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ABSTRACT 
 

 

 

 

Fluid-mechanics is an ancient science that is incredibly alive today. Therefore, 

the modern technologies require a deeper understanding of the behaviour of real 

fluids. Based on the relationship between shear stress and the rate of strain, fluids can 

be categorized as Newtonian fluids and non-Newtonian fluids. Various non-

Newtonian fluid models have been used to investigate the behaviour of fluid motion, 

because of their universal nature. Solution corresponding to Newtonian and non-

Newtonian fluids problem have received considerable attention due to their numerous 

applications in industries. This thesis is devoted to study the unsteady free convection 

flow of Newtonian fluid (nanofluids) and non-Newtonian fluids (Casson and 

micropolar fluids) over an oscillating vertical plate. Specifically, free convection 

flows of Casson fluids and micropolar fluids were studied with and without 

magnetohydrodynamic and porosity effects. Whereas studied in nanofluids also 

considered ramped wall temperature. Laplace transform was used to solve the partial 

differential equations governing the motion. The expressions of the obtained solutions 

for velocity, temperature and concentration were presented in simple forms. Skin 

friction, Nusselt number and Sherwood number were also calculated. The analytical 

results were plotted and discussed for magnetic, porosity, radiation, nanoparticle 

volume friction, Casson and microrotation parameters as well as Prandtl, Grashof and 

modified Grashof numbers. For Casson fluid, it was observed that velocity decreases 

with increasing values of Casson parameter as Casson fluid exhibits yield stress. In 

case of nanofluids, it was found that fluid velocity was greater for isothermal 

temperature as compared to ramped wall temperature of the plate. However, for 

micropolar fluid, microrotations increases near the plate and decreases far away from 

the plate due to an increase in viscosity parameter. The results showed that for long 

time interval, the oscillations have similar amplitudes and phase shift that persists for 

all times. For verification, the obtained solutions were recovered as special cases. The 

existing solutions in the literature were also reduced to their limiting cases of the 

present results. The exact solutions obtained in this thesis serve as a benchmark to 

verify approximate methods, whether asymptotic, experimental or numerical. 
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ABSTRAK 

 

 

 

 

 Mekanik bendalir merupakan sains purba yang masih berkembang sehingga 

ke hari ini. Oleh itu, teknologi moden memerlukan pemahaman yang lebih mendalam 

berkenaan  kelakuan bendalir sebenar. Berdasarkan hubungan antara tegasan ricih dan 

kadar terikan, bendalir boleh dikategorikan sebagai bendalir Newtonan dan bendalir 

bukan Newtonan. Pelbagai model bendalir bukan Newtonan telah digunakan untuk 

mengkaji tingkah laku gerakan bendalir, disebabkan oleh sifat serba boleh mereka. 

Penyelesaian yang berkaitan dengan masalah bendalir Newtonan dan bendalir bukan 

Newtonan telah mendapat banyak perhatian kerana pelbagai kegunaannya dalam 

industri. Tesis ini adalah dikhaskan untuk mengkaji aliran tak mantap olakan bebas 

bendalir Newtonan (bendalir nano) dan bendalir bukan Newtonian (Casson dan 

mikrokutub) melintasi plat menegak berayun. Secara khususnya, aliran olakan bebas 

bagi bendalir Casson dan bendalir mikrokutub telah dikaji dengan dan tanpa kesan 

hidrodinamik magnet dan keliangan. Manakala, kajian terhadap bendalir nano juga 

mempertimbangkan suhu tanjakan dinding. Penjelmaan Laplace telah diguna bagi 

menyelesaikan persamaan pembezaan separa yang menakluk gerakan. Ungkapan bagi 

penyelesaian halaju, suhu dan kepekatan yang diperoleh telah dibentangkan dalam 

bentuk yang mudah. Geseran kulit, nombor Nusselt dan nombor Sherwood juga telah 

dikira. Keputusan secara analitik ini, diplot dan dibincangkan untuk parameter-

parameter magnet, keliangan, radiasi, isipadu pecahan partikel nano, Casson dan 

mikroputaran berserta juga nombor-nombor Prandtl, Grashof dan Grashof terubah 

suai. Untuk bendalir Casson, diperhatikan bahawa halaju berkurangan dengan 

peningkatan nilai-nilai parameter Casson dengan keadaan bendalir Casson 

mempamerkan tekanan alah. Dalam kes bendalir nano, didapati bahawa halaju 

bendalir adalah lebih besar untuk suhu isoterma berbanding dengan suhu tanjakan. 

Walau bagaimanapun, untuk bendalir mikrokutub, mikroputaran meningkat 

berhampiran plat dan berkurangan berada jauh dari plat disebabkan oleh peningkatan 

dalam parameter kelikatan. Keputusan yang diperoleh menunjukkan bahawa untuk 

tempoh masa yang lama, ayunan mempunyai amplitud yang sama dan anjakan fasa 

yang berterusan untuk setiap masa. Untuk penentusahan, penyelesaian yang diperoleh 

diturunkan sebagai kes-kes khas. Penyelesaian sedia ada di dalam kajian terdahulu  

juga diturunkan kepada menghadkan kes bagi penyelesaian yang didapati sekarang. 

Penyelesaian tepat yang diperoleh dalam tesis ini menyediakan suatu penanda aras 

untuk mengesahkan kaedah anggaran, sama ada secara asimptot, eksperimen atau 

berangka. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

This chapter discusses the main area of this research which emphasise on 

Newtonian fluids as well as non-Newtonian fluids, along with some basic 

terminologies of fluid mechanics. It consists of a brief introduction of the research 

background, problem statement, research objectives, scope of the study and the 

significance of the present research. 

 

 

 

 

1.2 Research Background 

 

 

In the eighteenth and early nineteenth centuries, scientists imagined that all 

bodies contained an invisible fluid which they called caloric (Lienhard, 2008). Caloric 

was assigned a variety of properties, some of which proved to be contradictory with 

nature, like it had weight and it could not be created nor destroyed. But its most 

important characteristic was that it flowed from hot bodies into cold ones. It was a 

very useful way to think about heat transfer. 

 

In thermodynamics, heat transfer is the energy interaction in a medium or 

between media due to temperature difference. Heat is not a storable quantity and is 

defined as energy in transit due to a temperature difference (Cengel, 2004). The 

science of heat transfer is used to understand the mechanism of heat transfer process 

and to predict that, at which rate heat transfer has taken place. It may also be used to 
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predict the amount of energy required to change a system from one equilibrium state 

to another. In the study of heat transfer, one of the significant variable is temperature, 

and it is necessary to express the net buoyancy force in terms of a temperature 

difference, that represents the variation of the density of a fluid with temperature at 

constant pressure. Heat transfer has broad applications in nature and in industry, 

particularly heating and cooling of earth‟s surface, formation of rain and snow, 

climatic changes are some of the natural facts wherein heat transfer plays a vital role 

and the survival of living beings is feasible due to the utmost heat source, the sun. 

(Ghoshdastidar, 2004). Generally, there are three basic modes of heat transfer namely 

conduction, convection and radiation.  

 

 

 

 

1.2.1 Conduction 

 

 

Conduction is heat transfer by means of molecular agitation within a material 

without any motion of the material as a whole (Lienhard, 2008). When one part of 

body is at higher temperature then the other, heat transfer take place from higher 

temperature body to the lower temperature body.  In this case, the energy is said to be 

transferred by conduction. Higher temperatures are associated with higher molecular 

energies and a transfer of energy from the more energetic to the less energetic 

molecules must occur when neighbouring molecules have a collision. In the presence 

of temperature gradient, energy transferred by conduction must occur in the direction 

of decreasing temperature.  

 

 

 

 

1.2.2 Convection 

 

 

Convection is the transfer of thermal energy from one place to another by the 

movement of fluids or gases. The convection mode of heat transfer is divided into 

three types which are known as free, mixed and forced convections (Ghoshdastidar, 

2004). If the fluid motion is induced by some external resources such as fluid 

machinery pump, blower and vehicle motion, the convection is called as forced and 



  3 
 

the process is generally known as forced convection flow. While, if the motion in the 

fluid is induced by body forces such as gravitational or centrifugal forces, this kind of 

flow is said to be free or natural convection. On the other hand, mixed convection 

flow occurs when free and forced convection mechanisms simultaneously and 

significantly contribute to the heat transfer (Cengel, 2004).  

 

Free convection has attracted a great deal of attention from researchers 

because of its presence both in nature and engineering applications. In nature, 

convection cells formed from air raising above sunlight-warmed land or water are 

major feature of all weather systems. Convection is also seen in the sea-wind 

formation, oceanic currents, and in rising plume of hot air from fire. In engineering 

applications, convection is commonly visualized in the configuration of 

microstructures during the cooling of molten metals and fluid flows around covered 

heat-dissipation fins, and solar ponds.  

 

 

 

 

1.2.3 Radiation 

 

 

Radiation is a form of electromagnetic energy transmission and is independent 

of any medium between the emitter and receiver of such energy (Ghoshdastidar, 

2004). However, radiative heat transfer depends on a temperature difference for the 

transfer of energy to take place. Radiative heat and mass transfer have many 

applications in manufacturing industries for the combustion and furnace design, gas 

turbines and different driving devices for air craft, nuclear power plant, food 

processing as well as for several heath applications. Therefore, the study of radiative 

heat and mass transfer by free convection in a magnetohydrodynamics (MHD) fluid 

through a porous medium is currently undergoing a period of great magnification and 

demarcation of the subject matter and has attracted the interest of researchers 

(Anuradha and Priyadharshini, 2014). 

 

 

 

 

 

 



  4 
 

1.2.4 Mass Transfer 

 

 

Free convection flows occur not only due to temperature difference, but also 

due to concentration difference or the combination of these two. If a multi-component 

system with a concentration gradient, one constituent of the mixture gets transported 

from the region of higher concentration to the region of lower concentration till the 

concentration gradient reduces to zero. This phenomenon of the transport of mass as a 

result of concentration gradient is called mass transfer (Cengel, 2004; Bergman et al., 

2011). Mass transfer is also used in different scientific disciplines for different 

purposes. For example, in engineering it is used for physical process that involves 

diffusive and convective transport of chemical species within physical system. Heat 

and mass transfer phenomena is essential part of science and technology. In practical 

situations, such as condensation, evaporation and chemical reactions, where the heat 

transfers phenomena is always accomplished by the mass transfer phenomena.  

 

 

 

 

1.2.5 Boundary Layer Theory 

 

 

In 1904 at the International Mathematical Congress in Heidelberg, when 

Prandtl give a lecture entitled “On fluid flow with very little friction”. He proposed 

that, the viscosity of a fluid plays a vital role in a thin layer adjacent to the surface, 

which he called the boundary layer (Herbert, 2004). In other words, in a simple flow 

situation the effect of viscosity and the wall is limited to a thin layer adjacent to the 

wall and that frictional effects experienced only in a boundary layer, a thin region near 

the surface. Outside the boundary layer flow, the flow is inviscid that studied for the 

previous two centuries. With this idea, the understanding of fluid flow was extensively 

increased and with an order of magnitude analysis, this assumption can simplify the 

Navier Stokes‟ equation significantly.  
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Figure 1.1 Boundary layer over a flat plate. 

 

 

The physical configuration of the flow is shown in Figure 1.1. The thermal, 

concentration and velocity boundary layers are shown by ,T C  and U respectively. 

The flow associated to the flat plate, the boundary layer is very thin compared to the 

size of the plate. The velocity changes extremely over very short distance normal to 

the surface of a body absorbed in a flow (Anderson, 2005).  

 

 

 

 

1.2.6 Magnetohydrodynamics Heat and Mass Transfer Flow 

 

 

The influence of magnetic field is observed in several natural and human-made 

flows. Magnetic fields are commonly applied in industry to pump, heat, levitate and 

stir liquid metals. There is the terrestrial magnetic field which is maintained by fluid 

flow in the earth‟s core, the solar magnetic field which originates sunspots and solar 

flares, and the galactic magnetic field which is thought to control the configuration of 

stars from interstellar clouds (Shercliff, 1965). So MHD is the study of the contact 

between magnetic fields and moving conducting fluids.  
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The laws of magnetism and fluid flow are the innovations of twentieth-

century. Hannes Alfve
/
n (1908-1995) was the first to present the term 

magnetohydrodynamics and won the Nobel prize for his work on 

magnetohydrodynamics (Goossens, 2012). Some early pioneering work has been done 

by J. Hartmann, through inventing the electromagnetic pump in 1918 (Molokov et al., 

2007). He also considered a systematic theoretical as well as experimental 

investigation of the flow of mercury in a homogeneous magnetic field. This is the 

reason that the term „Hartmann flow‟ is now used to represent duct flows in the 

presence of a magnetic field.  

 

The study of the interplay of electromagnetic fields and electrically conducting 

fluids caught the attention of researchers. As a result many standard problems of fluid 

mechanics were reexamined under the influence of magnetic field. The study of 

channel flow heat transfer has applications in the fields of power generation and 

propulsion in devices as a MHD power generator and pump. Despite the fact that the 

consideration of MHD makes the problem complicated, yet the present study 

incorporates the topic for its relevance in the entire research work. 

 

 

 

 

1.2.7 Heat and Mass Transfer Flow in a Porous Medium 

 

 

Porous medium is a material consisting of a solid matrix with an 

interconnected empty space. The porosity of a porous medium is characterized as the 

portion of the total volume of the medium that is occupied by empty space (Nield and 

Bejan, 2006). The flows though porous media occur in many industrial and natural 

situations, like membrane separation process, forced flow oil from sand stone 

reservoirs, seepage of rain waste through permeable ground into aquifer, wetting and 

drying process and powder technology. From the last few decades, researchers are 

keen interested in thermal convection problems in porous medium, this is because of 

their numerous applications in manufacture and process industries. The detailed 

discussion on the convection flow through porous medium is given in the books as 

Pop and Ingham (2001) and Ingham and Pop (2005). Keeping in mind the above facts, 
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present study also investigates the free convection flows of Newtonian and non-

Newtonian fluids over an infinite vertical plate embedded in a porous medium.  

 

 

 

 

1.2.8 Newtonian Fluids 

 

 

Fluids that obey the Newton‟s law of viscosity are known as Newtonian 

Fluids. In Newtonian fluid, viscosity is entirely dependent upon the temperature and 

pressure of the fluid and the relation between the shear stress and the shear rate is 

linear, passing through the origin, the constant of proportionality being the coefficient 

of viscosity, mathematically  

 

,
du

dy
                                                    (1.1) 

 

where   is the shear stress exerted by the fluid,   is the dynamic viscosity of the 

fluid and /du dy  is the shear strain or deformation rate perpendicular to the direction of 

shear. Equation (1.1) is known as Newton‟s law of viscosity and for which   has a 

constant value are known as Newtonian fluids (White, 2006). Simply, this means that 

the fluid continues to flow regardless of the forces acting on it. For example, water is 

Newtonian, because it continues to exemplify fluid properties no matter how fast it is 

stirred or mixed.  

 

Newtonian fluids describe by Navier Stokes equations are extensively studied 

in the literature for the past few decades. Largely, this is due to the fact that they are 

relatively simple and their solutions are convenient (Soundalgekar, 1977; Das et al., 

1994; Chaudhary and Jain, 2006; Fetecau et al., 2008; Rubbab et al., 2013). However, 

Newtonian fluids which have a linear relationship between the stress and the rate of 

strain are limited in view of their applications. They do not explain several phenomena 

observed for the fluids in industry and other technological applications. For example, 

many complex fluids such as blood, soap, clay coating, certain oils and greases, 

elastomers, suspensions and many emulsions are noteworthy due to their various 

applications in industry. Unfortunately, Navier Stokes equations are no more 
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convincing to describe such fluids. In literature, they are known as non-Newtonian 

fluids. These fluids are described by a non-linear relationship between the stress and 

the rate of strain.  Present study contained the heat transfer flow of nanofluid with 

ramped wall temperature over an oscillating vertical plate.  

 

 

 

 

1.2.9 Non-Newtonian Fluids 

 

 

In recent years, non-Newtonian fluids have received great importance due to 

their numerous applications.  The non-Newtonian behavior of a fluid is described by 

the power law model as given by   

 

0 , 1,
du

k
dy



 
 

  
 

                                             (1.2) 

 

       where 0k  is the flow consistency index and   is called flow behaviour index. More, 

exactly, a non-Newtonian fluid is a fluid whose flow properties differ in any way from 

those of Newtonian fluids. Most commonly the viscosity of a non-Newtonian fluid is 

not independent of shear rate or shear rate history. Many polymer solutions and 

molten polymers are non-Newtonian fluids. Examples of non-Newtonian fluids 

includes substances such as ketchup, custard, toothpaste, starch suspensions, paint, 

blood and shampoo. In non-Newtonian fluids, the relation between the shear stress 

and the shear rate is different, and can even be time-dependent. Therefore a constant 

coefficient of viscosity cannot be defined.  

 

Due to great diversity in the physical structure of non-Newtonian fluids, many 

models have been proposed to describe their rheological behaviour. Amongst them the 

second grade fluid, third grade fluid, fourth grade fluid, Maxwell fluid, Oldroyd fluid, 

Burgers fluid, generalized Burgers fluid, Walters'-B liquid and Power law fluid are 

very famous. However, recently some other non-Newtonian fluids have become very 

popular in the literature such as Casson fluids and micropolar fluids, due to their 

distinct characteristics.  
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1.2.10 Laplace Transform Technique 

 

 

The distinct nature of fluid dynamics problems, especially the problems related 

with non-Newtonian fluid dynamics makes it complex to find exact solutions. In this 

situation some of problems can be dealt for analytical solutions. This is the cause that 

all the times researchers are impressed by finding exact solutions to more complex 

problems. Therefore, exact solutions are important not only because they provide the 

solutions for fundamental flows but also they serve as accuracy standard for 

approximate methods, whether numerical or experimental.  

 

Various analytical techniques are available exact solutions. Amongst them, the 

Laplace transform technique is beneficial particularly for initial value problems for 

finding exact solutions of Newtonian and non-Newtonian fluids. This transform was 

first introduced by Laplace, a French mathematician, in the year (1790) in his work on 

probability theory. A detailed discussion on Laplace transform technique and on its 

necessary and suffcient conditions are presented in the book of Rao (1995). There are 

large number of applications of Laplace transforms in the field of science and 

technology, such as signal analysis or central energy. In present work, the Laplace 

transform technique has been used for finding the exact solutions of the problems. 

Indeed, the Laplace transform technique converts linear differential equations into 

algebraic equations while using given boundary conditions. It transforms the functions 

of time  f t  to the functions of complex angular frequency. Mathematically, 

 

                                          
0

( ) ,qtf t e f t dt


 L  

 

                
  ,F q                                                  (1.3) 

 

where q  is Laplace transform parameter. The inverse Laplace transform is 

represented by     1 .f t F qL  Moreover, for initial value problems, optimum 

results can be obtained by using Laplace transform technique (Dyke, 1999). In some 

problems, it is difficult to find the inverse Laplace transform of a function, which is 

product of two transformed functions. In such situation, Convolution theorem gives 

the inverse Laplace transform of that function.  
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Convolution theorem is defined as follow. 

 

If  F q be a composition of two Laplace transformed functions  G q and 

 q  (Anumaka, 2012) given by 

 

         , ,G q g t q h t  L L                               (1.4) 

 

therefore, 

 

        1

0

.

t

F q f t g s h t s ds   L                             (1.5) 

 

In this thesis, Laplace transforms technique is used to determine the exact 

solutions of the problems given in Section 1.4.  

 

 

 

 

1.3 Problem Statement 

 

 

Many researchers are engaged in analyzing heat and mass transfer due to free 

convection. Most of them are interested in finding numerical solutions. It is due to the 

fact that exact solutions most of the times are not possible to obtain. Therefore, exact 

solutions to such problems are very rare in the literature but of great interest for the 

researchers. It is because exact solutions can be used as a check of correctness for the 

solutions that are obtained numerically or experimentally. This is the main reason that 

researchers are motivated recently to find exact solutions for unsteady free convection 

problems of Newtonian and non-Newtonian fluids. Towards obtaining the exact 

solutions of Newtonian fluid (nanofluids) and non-Newtonian fluids (Casson and 

micropolar fluids) this study will explore the following questions.  

 

1. How do the mathematical models for nanofluids, Casson fluids and micropolar 

fluids can be developed?  
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2. How do these fluids behave in the problem of unsteady free convection flow 

over an oscillating vertical plate with constant wall temperature?  

3. How does the mathematical model behave in the problem involving heat and 

mass transfer?  

4. How does the presence of non-Newtonian fluid parameters together with 

MHD, porosity and other parameters affect the fluid motion and heat transfer?  

5. How does the micropolar material parameter influence the wall shear stress as 

well as fluid velocity and microrotation profiles?  

6. How do the exact solutions for complicated free convection flow for the 

proposed fluid models can be obtained? 

 

 

 

 

1.4 Research Objectives 

 

 

The objective of this study is to investigate theoretically the unsteady free 

convection flow for three different types of fluids, which are Casson, nano and 

micropolar fluids. This investigation includes the formulation of the appropriate 

governing equations with some suitable initial and boundary conditions based on the 

constituted suitable physical models.  

 

Specifically, the objective of this study is to find the exact solutions by using 

the Laplace transform technique for the following problems. 

 

1. Unsteady free convection flow of Casson fluid over an oscillating vertical 

plate with constant wall temperature. 

2. Unsteady MHD free convection flow of Casson fluid over an oscillating 

vertical plate with constant wall temperature embedded in a porous medium. 

3. Unsteady free convection flow of nanofluids over an oscillating vertical plate 

with ramped wall temperature. 

4. Unsteady MHD free convection flow of ferrofluids over an oscillating vertical 

plate with ramped wall temperature embedded in porous medium. 

5. Unsteady free convection flow of micropolar fluid with heat and mass transfer 

over an oscillating vertical plate with constant wall temperature. 
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6. Unsteady MHD free convection flow of micropolar fluid with heat and mass 

transfer over an oscillating vertical plate with constant wall temperature 

embedded in a porous medium. 

 

 

 

 

1.5 Scope of the Study 

 

 

This study will focus on the unsteady MHD flow of Newtonian and non-

Newtonian fluids with either heat or heat and mass transfer together. Two different 

driving forces will be considered, which are responsible for inducing the motion into 

the fluid. These are buoyancy force and oscillating boundary condition.  

 

The first two problems emphasise on free convection flow of Casson fluids 

when the plate obeys the oscillating wall condition. The third and fourth problems 

focus on the free convection flow of nanofluids together with oscillating boundary 

condition which also allow the plate to induce ramped wall temperature. This ramped 

behavior of temperature at the wall will be responsible for the comparative study of 

ramped and isothermal motion and heat transfer. The fifth problem highlights the 

combined effects of heat and mass transfer on the micropolar fluids placed over a 

vertical plate oscillating in its own plane. Sixth problem extends the idea of Problem 

5, when micropolar fluid is electrically conducting and passing through a porous 

medium.  

 

All fluids are studied in the absence and the presence of MHD and porosity 

effects. In all these problems, the governing linear partial differential equations are 

solved for exact solutions by using the Laplace transform technique. Expressions for 

skin friction, rate of heat transfer and rate of mass transfer are evaluated and also 

computed in tabular forms. For the validation purpose, the obtained solutions are 

reduced to some published results in the literature. There is no verification of the 

solution compared to the experimental results. Graphical results are provided for 

various embedded parameters and discussed. Two computational software 

MATHEMATICA and MATHCAD are used for this purpose. More exactly, the 
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MATHEMATICA software is used for the computation of tabular results whereas the 

MATHCAD software is used for plotting. 

 

 

 

 

1.6 Significance of Study 

 

 

The significance of the study are as follows 

 

1. To build a better understanding of the MHD and heat transfer characteristics 

past an oscillating vertical plate with constant wall temperature and through a 

porous medium. 

2. Accurate exact solutions for mathematical models involving isothermal and 

ramped wall temperatures. 

3. Enhance understanding of the flow of the non-Newtonian fluid induced by an 

oscillating vertical plate embedded in a porous medium. 

4. These results can be used as the basis for fluid flow problems frequently 

occurring in engineering and applied sciences. 

5. The obtained results will assist scientists and engineers. These exact solutions 

can be used as a check of correctness for the solutions of more complex 

mathematical models obtained through numerical schemes. 
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1.7 Research Methodology 

 

 

 

Figure 1.2 Operational framework. 
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1.8 Thesis Outlines 

 

 

This thesis consists of 9 chapters. Chapter 1 starts with the research 

background which describes the general introduction succeeded by problem 

statements, objectives of research, scope of study, research methodology and 

significance of the present research. Chapter 2 covers a detailed literature review 

concerning the problems identified in the objectives of research. Chapter 3 begins 

with the problem regarding the unsteady free convection flow of Casson fluid with 

constant wall temperature. The flow in the fluid is induced by an oscillating infinite 

vertical plate. Both cosine and sine oscillations of the plate are considered. Using 

constitutive relations, the governing equations of the problem are formulated. 

Dimensionless variables are used to simplify the dimensional governing equations as 

well as appropriate initial and boundary conditions. Exact solutions of the 

dimensionless governing equations are obtained via of Laplace transform method. 

Some special cases are discussed. It is found that the general solutions obtained in this 

chapter reduce to some well known solutions in the literature, as limiting cases. 

Finally, the influence of important flow parameters on velocity and temperature are 

shown by graphs. Skin friction and Nusselt number are computed and shown in tables. 

 

Chapter 4 includes the unsteady MHD free convection flow of Casson fluid 

over an oscillating vertical plate embedded in a porous medium with constant 

temperature. The fluid is electrically conducted under the influence of a transverse 

uniform magnetic field. Expressions for velocity and temperature are obtained. 

Similar to Chapter 3, both cosine and sine oscillations of the plate are considered.  The 

graphical results for various embedded flow parameters are analyzed through graphs. 

The obtained solutions are reduced to the existing solutions in the literature.  

Moreover, the expressions for skin friction and Nusselt number are determined. 

  

The focus in Chapter 5 is on the unsteady free convection flow of nanofluids 

over an oscillating vertical plate with ramped wall temperature. By taking into 

account, the physical properties of nanofluids, the problem is modeled in terms of 

linear partial differential equations. Initial and boundary conditions for velocity are 

same as in previous chapters. However, in case of temperature, both cases of ramped 
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and isothermal wall are considered. Exact solutions for velocity and temperature 

obtained via Laplace transform method. Both cases of ramped and isothermal 

temperature are discussed. The obtained solutions are reduced to the existing solutions 

in the literature. Furthermore, results of skin friction and Nusselt number are also 

evaluated. Graphs are sketched and the effects of pertinent flow parameters are 

discussed. 

 

Chapter 6 extends the idea of Chapter 5, by taking into account the effects of 

MHD and porosity. More exactly, the nanofluid is taken electically conducting in the 

presence of a uniform magnetic field and passing through a porous medium. The 

influence of thermal radiation in heat equation is also considered. The governing 

equations along with appropriate initial and boundary conditions are made 

dimensionless and then solved by Laplace transform. As special cases, the obtained 

solutions are reduced to known solutions from the literature. Results for velocity and 

temperature are plotted graphically and discussed. Skin friction and Nusselt number 

are computed in tables. 

 

Chapter 7 investigates the unsteady free convection flow of micropolar fluid 

over an infinite oscillating vertical flat plate with wall couple stress. This chapter 

begins with the mathematical formulation of the problem to model the governing 

equation for micropolar fluid. The governing equations along with appropriate initial 

and boundary conditions are made dimensionless and then solved by the Laplace 

transform technique. The obtained solutions are reduced to the existing solutions in 

the literature. The expressions for velocity, micrororations, temperature and 

concentration are sketched and discussed in detail. Furthermore, skin friction, wall 

couple stress, Nusselt number and Sherwood number are also determined.  

 

Chapter 8 is a continuation of previous chapter, which includes the unsteady 

MHD free convection flow of micropolar fluid over an oscillating vertical plate in a 

porous medium with wall couple stress. More precisely, the micropolar fluid is taken 

electically conducting in the presence of a uniform magnetic field and passing through 

a porous medium. The governing equations along with appropriate initial and 

boundary conditions are made dimensionless and the then solved by the Laplace 

transform technique. Specifically, in this chapter is to find the inverse Laplace 
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transform and convolution technique is used. Expressions for velocity, micorotations, 

temperature and concentrations are obtained. The graphical results for various 

embedded flow parameters are analyzed through graphs. The obtained solutions are 

reduced to the existing solutions in the literature.  Moreover, the expressions for skin 

friction and wall couple stress are computed. 

 

In Chapter 9 the summary of this research and suggestions for future research 

are presented. References are listed at the end. 
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