INFLUENCE OF MIDBLOCK U-TURN FACILITY ON TRAFFIC FLOW REDUCTION AND ITS EFFECT ON KINEMATIC WAVE PROPAGATION

RAHA BINTI ABD RAHMAN

A thesis submitted in the fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2014

This thesis is especially dedicated to the followings who are very much appreciated for their patience, steadfast and sympathy.

My parents HJ ABD RAHMAN BIN ABDULLAH HJH HAMIDAH BINTI ABDULLAH

My loving husband MOHD FARID BIN HASSAN

My children UMAR ABDUL AZIZ BIN MOHD FARID UMAR LUQMAN AL HAQIM BIN MOHD FARID

May ALLAH swt. increase our faith and good deeds and save us from any calamities and disasters in the Day of Judgment and put us into His Heaven, Amin.

ACKNOWLEDGEMENT

I would like to express sincere gratitude and thanks to my academic supervisor Associate Professor Dr. Johnnie Ben Edigbe and my co-supervisor Dato. Ir. Dr. Azmi bin Hassan, for their guidance, invaluable suggestions, patience and active encouragement throughout the duration of this research.

I deeply appreciate to Public Work Department of Malaysia for giving me opportunity to pursue my PhD study. I would also like to express my gratitude to the Federal Malaysia Government for the financial support.

Also I would also like to thank Dr. Nordiana for the informal discussions, moral support and friendship.

I would also like to extend thanks to JKR (D) Johor Bahru and JKR Johor for their invaluable assistance in the preparation of instrumentation and the collection of the field data.

Finally, I would like to thank all the members of my family especially my loving husband Mohd Farid and my sons Umar Abdul Aziz and Umar Luqman Al Haqim for their continual encouragement, interest and emotional support throughout the duration of this research. Lastly a dedicated honour to my mom and dad for giving me full love.

ABSTRACT

Midblock median opening facilities are constructed on multilane highways in Malaysia solely for the purpose of facilitating U-turn movements along federal road segments. In Malaysia, a persistence problem of traffic conflicts and congestion at multi-lane highway intersections forced the federal authorities to invest in midblock median opening facilities as traffic conflict reduction mechanism. Although the authorities have succeeded in reducing traffic conflicts at intersections, the realisation of maximum traffic flow at the midblock zone is in doubt. The aim of the study is to determine influence of midblock U-turn facility on traffic flow reduction and its effect on kinematic wave propagation. The objectives are to determine traffic volume, speeds as well as vehicle types at the midblock and free-flow zones for both directional flows. As well as examine the effect of traffic flow reduction on kinematic wave propagation. It was assumed that traffic density was a resultant of speed and traffic flow hence not directly affected by midblock zone. It implies that traffic flow reduction was fully the result of speed changes. Where traffic flow reduction has occurred, the ensuing kinematic wave propagation would be investigated in order to determine whether it is a rarefaction wave or traffic shockwave. Vehicle types, traffic volumes and vehicles speeds were collected using automatic traffic counters at each directional flow of the four surveyed sites for six months. The survey data were collated and analysed. Passenger car equivalent values were modified and used to convert traffic volume to flow. Results show that midblock facility would cause about 4 per cent reduction in traffic flow at the diverging section and 10 per cent reduction in traffic at the merging section. The findings give traffic capacity values under different scenarios and can be incorporated into a wider strategy for dynamic traffic management. Findings from kinematic wave propagations confirm that midblock facility would cause traffic shock wave at the merging not the diverging section. Estimated traffic flow reduction from the study can be used as evidence to highlight the need to redesign midblock facility in Malaysia. One possible solution among others is to incorporate appropriate acceleration lane at the merging section thereby minimising the potential for vehicle collision. The study concluded that midblock facility will cause traffic significant flow reduction.

ABSTRAK

Pembukaan kemudahan pembahagi jalan yang dibina pada jalan dua lorong dua hala di Malaysia bertujuan memberi kemudahan kepada kenderaan membuat pusingan 'U' di sepanjang jalan Persekutuan. Di Malaysia, keadaan di mana masalah dan konflik yang berlaku di jalan dua hala dua lorong telah mendorong Pihak Berkuasa untuk memperkenalkan penggunaan pembukaan pembahagi jalan sebagai salah satu mekanisma untuk mengurangkan konflik tersebut. Walaupun Pihak Berkuasa telah berjaya mengurangkan konflik trafik di persimpangan jalan tetapi realitinya maksimum aliran trafik di zon pembahagi jalan adalah diragui. Tujuan kajian ini dilakukan adalah untuk menentukan pengaruh daripada kemudahan pusingan 'U' terhadap pengurangan aliran trafik dan kesannya terhadap gelombang kinematik trafik. Objektif bagi kajian ini adalah untuk menentukan jumlah isipadu lalulintas, kelajuan dan jenis kenderaan yang melalui zon aliran bebas dan zon kemudahan pusingan 'U' bagi kedua-dua arah dan seterusnya mencari kesan pengurangan aliran trafik terhadap gelombang kinematik trafik. Dianggap bahawa ketumpatan trafik adalah terhasil daripada kelajuan dan aliran trafik dan bukan daripada kesan zon kemudahan pusingan 'U'. Telah didapati bahawa pengurangan aliran trafik adalah berpunca daripada perubahan kelajuan kenderaan. Sekiranya terdapat pengurangan aliran trafik, kajian terhadap gelombang kinematik trafik akan dijalankan untuk menentukan samada ia adalah 'rarefaction' atau kejutan gelombang trafik. Data jenis kenderaan, jumlah lalulintas dan kelajuan kenderaan telah didapati menggunakan alat 'automatic traffic counters' di setiap arah trafik di empat lokasi selama enam bulan. Data kaji ini kemudian dikumpulkan, disusun dan dianalisis. Nilai bagi Setaraan Kenderaan Penumpang diubahsuai dan digunakan untuk menukar isipadu trafik kepada aliran trafik. Daripada keputusan yang diperoleh, didapati bahawa kemudahan pembahagi jalan pusingan 'U' ini boleh menyebabkan terjadinya pengurangan aliran trafik sebanyak 4% di bahagian pencambahan trafik manakala 10% pengurangan trafik di bahagian cantuman trafik. Penemuan ini memberi kapisiti lalulintas kepada beberapa scenario berlainan dan ia membuka ruang dengan luasnya kepada kajian terhadap pengurusan dinamik trafik. Penemuan daripada gelombang kinematik trafik mengesahkan bahawa kemudahan pusingan 'U' ini menjadi punca kepada gelombang kejutan trafik di bahagian cantuman trafik dan bukan di bahagian pencambahan trafik. Pengiraan dalam pengurangan aliran trafik hasil daripada kajian ini boleh digunakan untuk mengkaji keperluan merekabentuk semula kemudahan pusing 'U' di Malaysia. Salah satu jalan penyelesaian yang boleh digunapakai untuk mengurangkan risiko kemalangan adalah menyediakan panjang yang mencukupi di laluan/jalan susurmasuk pada bahagian cantuman trafik. Kesimpulannya melalui kajian ini mendapati bahawa kemudahan pusingan 'U' boleh mengakibatkan pengurangan aliran trafik.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xviii
	LIST OF ABREVIATIONS	xxi
	LIST OF SYMBOLS	xxii
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Background to the Research Problem	2
	1.3 Research Objectives	3
	1.4 Method of the Study	4
	1.5 Research Scope and Limitations	4
	1.6 Significance of the Study	5
	1.7 Organisation of Thesis	6

2	THEORETICAL BACKGROUND	7
	2.1 Overview	7
	2.2 Midblock U-turning Facilities	8
	2.2.1 Previous Studies of Traffic at Midblock U-turn	
	Facilities	12
	2.3 Maximum Traffic Flowrate Concepts	14
	2.3.1 Speed v Density	15
	2.3.2 Flow v Density	16
	2.3.3 Speed v Flow	18
	2.3.4 Traffic Volume and Flow	18
	2.4 Capacity Estimation Methods	19
	2.4.1 Estimation with Headways	24
	2.4.2 Estimation with Traffic Flows	26
	2.4.2.1 Bimodal Distribution Method	27
	2.4.2.2 Selected Maximal Method	28
	2.4.2.3 Expected Extreme Value Methods	29
	2.4.2.4 Asymptotic Method	30
	2.4.3 Estimation with Traffic Speed/Flow	30
	2.4.3.1 Product Limit Method	31
	2.4.4 Estimation with Flow, Speed and Density	34
	2.4.4.1 Fundamental Approach Using the	35
	Quadratic Function	
	2.4.4.2 Malaysia Highway Capacity Manual	
	2011 (MHCM2011) Approach	38
	2.4.4.2.1 Peak Hour Factor	38
	2.4.4.2.2 Traffic Composition Factor	39
	2.5 Impact of Midblock U-turn Facilities on Passenger	
	Car Equivalency (PCE)	41
	2.6 Hypothetical Midblock Zone and Traffic Stream	
	Relationships	44
	2.7 Traffic Kinematic Wave Propagations from	
	Midblock Facilities	47

2.7.1 Traffic Shockwave	49
2.8 Summary	53
RESEARCH METHODOLOGY	54
3.1 Overview	54
3.2 Research Methodology	55
3.3 Criteria of Site Selection	58
3.4 Exploration of Selected Sites	63
3.4.1 Site 1: Senai Johor Bahru Highway FT001,	63
Johor	
3.4.2 Site 2: Skudai Johor Bahru Highway FT005,	
Johor	64
3.4.3 Site 3: Kota Tinggi Johor Bahru Highway	
FT001, Johor	65
3.4.4 Site 4: Pasir Gudang Johor Bahru Highway	
FT019, Johor	66
3.5 Survey Methods Used in the Study	67
3.5.1 Sample Survey	69
3.5.2 Survey Site Coding	70
3.5.3 Survey Team and Equipment	71
3.5.3.1 Survey Team Member	71
3.5.3.2 Installation of the Tube	72
3.5.3.3 Status of the Automatic Traffic	
Counter	74
3.5.3.4 Automatic Traffic Counter Set Up	74
3.5.3.5 Downloading Data from the Detector	75
3.5.3.6 Problem Encountered in Setup and	
Data Collections	77
3.5.4 Setting up Impact Site Studies	80
3.5.5 Traffic Volume Surveys	81
3.5.6 Vehicles Speeds Survey	82
3.5.7 Headway and Vehicle gap Surveys	83

3

	3.6 Appraisal of Sample Data and Analytical Methods	83
	3.6.1 Reliability of Analytical Methods	87
	3.6.2 Appraisal of Sample Data	87
	3.6.3 Reliability of Maximum Flowrate Estimation Method3.7 Summary	89 97
4	EMPIRICAL RESULTS OF SAMPLES SURVEYS	98
	4.1 Overview	98
	4.2 Empirical Results from Surveyed Sites	99
	4.2.1 Site 1D-Senai Johor Bahru Highway FT001,	
	Johor	101
	4.2.2 Site 1M-Senai Johor Bahru Highway FT001,	
	Johor	104
	4.2.3 Site 2D-Skudai Johor Bahru Highway FT005,	
	Johor	106
	4.2.4 Site 2M-Skudai Johor Bahru Highway FT005,	
	Johor	109
	4.2.5 Site 3D-Kota Tinggi Johor Bahru Highway	
	FT001, Johor	112
	4.2.6 Site 3M-Kota Tinggi Johor Bahru Highway	
	FT001, Johor	115
	4.2.7 Site 4D-Pasir Gudang Johor Bahru Highway	
	FT005, Johor	118
	4.2.8 Site 4M- Pasir Gudang Johor Bahru Highway	
	FT005, Johor	121
	4.3 Summary	124
5	TRAFFIC FLOWRATE ANALYSIS USING	
	MHCM2011 PCE VALUES	125
	5.1 Overview	125
	5.2 Establishing the Maximum Flowrate Contraction	
	using MHCM2011 PCE Values	128

	5.2.1 Site 1D: Diverging Section of Midblock	
	Facilities	134
	5.3 Site 2D: Diverging Section of Midblock Facilities	134
	5.4 Site 3D: Diverging Section of Midblock Facilities	138
	5.5 Site 4D: Diverging Section of Midblock Facilities	142
	5.6 Model Coefficients for Diverging Section of	
	Midblock Facilities	146
	5.7 Site 1M: Merging Section of Midblock Facilities	147
	5.8 Site 2M: Merging Section of Midblock Facilities	151
	5.9 Site 3M: Merging Section of Midblock Facilities	155
	5.10 Site 4M: Merging Section of Midblock Facilities	159
	5.11 Model Coefficients for Merging Section of	
	Midblock Facilities	163
	5.12 Summary of Traffic Flow Contraction	164
	5.13 Summary	167
6	ESTIMATION OF MODIFIED PCE VALUES	169
	6.1 Overview	169
	6.2 Assessment of PCE Values for Midblock and Free-	
	Flow Zones	170
	6.3 Statistical Test of PCE Values	178
	6.4 Summary	180
7	TRAFFIC FLOW ANALYSIS USING MODIFIED	
	PCE VALUES	182
	7.1 Overview	182
	7.2 Traffic Flowrate Estimation for Diverging Section	
	Using Modified PCEs'	183
	7.2.1 Traffic Flow Estimation for Site 1D	183
	7.2.2 Site 2D: Diverging Section	188
	7.2.3 Site 3D: Diverging Section	191
	7.2.4 Site 4D: Diverging Section	194

7.2.5 Summary of Model Coefficients for Diverging	
Section	197
7.3 Traffic Flow Estimation for Merging Section	198
7.3.1 Site 1M: Merging Section	198
7.3.2 Site 2M: Merging Section	201
7.3.3 Site 3M: Merging Section	204
7.2.4 Site 4M: Merging Section	207
7.3.5 Summary of Model Coefficients for Diverging	
Section	210
7.4 Traffic Flow Contraction using Modified and	
MHCM PCEs' Compared	211
7.5 Impact of Midblock on Traffic Kinematic Wave	
Propagation	212
7.5.1 Traffic Kinematic Wave for Diverging Section	213
7.5.2 Traffic Kinematic Wave for Merging Section	218
7.6 Summary and Recommendations Based on Findings	223
CONCLUSIONS	225
8.0 General	225
8.1 Summary of Traffic Flow Reduction Analyses	
Major Findings	227
8.2 Summary of Traffic Flowrate Contraction Analyses	
Major Findings	228
8.3 Synthesis of Evidences Obtained From PCEs	
Modifications	228
Wiodiffeduloiis	
8.4 Synthesis of Evidences from Traffic Kinematic	
	229
8.4 Synthesis of Evidences from Traffic Kinematic	229 230

REFERENCES

8

233

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Overview of Capacity-Estimation Methods	22
2.2	Classification of Roadway Capacity-Estimation Methods	23
2.3	Product Limit Method Calculation	33
2.4	Recommended Peak Hour Factor Based on Flowrate for	
	Multilane Highways	39
2.5	Passenger Car Equivalents for Multilane Highways	40
3.1	Summary of Feature for Survey Site	61
3.2	Survey Summary Sheets for All Sites	62
3.3	Example of Typical Survey Summary Sheets	68
3.4	Survey Site Coding Summary Sheets	70
3.5	Vehicle Logging Information	75
3.6	Sample of Individual Vehicles for Site 5D	88
3.7	Traffic Count During Peak Hour	89
3.8	Traffic Stream Data for Pilot Test Site 5D	88
3.9	Flow, Speed and Density Data During Peak Hour	95
3.10	Summary of Critical Density and Maximum Flowrate	96
4.1	Data Collection Schedule for Diverging Movement Sites	99
4.2	Data Collection Schedule for Merging Movement Sites	100
4.3	Site 1D Volume and Speed Data during Off-Peak	102
4.4	Traffic Composition at Study Site 1D	103
4.5	Site 1M Volume and Speed Data during Off-Peak	105
4.6	Traffic Composition at Study Site 1M	106

4.7	Site 2D Volume and Speed Data during Off-Peak	108
4.8	Traffic Composition at Study Site 2D	108
4.9	Site 2M Volume and Speed Data during Off-Peak	111
4.10	Traffic Composition at Study Site 2M	111
4.11	Site 3D Volume and Speed Data during Off-Peak	114
4.12	Traffic Composition at Study Site 3D	114
4.13	Site 3M Volume and Speed Data during Off-Peak	117
4.14	Traffic Composition at Study Site 3M	117
4.15	Site 4D Volume and Speed Data during Off-Peak	120
4.16	Traffic Composition at Study Site 4D	120
4.17	Site 4M Volume and Speed Data during Off-Peak	123
4.18	Traffic Composition at Study Site 4M	123
5.1a	Computed Flows and Densities (Off Peak FZ) for Site 1D	129
5.1b	Computed Flows and Densities (Off Peak MZ) for Site 1D	130
5.2	Site 1D Summary of Observed and Predicted Traffic	
	Parameter	134
5.3a	Computed Flows and Densities (Off Peak FZ) for Site 2D	135
5.3b	Computed Flows and Densities (Off Peak MZ) for Site 2D	136
5.4	Site 2D Summary of Observed and Predicted Traffic	
	Parameter	137
5.5a	Computed Flows and Densities (Off Peak FZ) for Site 3D	139
5.5b	Computed Flows and Densities (Off Peak MZ) for Site 3D	140
5.6	Site 3D Summary of Observed and Predicted Traffic	
	Parameter	141
5.7a	Computed Flows and Densities (Off Peak FZ) for Site 4D	143
5.7b	Computed Flows and Densities (Off Peak MZ) for Site 4D	144
5.8	Site 4D Summary of Observed and Predicted Traffic	
	Parameter	145
5.9	Summary of Model Coefficients for Off-Peak Traffic	146
5.10a	Computed Flows and Densities (Off Peak FZ) for Site 1M	148
5.10b	Computed Flows and Densities (Off Peak MZ) for Site 1M	149

5.11	Site 1M Summary of Observed and Predicted Traffic	
	Parameter	150
5.12a	Computed Flows and Densities (Off Peak FZ) for Site 2M	152
5.12b	Computed Flows and Densities (Off Peak MZ) for Site 2M	153
5.13	Site 2M Summary of Observed and Predicted Traffic	
	Parameter	154
5.14a	Computed Flows and Densities (Off Peak FZ) for Site 3M	156
5.14b	Computed Flows and Densities (Off Peak MZ) for Site 3M	157
5.15	Site 3M Summary of Observed and Predicted Traffic	
	Parameter	158
5.16a	Computed Flows and Densities (Off Peak FZ) for Site 4M	160
5.16b	Computed Flows and Densities (Off Peak MZ) for Site 4M	161
5.17	Site 4M Summary of Observed and Predicted Traffic	
	Parameter	162
5.18	Summary of Model Coefficients for Off-Peak Traffic	163
5.19	Off-Peak Results Summary for all Sites at Diverging Road	
	Section	164
5.20	Off-Peak Results Summary for all Sites at Merging Road	
	Section	165
6.1	Summary of Modified PCE Values	172
6.2	Computed PCEs for FZ at Diverging Section	174
6.3	Computed PCEs for MZ at Merging Section	175
6.4	Computed PCEs for FZ at Diverging Section	176
6.5	Computed PCEs for MZ at Merging Section	177
6.6	PCE Values for Study and MHCM2011	178
6.7	Chi-Square Test MHCM and Modified PCE Values	179
7.1a	Computed Flows and Densities (Off-Peak FZ) for Site 1D	184
7.1b	Computed Flows and Densities (Off-Peak MZ) for Site 1D	185
7.1c	Site 1D Summary of Flow, Speed and Density	187
7.2a	Site 2D Summary of Traffic Parameters	188
7.2b	Computed Flows and Densities (Off-Peak FZ) for Site 2D	189
7.2c	Computed Flows and Densities (Off-Peak MZ) for Site 2D	190
7.3a	Site 3D Summary of Traffic Parameters	191

7.3b	Computed Flows and Densities (Off-Peak FZ) for Site 3D	192
7.3c	Computed Flows and Densities (Off-Peak MZ) for Site 3D	193
7.4a	Site 4D Summary of Traffic Parameters	194
7.4b	Computed Flows and Densities (Off-Peak FZ) for Site 4D	195
7.4c	Computed Flows and Densities (Off-Peak MZ) for Site 4D	196
7.5	Model Coefficients for Diverging Section	197
7.6a	Site 1M Summary of Traffic Parameters	198
7.6b	Computed Flows and Densities (Off-Peak FZ) for Site 1M	199
7.6c	Computed Flows and Densities (Off-Peak MZ) for Site1M	200
7.7a	Site 2M Summary of Traffic Parameters	201
7.7b	Computed Flows and Densities (Off-Peak FZ) for Site 2M	202
7.7c	Computed Flows and Densities (Off-Peak MZ) for Site2M	203
7.8a	Site 3M Summary of Traffic Parameters	204
7.8b	Computed Flows and Densities (Off-Peak FZ) for Site 3M	205
7.8c	Computed Flows and Densities (Off-Peak MZ) for Site3M	206
7.9a	Site 4M Summary of Traffic Parameters	207
7.9b	Computed Flows and Densities (Off-Peak FZ) for Site 4M	208
7.9c	Computed Flows and Densities (Off-Peak MZ) for Site4M	209
7.10	Model Coefficients for Merging Section	210
7.11a	Estimated Traffic Flow Contraction using Different PCE	
	Values	211
7.11b	Estimated Traffic Flow Contraction using Different PCE	
	Values	212
7.12	Summary of Model Coefficients for Diverging Flowrate	
	before MZ	213
7.13	Compute Flow and Density for All Sites	214
7.14	Summary of Model Coefficients for Diverging Flowrate at	
	MZ	214
7.15	Compute Flow and Density for All Sites	214
7.16	Comparative Flow/Density at Diverging Sections	215
7.17	Summary of Model Coefficients for Merging Flowrate	
	before MZ	218
7.18	Compute Flow and Density for All Sites	218

7.19	Summary of Model Coefficients for Merging Flowrate at		
	MZ	218	
7.20	Flowrate and Density for Merging Road Segment	219	
7.21	Comparative Flow/Density at Merging Sections	219	

LIST OF FIGURES

FI	GU	RE	NC).
	υı		1 I L	

TITLE

PAGE

1.1	Typical Direct Midblock U-turn Facility in Malaysia	3
2.1	Example of a Divided Multilane Highway in Malaysia	9
2.2	Direct U-turn in Malaysia	11
2.3	Indirect U-turn in Malaysia	11
2.4	Maximum Traffic Flowrate Continuity	14
2.5	Speed v Density	16
2.6	Flow v Density	17
2.7	Speed v Flow	18
2.8	Flow / Density Relationship	36
2.9	Typical Layout of Midblock Opening	45
2.10	Hypothetical Traffic Flow Rate Contraction at Midblock	
	Zone	46
2.11	Flow-Density Curve With kinematic Wave ABC	50
3.1	Flow Chart Logic of the Analytical Procedure	57
3.2	Selected Federal Route FT001, FT003, FT005 and	
	FT017	59
3.2	Location of Sites	60
3.3	Schematic Diagram Site 1	63
3.4	Schematic Diagram Site 2	64
3.5	Schematic Diagram Site 3	65
3.6	Schematic Diagram Site 4	66
3.8	Installation Process	72
3.9	Portable Automatic Traffic Counter Place on Site	72
3.10	Portable Automatic Traffic Counter	73

3.11	Downloading Process	76
3.12	Downloading Profiles	77
3.13	Flat Engine Belt	78
3.14	Drilling Holes Process	78
3.15	Screw installation	79
3.16	Layout of Typical Survey Site	80
3.17	Speed Survey Using Automatic Traffic Counter	82
3.18	Headway and Vehicle Gap	83
3.19a	Sample Worksheet for Data Processing in the	
	Excel Platform	85
3.19b	Sample Worksheet for Data Processing in the Excel	
	Platform	86
3.20	Flow-Density Relationship with Constant During Peak	
	Hour	92
3.21	Free Flow Zone Flow/Density Model for Test Site 5	94
3.22	Midblock Zone Flow/Density Model for Test Site 5	94
3.23	Site 5 Flow-Density Model Plot for FZ and MZ	96
4.1	Site 1D Traffic Flow Profile	101
4.2	Site 1D Volume-Density Plot	101
4.3	Site 1M Traffic Flow Profile	104
4.4	Site 1M Volume-Density Plot	104
4.5	Site 2D Traffic Flow Profile	106
4.6	Site 2D Volume-Density Plot	107
4.7	Site 2M Traffic Flow Profile	109
4.8	Site 2M Volume-Density Plot	109
4.9	Site 3D Traffic Flow Profile	112
4.10	Site 3D Volume-Density Plot	112
4.11	Site 3M Traffic Flow Profile	115
4.12	Site 3M Volume-Density Plot	115
4.13	Site 4D Traffic Flow Profile	118
4.14	Site 4D Volume-Density Plot	118
4.15	Site 4M Traffic Flow Profile	121

4.16	Site 4M Volume-Density Plot		121
5.1	Schematic Evaluation Procedure		127
5.2	Flow/Density Curves for Site 1D		132
5.3	Flow/Density Curves for Site 2D		137
5.4	Flow/Density Curves for Site 3D		141
5.5	Flow/Density Curves for Site 4D		145
5.6	Flow/Density Curves for Site 1M		150
5.7	Flow/Density Curves for Site 2M		154
5.8	Flow/Density Curves for Site 3M		158
5.9	Flow/Density Curves for Site 4M		162
7.1	Diverging Movement Kinematic Waves	Graphical	
	Illustrations for Site 1D		216
7.2	Diverging Movement Kinematic Waves	Graphical	
	Illustrations for Site 2D		216
7.3	Diverging Movement Kinematic Waves	Graphical	
	Illustrations for Site 3D		217
7.4	Diverging Movement Kinematic Waves	Graphical	
	Illustrations for Site 4D		217
7.5	Merging Movement Kinematic Waves	Graphical	
	Illustrations for Site 1M		221
7.6	Merging Movement Kinematic Waves	Graphical	
	Illustrations for Site 2M		221
7.7	Merging Movement Kinematic Waves	Graphical	
	Illustrations for Site 3M		222
7.8	Merging Movement Kinematic Waves	Graphical	
	Illustrations for Site 4M		222

LIST OF ABBREVIATIONS

ADT	-	Annual Daily Traffic
ATC	-	Automatic traffic count
FD	-	Fundamental Diagram
FHWA	-	Federal Highway Administration
GQM	-	Generalised queuing model
HCM	-	Highway capacity manual
JKR	-	Jabatan Kerja Raya
LOS	-	Level of service
MHA	-	Malaysian Highway Authority
MHCM	-	Malaysian Highway Capacity Manual
PCE	-	Passenger car equivalency values
PSD	-	Passing sight distance
PWD	-	Public Work Department
SPM	-	Semi-poisson model
SSD	-	Stopping sight distance
TRB	-	Transportation Research Board

LIST OF SYMBOLS

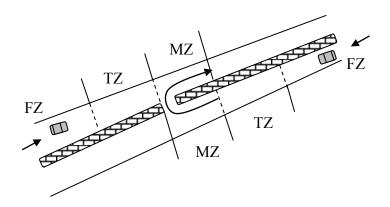
а	- acceleration
D	- sight distance
D_b	- braking distance
D_p	- passing sight distance
D_r	- reaction distance
D_s	- stopping sight distance
g	- gap
h	- headway
h_m	- mean time headway
h_{ij}	- Headway of vehicles class i under condition j
h_p	- time of headway vehicle p to preceding vehicle
k	- density
k_c	- critical density
k_j	- jam density
L	average length of vehicles in the traffic stream
q	- flow
Q,q_c	- capacity
q_m	- maximum traffic flowrate
S	- distance
S_w	- Shockwave
t	- time
t_{f}	- travel time at free-flow speed
и	- speed
и, v	- initial velocity and final velocity, respectively
u_f	- free-flow speed
u_o	- optimum speed
u_o - v	- Mean speed

CHAPTER 1

INTRODUCTION

1.1 Overview

Flow, speed and density are known three parameters that govern traffic stream operations. For the purpose of quantifying traffic flow, often flow/density relationship is used where flow is the dependent variable and density the independent. Traffic flow contracts when capacity is oversubscribed. Direct midblock opening on multi-lane highways is one of the factors that may trigger traffic flow contraction and kinematic waves to an extent that has yet to be quantified.


In Malaysia, peak hour traffic conflicts and congestions that at daily occurrences at the highway intersections have continue to worsen. One commendable attempt by authorities to solve the problems of intersection conflicts and congestion is the installation of direct midblock facilities that will allow motorists to make U-turning movements before reaching the intersection.

This thesis presents studies that investigated the influence of direct midblock U-turn facilities at multilane highway on traffic flow reduction and their kinematic wave implication. Relying on the flow, density and speed fundamental relationships, traffic flow scenarios with and without midblock U-turn facilities under daylight and dry weather conditions were modeled and compared. Where there are evidences to show that traffic flow contraction has occurred, associated kinematic waves propagations were investigated. This chapter has been divided into six sections; in the immediate Section 1.2, background to the research problem is presented. It will be followed by the research objectives in Section 1.3. The method of study is discussed in Section 1.4. The scope and limitations of the study are described in Section 1.5. The significance and contributions of the study presented in Section 1.6. Organization of the thesis is presented in Section 1.7.

1.2 Background to the research problem

Roads have a major impact on our daily lives. Roads serve as the primary mean of access to employment, services and social activities. Moreover, by linking people and other modes of transport, roadways are a tremendous asset for achieving greater travel passage within and beyond Malaysia. Generally roads are built to provide better accessibility and enhance mobility in Malaysia. Malaysia consists of thirteen states and three federal territories and has a total landmass of 329,847m² separated by the South China Sea into two similarly sized regions, Peninsular Malaysia and Malaysian Borneo. The capital city is Kuala Lumpur. In 2010, the population exceeded 27.5 million, with over 20 million living on the Peninsular. Malaysia has a good road network. Roads are paved or unpaved, private or public. Public roads are often referred to as highways and a road network is an amalgamation of highways. A highway irrespective of functional classification is made up of segments and intersections/interchanges.

Midblock facilities are median openings on multi-lane highways as illustrated in Figure 1.1. They are built as u-turning facilities aimed at easing traffic conflicts and pressures at highway intersections. While some are built as complimentary facilities to existing road geometric designs, others are built as a complete replacement to existing facilities on the premises that they will reduce conflicts and ease traffic congestions at adjoining intersections. In Malaysia, where the left hand driving rule is in place, drivers decelerate when diverging; accelerate when converging at the midblock facilities. These dangerous manoeuvres beg the questions; 'What are the traffic flow consequences when the lead vehicle decelerates or accelerates abruptly? It can be argued that when the lead vehicle decelerates abruptly in a traffic stream, kinematic waves can be triggered. Therefore, it is not surprising that the issue of midblock u-turning facilities has provoked fierce national debates. Proponents of midblock facilities argue that their installation has brought succour to motorists plagued with conflicts and congestions at adjoining intersections. Whereas, opponents argued that the road safety problems associated with midblock facilities far outweigh the benefits of direct midblock facilities. However, both contending camps failed to support their arguments with empirical evidences.

Note: FZ denotes free-flow zone; TZ denotes transition zone and MZ denotes midblock zone Figure 1.1: Typical Direct Midblock U-turn Facility in Malaysia

1.3 Research Objectives

The objectives of the study are to investigate the followings:

- i. Traffic flow reduction at midblock and free-flow sections under dry weather and daylight conditions
- ii. The effects of midblock facility on speed, flow and density relationships
- iii. The kind of relationship that exists between midblock facility and traffic flow reduction; and
- iv. The extent and type of traffic kinematic wave propagations resulting from midblock facility

1.4 Method of the study

The method of study is both empirical and analytical. It is empirical because sample surveys were taken at selected sites and analytical because flow, density and speed relationships were used to develop models. Models were developed for two scenarios (midblock facility and free-flow zones) under daylight and dry weather conditions. Empirical data collected at selected sites reflected the study objectives as stated in Section 1.3. Multi-lane highway with direct midblock facilities was divided into three sections to reflect free-flow, transition and midblock restrained. Automatic traffic counters were installed at the sections in order to collect traffic volume, speed, headway, vehicle type continuously per time period. Collected data were collated and fed into the developed models for evaluation of relevant traffic parameters. Once the traffic contraction objective was achieved, associated kinematic wave propagations as well as the acceptability of Malaysian Highway Capacity Manual (MHCM 2011) passenger car equivalent values were investigated. Passenger car equivalent values were adjusted where necessary and reapplied into the models.

1.5 Research Scope and limitations

The scope of this research is restricted to multi-lane highways because midblock facilities with direct U-turning movements can only be found on such roads. Multi-lane highways are classified as federal routes in Malaysia. There carriageways are physically separated by central medians. All traffic volume and speed survey data were collected with automatic traffic counters continuously for eight weeks, only dry weather and daylight data were used for analysis. This is needed in order to minimise multiple traffic flow contraction constraints aside from midblock facilities. All selected sites have the same geometric design, good road surface and layout so as to minimise errors associated with traffic volume and speed data collection. Each directional flow is treated exclusively. Different empirical road capacity estimation methods were considered and tested for suitability before using the fundamental diagrams. Malaysian Highway Capacity Manual passenger car equivalent values were modified and used to convert traffic volume to flow. With regard to the research limitations; monsoon periods being November-January and April to June were avoided in order to minimise the effect of wet and rainy conditions on survey data. Only motorised vehicles were considered. The total number of survey sites was constrained by fund, equipment and manpower; nonetheless, eight sites were surveyed. Automatic traffic counters were often chained to the nearest pole to minimise theft and vandalism. Survey sites were visited daily during data collection period partly to check the state of the equipment and also to download captured data from the equipment to a laptop.

1.6 Significance of the study

The influence of midblock facilities on traffic flow reduction and its effect on kinematic wave propagation, have neither been fully explored, nor well understood. Often passenger car equivalent values were broadly applied to all conditions and kinematic wave treated as shockwave propagation in previous studies. In this study, dynamic passenger car equivalent values were used and traffic shockwave taken as function of traffic congestion. Modified passenger car equivalent values can point to overestimation or underestimation of capacity values on specific sites and under prevailing conditions. Traffic shockwave irrespective of what triggered it, is a safety indicator on the roadway. The study would throw more light on the issues of traffic shockwave at midblock facilities and by extension assist policy and decision making process in Malaysia. The flow-speed relationships available in Malaysia Highway Capacity Manual have serious limitations. This is so because speed is not a function of flow. In particular they cannot be used to predict future traffic states. Whereas the fundamental diagram approach used in the study gives a robust predictive tool for computing traffic variables at the capacity state. The results of the capacity predictions are consistent with attainable values on roadway sections and in line with standard specifications. The findings in this thesis give highway capacity values under different scenarios and can be incorporated into a wider strategy for dynamic traffic management. Predicted capacity states can also be used for traffic management scenario building.

1.7 Organisation of Thesis

The thesis is made up of eight chapters. This section provides brief information about each chapter. Chapter 2 presents a theoretical background on traffic flow contraction and disturbances. It provides the theoretic arguments on which the research hinges. Empirical road capacity definitions, estimation methods, generalised and specific capacity disturbances and their relationships with capacity, passenger car equivalent values are discussed. Traffic kinematic, rarefaction and shockwaves are all covered in this chapter.

Chapter 3 presents literature two-lane perdirection highways and midblock facilities in Malaysia.

Chapter 4 is on midblock facilities impact study setup and data collection. It gives the criteria for site selection, assessment of the selected sites, the survey method employed, analytical framework, data, hypothesis and equipment testing.

Chapter 5 presents the empirical results from surveyed sites that include traffic volume and speed profiles, graph dispersion plots, empirical evidence of flow contraction, and macroscopic data and site summary.

Chapter 6 is on the main traffic flow contraction analysis using standard Malaysia Highway Capacity Manual passenger car equivalent values.

Chapter 7 is based on traffic flow contraction using modified passenger car equivalent values. The implications of traffic flow contraction on kinematic wave propagations are also discussed.

Chapter 8 is the concluding chapter and it gives some research directions for the future works.

REFERENCES

A Guide on Geometric Design of Roads, REAM-GL 2/2002, Road Engineering Association of Malaysia.

Aggarwal,P.(2008). Fuzzy Model for Estimation of Passenger Car Unit. WSEAS Transcations on Information Science and Applications., Vol.5(No.4),449-458.

Ahmed, A., Younghan, J. and Hesham, R. (2005). Developing Passenger Car Equivalent Factors for Heavy Vehicles During Congestion. Journal Transportation Engineering, 131(7), 514-523.

Ahmed, F. A., Fred, L. H. and Emily, S. R. (2002). Developing Passenger Car Equivalent Factors for Heavy Vehicles on freeway During Queue Discharge Flow. Transportation Research Part A: Policy and Practise, 36,725-742.

Akcelik. R.,(1991) "Travel Time Functions for Transportation Planning Purposes: Davidson's Function, Its Time Dependent Form and an Alternative Travel Time Function", Australian Road Research, September 1991 Vol. 21, No.3

Alhassan, H.M. and Ben-Edigbe, J. (2011) Effect of Rainfall Intensity Variability on Highway Capacity, *European Journal of Scientific Research*, 2011 b. 49(1): p. 117-126; 123-129.

Al-Masaeid, H.R. 1999 Capacity of U-turn at median opening, Institution of Transportation Engineering Journal, 69(6), 28-34

Arahan Teknik Jalan 1986 A guide on Geometric Design of Roads, No.8/86 Public Works Departments Ministry of Works, Malaysia

Ben-Edigbe, J.; Ferguson, N. 2005. The Extent of Roadway Capacity Shift Resulting from Pavement Distress. In *Proceedings of the Institution of Civil Engineering, Transport*, 158(4): 27-32.

Ben-Edigbe, J. and Ferguson, N. (2009) Qualitative Road Service Reduction Resulting from Pavement Distress, WIT International Conference on Urban Transport, 23-25 July 2009. Bologna Italy.

Ben-Edigbe, J. (2010) Assessment of Speed, Flow and Density Functions underAdverse Pavement Conditions, International Journal of Sustainable and planning 5(3), 238-252.

Branston, D. (1976). Models of Single Lane Time Headway Distributions. Transportation Science, 10(2).

Buckley, D. (1968). A Semi-Poisson Model of Traffic Flow. Transportation Science, 2, 107-133.

Ceulemans, W., Magd, A. W., Kurt De, P., and Geert, W. (2009). Modelling Traffic Flow with Constant Speed using the Galerkin Finite Element Method, Proceedings of the World Congress on Engineering London, U.K., Vol II.

Cunagin, W.D. and Messer, C.J. (1983). Passenger Car Equivalents for Rural Highways Transportation Research Record, 905,61.

Davidson, K.B.A,(1966) "Flow-Travel Time Relationship for Use in Transportation Planning",Proc., 3rd 449 ARRB Conference, 1966 Vol. 3 No 1

Dowling, R., et al (1998) "The Accuracy and Performance of Improved Speed-flow Curves" Road and Transport Research 1998 Vol.7 (2), pp 36-51

Elefteriadou,L., Torbic, D. and Webster, N. (1997). Development of Passenger Car Equivalents for Freeways, Two-lane Highways and Arterials. Transportation Research Record: Journal of Transportation Research Board, 1572,51.

FDOT Traffic Engineering and Operations Office Tallahassee, Florida March 2010. Topic No 750-010-002, Speed Zoning For Highways, Roads and Streets in Florida. Greenshields, B. D. (1935) A Study of Traffic Capacity; Highway Research Board Proceedings, Vol. 14: 448-477.

Huber, M. J. (1982). Estimation of Passenger Car Equivalents of Trucks in Traffic Stream. Transportation Research Record: Journal of Transportation Research Board, 869,60.

Hyde, T. and Wright, C.C. (1986). Extreme Value Methods for Estimating Road Traffic Capacity. Transportation Research Part B, 208(2), 125-138.

IDRA Road layout Design (2011) "Blueprint for Iskandar Malaysia" Iskandar Development Regional Authority (IDRA), Johor Bahru, Malaysia ISBN 978-967-5626-23-4 pp 15

James A. Bonneson, Patrick T. McCoy (2004) "Capacity and Operational Effects of Midblock Left-Turn Lanes" Federal Highway Administration, National Research Council (U.S.) Transportation Research Board 2004 Issue 395. Keller, E.L. and Saklas, J.G. (1984). Passenger Car Equivalents from Network Simulation. Journal of Transportation Engineering. Vol. 110, No.4. July. 397-411.

Kimber, R.M, Erica, M and Hollis (1979) Traffic queues and delays at road junctions, Transport and Road research Laboratory report 909, Crowthorne, England.

Lighthill M.J and Whitham G, B (1955) "On kinematic waves, I: Flood movement in long rivers. II: A theory of traffic flow on long crowded roads", Proceedings Royal Society,(London), A229, 281-345.

Malaysia Highway Capacity Manual (MHCM). 2011. Public Works Planning Department, Ministry of Works, Malaysia.

Mallikarjuna, C. and Ramachandra, R.K. (2006). Modelling of Passenger Car Equivalency under heterogeneous Traffic Conditions. Proceedings 22nd ARRB Conference-Research Into Practice., 1-13.

Miller, A.J. (1968). The Capacity of Signalised Intersections in Australia. Australian Road Research Board Bulletin No.3.

Minderhoud, M.M.; Botma, H.; Bovy, P.H.L. 1997. Assessment of Roadway Capacity Estimation Methods, *Transportation Research Record: Journal of the Transportation Research Board*. DOI: <u>http://dx.doi</u>. org/10.3141/1572-08, 1572: 59-67.

Pan Liu et al. (2008), "Capacity of U-turn Movement at Median Openings on Multilane Highways" Journal of Transportation Engineering ASCE, pp 147-154.

Papendrect, H. Bothma, H. and Westland, D. (1980). Validation of Capacity Estimators based on the Decomposition of the Distribution of Headways. Transportation Research Laboratory, Delft University of Technology, Delft. Planning Models"Transportation Research Record 1360.TRB National Research Council, Washington D.C 1994

Rahman, M., and Nakamura, F. (2005). Measuring Passenger Car Equivalents (PCE) for Non Motorized Vehicles (Rickshaws) at Midblock Sections., Journal of the Eastern Asia Society for Transportation Studies., Vol. 6., 119-126.

Rahman, M., Okura, I. and Nakamura, F. (2003). Measuring Passenger Car Equivalents (PCE) for Large Vehicles at Signalized Intersections., Journal of the Eastern Asia Society for Transportation Studies., Vol. 5, 1223-1233.

Road Layout Design 2011 Blueprint for Iskandar Malaysia, Iskandar Development Regional Authority (IDRA), Johor Bahru, Malaysia ISBN 978-967-5626-23-4 pp 15.

Seguin, E.L. et. Al (1998), Passenger Car Equivalents on Urban Freeways Interim Report, DTFH61-C00100, *Institute for Research (IR)*, State Collage, Pennsylvania USA.

Source from WHO, 2009 Global status report on road safety stated that Malaysia in ranked at No. 46 of 172.

Statistik Jalan (2011) Bahagian Senggara Fsiliti Jalan, Cawangan Kejuruteraan Senggara, Ibu Pejabat JKR Malaysia, Kuala Lumpur.

Sumner, R.Hill. D., and Shapiro,S. (1984). Segment Passenger Car Equivalent Values for Cost Allocation on Urban Arterial Roads. Transportation Research. Vol. 18A, No.5/6. Dec. 399-406. Tanner, J.C (1962), A Theoretical analysis of delays at an uncontrolled intersection, Biometrika, 49 (1962) pp 163-70

Transportation Research Board (1997) "Capacity and Operational Effects of Midblock Left-Turn Lanes" NCHRP Report 395 Transportation Research Board Washington DC USA

Transportation Research Board 2010 Highway Capacity Manual 5th edition cover. The Highway Capacity Manual (HCM), Transportation Research Board, Washington, DC.

TRB,1997, Capacity and operational effects of midblock left-turn lanes. NCHRP Report 395 Transportation Research Board, Washington DC, USA.

U.S. Department of Transportation (2003). Manual on uniform traffic control devices for streets and highway (MUTCD). U.S. Department of Transportation, Washington, DC.

U.S. Highway Capacity Manual (1965). Highway Research Board National Research Council, Department of Traffic and Operations, Special Report 87, Committee on Highway Capacity, Washington, DC.

U.S. Highway Capacity Manual (1994). Special Report 209, Transportation Research Board National Research Council,, Washington, DC.

U.S. Highway Capacity Manual (1998). Special Report 209, Transportation Research Board National Research Council,, Washington, DC.,USA ("*HCM 1997*).

U.S. Highway Capacity Manual (2000)., Transportation Research Board National Research Council,, Washington, DC.

U.S. Highway Capacity Manual (2010., Transportation Research Board National Research Council,, Washington, DC.

Van Aerde, M and Yagar,S. (1984). Single Regime Speed-Flow-Density Relationship for Freeways and Arterials. *Presented at the 74th Annual Meeting, Transportation Research Board, National research Council,* Washington D.C.

Van Arem, B, et al. (1998) "Design of the Procedures for Current Capacity Estimation and Travel Time Congestion Monitoring "DRIVE-11" *Sept.1998 Project V2044 Commission of the European Communities*, (CEC)

Wasielewski, P. (1976). Car Following Headways on Freeways Interpreted by the Semi-Poisson Headway Distribution Model. Tansportation Science, Vol. 13, No.1, 36-55.

Zhou, Hsu, Lu, and Wright (2003) Optimal Location of U-turn Median Openings on Roadways Transportation Research Board 82nd Annual Meeting, January 12-16, 2003.