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ABSTRACT

Burgers’ equation is a quasilinear differential equation can be solve either 

analytically or numerically. The analytical solutions use the Hopf-Cole transformation 

and reduced to diffusion equation. The focus of this research was to solve Burgers’ 

equation numerically by using Finite Difference Method (FDM) and Method of Line 

(MOL) by using Fourth Order Runge-Kutta (RK4). The accuracy of MOL obtained 

solutions depends on the type of Ordinary Differential Equation (ODE) method used. 

The results obtained from both numerical method were compared between Hopf-Cole 

transformation analytical solutions. The simulations is coded by using MATLAB 

software. From the comparison, both methods shown to be good numerical 

approximation as the results obtained near to the exact solution. As the increase of 

spatial step size, the solutions obtained with be more accurate followed by individual 

methods’ restrictions. Different time and viscosity coefficient also tested to observe 

the changes of Burgers’ equation solutions.
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ABSTRAK

Persamaan Burgers merupakan persamaan pembezaan quasilinear yang boleh 

diselesaikan secara analitikal atau berangka. Bagi mendapatkan penyelesaian 

analitikal, transformasi Hopf-Cole digunakan untuk menghasilkan persamaan resapan. 

Fokus kajian ini adalah untuk menyelesaikan persamaan Burgers secara kaedah 

berangka dengan menggunakan kaedah beza terhingga (FDM) dan kaedah garisan 

(MOL) yang menggunakan kaedah Runge-Kutta peringkat keempat (RK4). Ketepatan 

hasil pengiraan MOL bergantung kepada jenis kaedah yang digunakan untuk 

menyelesaikan masalah seperti persamaan pembezaan biasa (ODE). Seterusnya, 

perbandingan dibuat terhadap keputusan simulasi MATLAB untuk penyelesaian 

menggunakan kaedah berangka dan penyelesaian analitikal yang melalui transformasi 

Hopf-Cole. Berdasarkan perhatian didapati, penyelesaian berangka mampu memberi 

penyelesaian yang baik. Pengurangan panjang saiz langkah akan memberikan 

penyelesaian berangka yang lebih tepat. Masa dan pekali kelikatan yang berbeza juga 

diuji untuk melihat kesannya terhadap penyelesaian persamaan Burgers.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Burgers’ equation is a quasilinear differential equation shows the nonlinear 

convection and linear dissipation follows the evolution of time of the function u(x,t) 

(Singh, 2016). The equation first discovered by Betemen (1915) used in the modelling 

of the motion of viscous fluid. In 1948, Burgers (1948) tried to formulate a simplest 

mathematical model that can related to turbulence. From that day onwards, the 

equation earned its name as Burgers’ equation. In modern days, this equation are 

widely formulated in modelling, turbulence, gas fluid dynamics, traffic flows and so 

on. This equation also played as a model equation for the development in the 

computation in nonlinear equation.

Burgers’ equation can be solved either analytically or numerically. The 

analytical or also known as exact solution often related to the Hopf-Cole 

transformation which is used to reduce the quasilinear equation into a diffusion 

equation. In recent years, beside Hopf-Cole transformation, various works have been 

produced on the findings of Burgers’ equation analytical solution such as G’/G 

Expansion Method (Wang, Li and Zhang, 2008), Tanh Expansion Method (Malfliet 

and Hereman, 1996) and Method using Transformation from Sine-Gordon equation 

(Fu, Liu and Liu, 2002).
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Simultaneously, the good numerical approximations on Burgers’ equation also 

grew as time goes. Examples like Nyuyen and Reynen (1984) presented a space-time 

finite element approach to Burgers’ equation, Kakuda and Tosaka (1990) used 

generalized boundary element method, Bar-Yoseph et al. (1995) used and discussed 

the space time spectral element method on Burgers’s equation solution, Zhu et al. 

(2009) applied a cubic B-spline quasi interpolation to Burgers equation, Siraj et 

al.(2012) researched the numerical solution of Burgers’ equations using meshless 

Method of Lines and many more.

In this research, the focus is to solve Burgers’ equation numerically by using 

Finite Difference Method (FDM) and Method of Line (MOL) by using Fourth Order 

Runge-Kutta (RK4). The results obtained from both numerical method will be 

compared with Hopf-Cole transformation analytical solutions. The simulations is 

coded using MATLAB software.
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In reality, most of the physical problems existed in form of nonlinear partial 

differential equations. In this research, Burgers’ equation is chosen due to the 

simplicity of one dimensional but contains the nonlinear properties.

Numerical method in other hand means the approximation of a solutions. 

Number of methods have been introduces in decades. Among the well-knowns, FDM 

and MOL are chosen to be used as the numerical approach to solved Burgers’ equation. 

Although both come from different approach where FDM solved in partial differential 

equation (PDE) form meanwhile MOL transform a PDE into a system of Ordinary 

differential equation (ODE) and solved using various ODE solver methods. FDM is 

one of the classic method to solve PDE. However, methods of lines said to be more 

accurate and computational timewise compared to regular finite difference method 

(Sadika and Obiozor,2000). However, the accuracy of the solutions also depends on 

the methods used to solve the ODE after transformed by using MOL. Moreover, this 

method can achieved the numerical stability and convergence efficiently due to the 

separation of time and space discretization. There are several issues of concern 

discussed in this research.

1.2 Statements of the Problem

1. How to numerically simulate Burgers’ equation using MATLAB software?

2. How accurate are the numerical methods used to solve Burgers’ equation?
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The following objectives is achieved from this research.

1. To review and understand the applications of numerical schemes on Burgers’ 

equation.

2. To simulate numerical computational of Burgers’ equation in MATLAB 

software.

3. To determine the accuracy of result obtained using numerical approach in 

Burgers’ equation.

4. To observe different numerical approach in solving Burgers’ equation.

1.3 Objectives of the Study

1.4 Scope of the Study

This research focused on one dimensional nonlinear Burgers’ equation that is 

linearized by the used of Hopf-Cole transformation and solved by using explicit FDM 

and MOL using RK4. The discretization will be carry out and code by using 

MATLAB software.
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In recent years, the research of Burgers’ equation had contributes various 

achievement especially in fluid dynamics field. Thus, the significant of this research 

are:

1. This research determined the accuracy of result obtained using numerical 

approach in Burgers’ equation.

2. This research also provides extra information on the comparison between finite 

difference method and method of line in Burgers’ equation.

3. This research provides other alternative to solve Burgers’ equation by using 

two different approach of numerical methods, the pde solver and the ode solver.

1.5 Significance of the Study

1.6 Organization of the Research

This research is organised into five chapters. Chapter 1 presents the 

introduction, background of the study, statements of the problem, objectives, scope 

and the significance of study. The theoretical information and literature review related 

to the background of the study are discussed in Chapter 2. Literature review on the 

background of Burgers’ equation and numerical methods that involved. On the other 

hand, Chapter 3 is about the mathematical formulation and algorithms. Based on the 

mathematical formulation, the equation is solved by using MATLAB software. 

Chapter 4 discussed about the results and discussion of this research. The last chapter 

of this research which is Chapter 5 concluded the whole thesis and some 

recommendations for future research.
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