menus that response to mouse movement or click

and list all options, automatic change of content, hiding or displaying parts of the web

	 2

page according to automatic configuration or user action involvement, and storing user

information such as cookies in the web browser itself for later use such as re-

authentication. Such dynamicity and functionality make web application more

interactive, assistive and easy to use, however, attackers who target web applications

abuse JavaScript (used for enabling dynamicity and functionality) and use it against

those web applications for different goals and intentions such as stealing sensitive

information (cookies), misinformation, account hijacking, Denial of Service (DoS),

web defacement and many other attacks that are either damaging or just to disturb the

users of the website such as meaningless pop up alerts.

There are many attacks that target the vulnerabilities existed in web

applications where attackers commit these attacks through JavaScript such as Cross-

Site Request Forgery (CSRF), Cross-Site Scripting, Malware Injection and many

more. According to OWASP (Open Web Application Security Project) 2013 web

security report (OWASP, 2013); a security report released every 3 years cycle, Cross-

Site Scripting attacks ranked 3rd in the list. Full list is shown below:

1) Injection flaws: such as SQL injection attacks

2) Broken Authentication and Session Management

3) Cross-Site Scripting (XSS)

4) Insecure Direct Object References

5) Security Misconfiguration

6) Sensitive Data Exposure

7) Missing Function Level Access Control

8) Cross-Site Request Forgery (CSRF)

9) Using Components with known Vulnerabilities

10) Unvalidated Redirects and Forwards

Cross-Site Scripting (XSS) attacks are based on using JavaScript code to attack

vulnerable websites that have no validation mechanism for user input and no

sanitization for the output coming from the server. More details about XSS, its types

and how it works is provided in Chapter 2 of this report.

	 3

The best approach to tackle such attacks is to embrace the need of secure web

development where developer should be aware of such security threats and have skills

to implement security countermeasures to defend against web applications attacks.

However, due to large scopes and unawareness of security, some web applications are

left unsecure in some parts of the application code and easily attacked by XSS attacker.

Although a great amount of research and many techniques have been introduced to

mitigate XSS vulnerabilities and attacks and intensive care of implementing security

during development, many of those solutions and web applications still suffer from

XSS attacks due to the complexity and sophistication level of attacking approaches

and mechanisms.

1.2 Problem Background

Many solutions and approaches have been developed to mitigate XSS either

by detect and alert (client side: browser), detect and prevent (client side) or developing

secure web applications (server side). For detecting XSS on client side, many

techniques had been proposed such as modifying web browser, modifying JavaScript

engine, proxy based solution where HTTP request and response get scanned before

processed by server (request) and client (response).

A less focused-on approach that is used to detect XSS depends on Machine

Learning (ML) techniques. According to the literature reviewed, only few academic

papers that highlighted the use of ML in detecting XSS (Likarish et al. (2009), Nunan

et al. (2012) and Krishnaveni and Sathiyakumari (2013)). These papers use ML

algorithms (such as Naïve Bayes or Support Vector Machine) to classify a web page

into two classes which is either malicious (infected by XSS) or benign (non-XSS). The

authors try to detect XSS by classifying HTML code (HTTP response loaded from the

server) depending on features which are used to recognize XSS attacks. These features

extracted from a dataset and applied on the data (HTML code or HTTP response)

provided to the classification algorithm in the training and the testing phases. The

	 4

authors used too many features including unnecessary ones such as URL features.

URL features were used by the authors because some XSS attacks involve embedding

the attack pattern into the URL. However these patterns to be activated they must be

passed into the HTML source code and if that web page is secured against XSS then

these attacks will not run, thus by just having attack patterns in URL it does not mean

that the web page is vulnerable and also all the XSS attacks either based on URL or

stored in the web page server, they all get activated inside the HTML source code, so

it is important to focus only on the XSS features found in the HTML source code and

ignore the URL features which were used in the previous studies.

Training and testing a dataset to develop a robust classifier depends highly on

the features extracted and selected from the HTML code which contributes to the

accuracy of the classification results (Janecek, 2008). Features extraction depends on

what attributes from the data can be used to classify it into classes, and usually these

attributes or features have some redundancies or noise which affect the performance

of the classifier (Khanna, 2014). The selection of the relevant and most significant

features can enhance the accuracy of the classification and lead to a shorter training

time which can be done by removing redundant or irrelevant features (noise data).

Thus, building a robust classifier depends highly on how the features (of the

data that need to be classified) are extracted and selected, and how can the feature

selection process can be optimized so only relevant features are used which will

increase the accuracy of identifying at which class a web page (in the dataset) belongs

to, XSS or Benign. However, using too many features or irrelevant features in order to

detect XSS web pages can unfortunately have bad impact on the results. Therefore,

decreasing the performance of the classification algorithm (Khanna, 2014).

To improve the performance of the classification it is very important to invest

a good effort on the features selection and apply different techniques such as PCA

(Principal component analysis), PSO (Particle swarm optimization) or IG (Information

Gain) to choose the best and most significant features that lead to a better and more

efficient classification performance. The previous works (Likarish et al. (2009), Nunan

	 5

et al. (2012) and Krishnaveni and Sathiyakumari (2013)) had no clear method for

features selection, and by applying such techniques, we believe the number of features

they used can be reduced to a smaller subset that will lead to same or better results, yet

shorter training and testing times.

1.3 Problem Statement

Most of recent XSS classification approaches proposed their ML techniques

based on too many features extracted from both URL and web page document. These

approaches did not include a feature selection to reduce the number of the used

features. Using too many features without feature selection and including unnecessary

features lead to an increase of the computation time and complexity of the classifier

because of including redundant, irrelevant or unnecessary features causing a decrease

in classification performance due to not properly selected by good features selection

methods. URL features are considered unnecessary since the environment that is used

to run the attack is the HTML source code (web page content), therefore it is important

to focus only on the features of XSS based on the HTML document since all the XSS

attack types get activated only inside the source code.

1.4 Purpose of Study

This research identifies most significant features of XSS web pages to be used

for enhancing classification performance, detection accuracy, decrease false positive

and categorize web pages (dataset) into two categories (XSS or Benign) by

implementing the features selection via Information Gain (IG) technique.

	 6

1.5 Project Objectives

The objectives of this project are listed below:

i. To extract all possible features from the dataset based on the features used

in the literature review (Likarish et al. (2009), Nunan et al. (2012) and

Krishnaveni and Sathiyakumari (2013)).

ii. To use Information Gain (IG) technique for features selection in order to

select the most significant features that lead to a better classification

performance and better results.

iii. To implement and compare data classification via ML algorithms Naïve

Bayes (NB) and Support Vector Machine (SVM) using the selected

features on the training and testing datasets.

1.6 Scope of Study

The scope of this project is as follows:

i. The study focuses on using Information Gain (IG) features selection

technique that produce the most significant features which will lead to high

percentage of accuracy and better performance from the classification

algorithms.

ii. Classifying XSS web pages based on features obtained from HTML code

only (web page source code).

iii. The study will use a dataset for the malicious class from XSSed

(www.xssed.com) which was used by most of the previous works. For the

	 7

benign class, a crawler plugin used to crawl web pages from Google search

results where this data is verified to be XSS-free using Vega (a software to

scan web page looking for vulnerabilities such as XSS and SQL injection).

iv. The classification process is done using RapidMiner 2016; which is an

open source data mining software.

1.7 Organization of Report

The significance of this study underlies on how important it is to improve the

feature selection which would lead to a better classification where then we can build

better security applications to detect XSS with a small to none false alarm rate. Another

significance of this study is to increase the awareness level among researchers and web

applications developers on the nature of XSS, how its attacks happen and the threat

they can bring to the security of the web applications used by many industries such as

ecommerce, educational institutes, banks and governmental agencies which should

motivate them to build secure web applications from the scratch and not be only

detective but defensive and preventive against these attacks.

1.8 Organization of Report

The rest of this report is organized as follows: Chapter 2 provides a literature

of the problem studied and what has been done so far to solve it, Chapter 3 is about

the project methodology and a brief on how the data is collected, handled and

processed. The design and implementation of the experiments for features extraction

and selection is thoroughly explained in Chapter 4. Classification experiments and

results are explained in Chapter 5. Finally, conclusion and future work are provided in

Chapter 6.

 93

REFERENCES

Acunetix, 2013. DOM-based Cross-Site Scripting (XSS) Explained. Available at:

http://www.acunetix.com/blog/articles/dom-xss-explained/ [Accessed: May

2016]

Al Shalabi, L. and Shaaban, Z., 2006, May. Normalization as a preprocessing engine

for data mining and the approach of preference matrix. In 2006 International

Conference on Dependability of Computer Systems (pp. 207-214). IEEE.

Amor, N.B., Benferhat, S. and Elouedi, Z., 2004, March. Naive bayes vs decision trees

in intrusion detection systems. In Proceedings of the 2004 ACM symposium

on Applied computing (pp. 420-424). ACM.

Ankush, S.D., 2014. XSS attack prevention using DOM based filtering API (Doctoral

dissertation). Department of Computer Science and Engineering. National

Institute of Technology Rourkela, Rourkela – 769 008, India.

Brownlee, J., 2014. An Introduction to Feature Selection. Available at:

http://machinelearningmastery.com/an-introduction-to-feature-selection/

[Accessed: December 2016]

Brownlee, J., 2016. Naive Bayes for Machine Learning. Available at:

http://machinelearningmastery.com/naive-bayes-for-machine-learning/

[Accessed: January 2017]

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3),

pp.273-297.

Deepa, G. and Thilagam, P.S., 2016. Securing web applications from injection and

logic vulnerabilities: Approaches and challenges. Information and Software

Technology, 74, pp.160-180.

DuCharme, B. n.d. Data Science Glossary. Available at:

http://www.datascienceglossary.org/#feature [Accessed: January 2017]

 94

DuPaul, N., 2013. Cross-Site Scripting (XSS) Tutorial: Learn About XSS

Vulnerabilities, Injections and How to Prevent Attacks. Available at:

https://www.veracode.com/security/xss [Accessed: May 2016]

Fawcett, T., 2004. ROC graphs: Notes and practical considerations for researchers.

Machine learning, 31(1), pp.1-38.

Gerardnico, 2016. Text Mining - term frequency – inverse document frequency (tf-

idf). Available at: http://gerardnico.com/wiki/natural_language/tf-idf#tf

[Accessed: December 2016].

Gupta, N., 2014. A Study of Existing Cross Site Scripting Detection and Prevention

Techniques in Web Applications. In International Journal Of Engineering

And Computer Science ISSN:2319-7242, Volume 3 Issue 9, Page No. 8445-

8450

Hamada, M.H.A., 2012. Client Side Action Against Cross Site Scripting Attacks

(Doctoral dissertation, Islamic University–Gaza).

Han, J., Pei, J. and Kamber, M., 2011. Data mining: concepts and techniques. Elsevier.

Hydara, I., Sultan, A.B.M., Zulzalil, H. and Admodisastro, N., 2015. Current state of

research on cross-site scripting (XSS)–A systematic literature review.

Information and Software Technology, 58, pp.170-186.

Janecek, A., Gansterer, W.N., Demel, M. and Ecker, G., 2008, September. On the

Relationship Between Feature Selection and Classification Accuracy. In

FSDM (pp. 90-105).

Khanna, V., 2014, Is having a very large number of features in Machine Learning ever

a bad thing? Available at: https://www.quora.com/Is-having-a-very-large-

number-of-features-in-Machine-Learning-ever-a-bad-thing [Accessed: Dec

2016]

Krishnaveni, S. and Sathiyakumari, K., Efficient Prediction of Cross-Site Scripting

Web Pages using Extreme Learning Machine. International Journal of

Computer Science & Engineering Technology (IJCSET), 4(11), pp.1395-

1400.

Lala, 2015. Guide to Web PenTesting. Available at: http://slides.com/lala/guide-to-

web-pentest#/ [Accessed: December 2016]

Likarish, P., Jung, E. and Jo, I., 2009, October. Obfuscated malicious javascript

detection using classification techniques. In MALWARE (pp. 47-54).

 95

Ma, J., Saul, L.K., Savage, S. and Voelker, G.M., 2009, June. Beyond blacklists:

learning to detect malicious web sites from suspicious URLs. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining (pp. 1245-1254). ACM.

Manek, A.S., Sumithra, V., Shenoy, P.D., Mohan, M.C., Venugopal, K.R. and Patnaik,

L.M., 2014, August. DeMalFier: Detection of Malicious web pages using an

effective classifier. In Data Science & Engineering (ICDSE), 2014

International Conference (pp. 83-88). IEEE.

MDN, 2015. Mozilla Developer Network: About JavaScript. Available at:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/About_JavaScript. [Accessed: May 2015]

Nguyen, T. and Armitage, G. (2008). A survey of techniques for internet traffic

classification using machine learning. IEEE Communications Surveys &

Tutorials, 10(4), pp.56-76.

Nithya, V., Pandian, S.L. and Malarvizhi, C., 2015. A Survey on Detection and

Prevention of Cross-Site Scripting Attack. International Journal of Security

and Its Applications, 9(3), pp.139-151.

Nunan, A.E., Souto, E., dos Santos, E.M. and Feitosa, E., 2012, July. Automatic

classification of cross-site scripting in web pages using document-based and

URL-based features. In Computers and Communications (ISCC), 2012 IEEE

Symposium on (pp. 702-707). IEEE.

Oracle, 2007. Oracle Data Mining, Concepts. 11g Release 1 (11.1). Oracle Corp, 2007.

Available at:

http://www.comp.dit.ie/btierney/Oracle11gDoc/datamine.111/b28129.pdf

[Accessed: January 2017]

Oracle, 2016. Classification: About Classification. Available at:

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/classify.htm#

DMCON004 [Accessed: December 2016]

OWASP, 2013. OWASP Top 10 – 2013. Available at:

https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf.

[Accessed in: May 2016].

OWASP, 2015. DOM based XSS. Available at:

https://www.owasp.org/index.php/DOM_Based_XSS [Accessed: May

2016]

 96

OWASP, 2016, Cross-site Scripting (XSS). Available at:

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS). [Accessed:

May 2016]

Raman, P., 2008. JaSPIn: JavaScript based Anomaly Detection of Cross-site scripting

attacks (Doctoral dissertation, CARLETON UNIVERSITY Ottawa).

Ramaswami, M. and Bhaskaran, R., 2009. A study on feature selection techniques in

educational data mining. arXiv preprint arXiv:0912.3924.

Richards, J. (2014). Relevance Of Generalized Linear Models In Oracle Database

Mining. [online] Available at: http://www.exeideas.com/2014/11/linear-

models-in-oracle-database.html [Accessed January 2017].

Scikit-Learn.Org, 2015. Feature Extraction. Available at: http://scikit-

learn.org/stable/modules/feature_extraction.html [Accessed: January 2017]

Systems Sciences, n.d. Machine Learning [image]. Available at: http://systems-

sciences.uni-graz.at/etextbook/bigdata/supervised_seg.html [Accessed:

January 2017]

Wikibooks.org, 2016. Support Vector Machines - Wikibooks, open books for an open

world. Available at:

https://en.wikibooks.org/wiki/Support_Vector_Machines [Accessed:

January 2017].

Witten, I.H. and Frank, E., 2005. Data Mining: Practical machine learning tools and

techniques with Java Implementations (Second Edition). Morgan Kaufmann

Publishers.

