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ABSTRACT 

As dimensions of conventional planar metal-oxide-semiconductor field effect 

transistor (MOSFET) are reduced, it cause a lot challenging issue such as short-

channel effects (SCEs), scaling of gate oxide thickness and increase power 

consumption. Multigate such as double gate, tri-gate, surrounding gate and FinFET 

has been studied as potential structure to replace MOSFET. Thus this research report 

will describes the simulation and characterization of surrounded gate Silicon 

Nanowires Transistor (Si NWT). The cylindrical Gate-all around (GAA) Si NWT 

has showed robustness against SCE, ideal sub threshold swing, suppresses corner 

effect and suitable for low power devices. From this study simulation had proven that 

GAA Si NWT provides the best short channel device performance. Also highlighted 

in this research studies, to achieve symmetrical current in PMOS and NMOS, 

different number of nanowires channel is selected.  Therefore by choosing large 

number of nanowires channel for PMOS transistor can help compensated the low 

value of hole mobility. In this work, 2:3 ratios of NMOS and PMOS channel of 

inverter had used as benchmark for ALU designed. Using the circuit modeling 

HSPICE, performance for Arithmetic Logic Unit (ALU) circuit in 30nm technology 

is analyzed with Silicon Nanowire (Si NW) compared with conventional planar 

MOSFET. The assessment of this circuit logic performance metric includes 

propagation delay, power-delay-product (PDP) and energy-delay-product (EDP) of 

full adder, XOR, AND and OR gate forming the ALU block. Moreover,  ALU is 

built with less transistor count to implement Boolean expressions which help to 

reduced average power consumption, and delay.   
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ABSTRAK 

Pengecillan saiz dimensi Metal-oxide-semiconductor field effect transistor 

(MOSFET) menyebabkan banyak isu yang mencabar seperti Short Channel effect 

(SCE), scalling of gate oxide thickness dan peningkatan penggunaan kuasa. Antara 

alternatif lain bagi mengantikan struktur MOSFET adalah Multigate transistor seperti 

double gate, tri-gate, surrounding gate dan FinFET. Melalui laporan penyelidikan ini, 

akan menerangkan simulasi dan pencirian Silicon Nanowire Transistor (Si NWT). 

Silinder Gate-all around bagi Si NWT menunjukkan pretasi penambah baik terhadap 

SCE, sub-threshold swing, corner effect dan sesuai untuk peranti kuasa rendah. 

Ditonjolkan juga dalam kajian penyelidikan ini, bagi mencapai semetri arus PMOS 

dan NMOS, bilangan saluran nanowires berbeza dipilih bagi menambahan 

pengaliran arus. Dalam project ini, 2:3 nisbah NMOS dan PMOS dalam inverter gate  

digunakan sebagai rujukaan dalam mengahasilkan ALU litar. Dengan mengunakan 

model simulasi HSPICE, prestasi bagi ALU litar dalam teknologi 30nm telah 

dianalisi dengan mengunakan Si NW model dan dibandingkan pretasi MOSFET 

model sedia ada. Penambah Penuh yang berasaskan Si NW telah menunjukkan 

pengurangan yang besar dari segi kelewatan, kuasa yang dilepaskan dan PDP jika 

dibandingkan dengan MOSFET dan memberikan kelebihan kepada Si NW dari segi 

kecekapan tenaga. Selain itu didalam project ini, pengurangan transistor didalam 

ALU litar telah dihasilkan bagi pengahasilan ungkapan Boolean yang tepat bagi 

membantu mengurangkan penggunaan kuasa purata, dan kelewatan didalam sebuah 

litar ALU. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Integrated Circuit (IC) technology has been observed as one of the most 

important inventions in engineering history. With an incredible progress in IC 

technology since 1971, there were about 2,300 transistors with a size of 10 

micrometres (10,000 nanometres) on a 12 square millimetres chip. Till today, the 3rd 

generation Intel Corei7 has 1.4 billion transistors with the size of 22 nanometres, on 

a 160 square millimetres chip. 

With reduction of transistors sizes, more things could be built on a chip and it 

can increases the processing power of the center processing unit (CPU) by having 

more processor cores with higher clock frequency and more data cache space. As a 

result the processor could run faster on more than one thing at the same time, and 

could store more information. 

Thus with a new trend in IC technology, Moore’s Law today is not showing 

any sign of slowing down, but they are showing signs of changing by looking 

consideration on scaling down the dimension of each transistor in the basic element 

of integrated circuits and the increasing the total numbers of transistors in one chip. 
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Figure 1.1   Scaling of transistor size (physical gate length) with technology node to 

sustain Moore’s Law. Nodes with feature size less than 100 nm can be referred to as 

nanotechnology. [1] 

As  technologies  are  scaled   down  in  deep  sub-half  micron  regime as 

shown in Figure1,  the  conventional  bulk metal-oxide-semiconductor field-effect 

transistor (MOSFET)  faces  several  challenges  like  higher  drain induced barrier 

lowering (DIBL),  poor subthreshold swing collectively known as short channel 

effects (SCEs) [2]. Moreover, the gate oxide thickness is seems impossible to further 

scale down beyond the inter-atomic distance as it will increase the gate leakage 

current.  

To sustain scaling transistor for the next decade, the innovation of the 

transistor must be in the area of a new material (such as as GaAs, High k dielectric 

and strained silicon channel) or a new transistor structure which will improved the 

device performance by giving faster speed, higher mobility and low power 

consumption. One of the most promising new transistor structure solutions from 

ITRS roadmap has been proposed by using Multi-gate MOSFET architecture 

including Double-Gate (DG), Pi-FET, Fin Field-Effect Transistors (FinFETs) and 

rectangular or cylindrical  Gate-all around (GAA) nanowire MOSFETs as shown in 

Figure 1.2 below.  
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Figure 1.2   Next generation of extended Moore Law's [1] 

Among those new silicon structures, GAA Silicon Nanowire Transistor (Si 

NWT) has emerged as promising device for nano-scale circuits because of the 

improved electrostatic control of the channel via the gate voltage and the consequent 

suppression of short-channel effects. Another big advantage from GAA structure is 

that the silicon channel thickness can be equal to the gate length (1x or 2xLG) rather 

than about 2/3xLG in double Fin FET [3]. So continues with shrinking of feature size, 

the channel thickness can be reduced till nanowires like geometry. As a result, the 

silicon nanowires transistor has obtained broad attention from both the 

semiconductor industry [4]. According to director of advanced device technology at 

Intel’s Hillsboro, Ore, Kelin Kuhn, also had agreed that GAA gate structures have 

some key advantage as it expected to provide the best gate control for very short 

channels [5].  

On the other hand using silicon nanowire in designing in Integrated circuits 

can be effective approach for higher speed and lower power consumption which 

increase the whole microprocessor system. Hence this project will focuses on using 

silicon nanowire field effect transistor as a most promising device in electronic 

technology for designing ALU. The reason behind choosing ALU as a research work 

is that, ALU is the key element of digital processors like as microprocessors, 

microcontrollers, central processing unit etc. Every digital domain based technology 

depends upon the operations performed by ALU either partially or whole. That’s 
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why it highly required designing high speed ALU, which can enhance the efficiency 

of those modules which lies upon the operations performed by ALU [6]. 

1.2 Problem Statements 

The breaking down of Moore’s law has been predicted the dead end since 

2010 as computer power simply cannot maintain its rapid exponential rise using 

standard silicon technology. The downscaling of the feature size in CMOS 

technology had made conventional CMOS transistor model is facing severe 

challenges for scaling beyond 22nm nodes [7].  

 

 

 

Figure 1.3    Intel’s future development plan showing a trend in size reduction [8] 

 

Therefore, the conventional devices' modelling is no longer accurate when 

the channel lengths reach beyond 22 nanometre scale due to the numerous unknown 

parameters. There are much work has also been done by researcher to investigate the 

scope of various multi-gate structures. One of the most promising candidates is GAA 

Silicon Nanowire Transistor (Si NWT) because of process compatibility with 

complementary metal-oxide-semiconductor (CMOS) technology and also because of 

its small off-leakage current and high on-current.  
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On the other hand, nowadays ALU design in digital IC that has low power 

consumption, high speed and energy efficient is in highly demand. As a result the use 

of convention transistor i.e. MOSFET in ALU circuit design has also spotted 

reaching it performance limit such as average power dissipation and speed as the 

sizes reaches nanometres scale. One of new structure alternative to solve the problem 

proposed by Technology Roadmap of Semiconductor (ITRS) is Si nanowires FET to 

replace conventional transistor MOSFET.  

 

Therefore in this project, the performance if GAA Si NWT in digital system 

namely ALU circuit is explorer. This can be achieved by investigating the physical 

of Silicon nanowires as compared with MOSFET. Hence the problems in this project 

are: 

1. How does the performance of silicon Nanowires Field effect on Bulk wafer? 

2. How Gate-All-Around Si NW characteristic design for CMOS Inverter? 

3. What is the maximum number of Si NW channel can be replaced to obtain 

the optimum performance of the device? 

4. What are the performance differences in logic circuit such as ALU using 

GAA Si NWT as compared with MOSFET 

1.3 Objectives 

The project focuses on to develop and analysed the GAA Silicon Nanowire 

(NW) vs traditional convention MOSFET which is based on 30nm process 

technology. Thus the objectives of this project are: 

1. To build circuit and simulate using HSPICE based on GAA Si NWT. 

2. To obtain symmetrical output IV characteristic GAA Si NWT with 

number of channel variation between N and P type. 

3. To optimize the ALU circuit with the smaller number of transistor 

count. 
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 Research Scope 1.4

There are few research scopes that are highlighted in this project. This 

research scope cover analysed and developed the Cylindrical Si NWT (GAA) and 

MOSFET which is based on 30nm process technology. First, the Si NWT 

characteristic is obtained from IV curve with different number of channel N and P 

type by choosing CMOS inverter as the test vehicle.  The transistor model that been 

use through this project is from BSIM-CMG model. Once the drive current for N and 

PMOS transistor are matched using different number of channel for each and 

excellent performance of the inverter is achieved from GAA Si NWT model, then the 

ALU circuit is applied in SPICE code where the code will be simulated in HSPICE  

and the graph will be plotted in CosmoScope and Matlab. This project will analyse 

on performance of Si NWT ALU using 30nm Berkeley Short-channel IGFET Model-

Common Multi-Gate (BSIM CMG) model against 30nm conventional MOSFET 

model.  The important metric performances such as power delay product (PDP) and 

energy delay product (EDP) will be obtained.  

 Contribution 1.5

GAA Si NWT  structure  is a new alternative solution for conventional 

MOSFET as identified by The  International  Technology  Roadmap  for  

Semiconductor (ITRS),  would  give great advantages over the conventional  CMOS. 

This project successfully reveals few items as show below: 

1. Achieved different number of channel for each N and P type of Si NW in 

logic gate. A symmetry in NMOS and PMOS current is achieved by using 2 

channel wire N-type and 3 channel wires for Ptype of GAA nanowires 

CMOS inverters as benchmark. 

2. Design the ALU using ripple carrier adder (RCA) structure with 2-1 

multiplexer connected in parallel in order to maintain the speed of the circuit. 

Optimize the transistor count in the logic gate to improve the performance by 

using 2-1 AND-OR-Invert Logic (AOI) Gate and one NOR without any INV. 

3. Achieved better performance ALU with Si NW as compare to Benchmark 

MOSFET in propagation delay, power and efficiency of the circuit. 
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 Thesis Outline 1.6

This Project consists of five chapters. The first chapter provides an 

introduction to this research including the objective and fields of study. The theories 

and fundamental about relevant research are discussed in the second chapter. 

Additional information related to this project are taking from journal or other 

research as references to understand the physical silicon nanowire transistor and 

manufacturing process. Apart from that, the results from other research thesis, User's 

Manual and datasheet are obtained. In the third chapter, research and method are 

recorded and explained in details can be explained in detail. Chapter 4 will provide 

the conclusion and the future work can be expand in the project. 
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