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ABSTRACT 

 

 

 

 

The behaviour of a grounding electrode can be predicted by using either the 

electrical circuit model or electromagnetic computation.  Despite its advantages over 

the latter, the grounding circuit model fails to accurately predict the behaviour under 

transient conditions due to the absence of two key factors, namely the soil 

ionization, and the current rate–of–rise.  A new equivalent circuit model of a 

grounding electrode with dynamic circuit elements (Rd, Cd, and Ld) was developed to 

consider both soil ionization and current rate–of–rise factors.  A generalized formula 

was derived to calculate the dynamic inductance, Ld, for all standard current wave 

shapes such as Conseil International des Grands Réseaux                                              

Électriques (CIGRE), double–exponential, and IEC 62305–1 (International 

Electrotechnical Commission).  The computed inductance, Ld, dynamically changes 

with the change in the lightning current parameters, thus improving its accuracy for 

all current rate–of–rise conditions.  The consideration for the soil ionization effect 

on grounding electrode resistance, Rd, and soil capacitance, Cd, within the equivalent 

circuit model was achieved by modelling the soil with a network of two layer 

capacitors (TLC) in which soil particles and air voids are the TLC components.  

Differential equations were derived to incorporate the soil ionization phenomenon 

inside the TLC network.  The voltage response of the new equivalent circuit model 

and the dynamic circuit elements were determined by using the above–suggested 

methods, is more accurate than that of the conventionally determined grounding 

circuit models.  The overall differences between the equivalent circuit model and 

several experiments are 3.3% for the electrode resistance and 2.8% for the electrode 

peak voltage.  The new equivalent circuit model helps to optimize the overall 

grounding electrode design, and to provide a better fast transient protection and 

insulation coordination. 
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ABSTRAK 

 

 

 

 

Tingkah laku elektrod pembumian boleh diramal dengan menggunakan sama 

ada model litar elektrik atau menggunakan pengiraan elektromagnetik.  Walaupun 

mempunyai kelebihan dari yang kedua, model litar pembumian gagal untuk meramal 

dengan tepat kelakuan pada keadaan fana disebabkan ketiadaan dua faktor iaitu 

pengionan tanah dan juga kadar kenaikan arus.  Satu model litar setara yang baru 

yang mempunyai unsur litar yang dinamik (Rd, Cd, dan Ld) telah dibangunkan untuk 

mengambil kira kedua–dua faktor iaitu pengionan tanah dan juga kadar kenaikan 

arus.  Satu formula umum telah diterbitkan untuk mengira kearuhan dinamik, Ld, 

untuk kesemua bentuk gelombang arus piawai seperti Conseil International des 

Grands Réseaux Électriques (CIGRE), eksponen kembar dan IEC 62305–1 

(International Electrotechnical Commission). Kearuhan Ld yang dikira secara 

dinamiknya berubah dengan perubahan parameter arus kilat,  seterusnya ia 

meningkatan ketepatan pada kesemua keadaan kadar kenaikan arus.  Kesan 

pengionan tanah pada perintang elektrod pembumian, Rd, dan kemuatan tanah, Cd, di 

dalam model litar setara telah dicapai dengan memodelkan tanah menggunakan 

kapasitor dua lapisan (TLC) di mana zarah tanah dan juga lompang udara adalah 

komponen TLC.  Persamaan pembezaan diterbitkan untuk menggabungkan 

fenomena pengionan tanah di dalam rangkaian TLC ini.  Sambutan voltan model 

litar setara baru di mana elemen litar dinamiknya ditentukan dengan menggunakan 

kaedah yang disyorkan di atas, adalah lebih tepat daripada model litar pembumian 

konvensional.  Perbezaan keseluruhan di antara model litar setara dan beberapa uji 

kaji ialah 3.3% untuk rintangan elektrod dan 2.8% untuk voltan puncak elektrod. 

Model litar setara baru ini membantu untuk mengoptimumkan reka bentuk elektrod 

pembumian secara keseluruhan, dan untuk menghasilkan perlindungan dan 

koordinasi penebatan fana pantas yang lebih baik.   
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Grounding electrodes are used to efficiently disperse the high amplitude 

currents in the event of power system faults or lightning strikes.  In addition, they 

are also important to ensure low and safe ground voltage levels are maintained.  A 

typical configuration of a single grounding electrode is a buried horizontal electrode 

(counterpoises) or a driven vertical electrode (rod).  The current that flows through 

these electrodes, especially due to lightning strikes, has a fast rate–of–rise and 

together with the effect of soil resistivity, it dictates the characteristic of the 

grounding electrode as either inductive or capacitive.  This characterization is a 

significant factor in determining the overall grounding electrode impedance.  The 

grounding electrode impedance can be modeled under transient conditions by using 

circuit models [1–5].  In the circuit models, the grounding electrode is represented 

either as a distributed or as a lumped circuit [6] with R, C, and L elements. In the 

lumped circuit model, the circuit elements are combined together into one section to 

give only a single resistance, inductance, and capacitance to represent the whole 

electrode impedance.  On the other hand, in the distributed model, the elements are 

uniformly (as per–unit–length parameters) or non–uniformly distributed along the 

electrode.  The elements of the circuits are computed by using relevant formulae 



2 

 

 

 

proposed by Sunde [7] and Dwight [8].  According to Sunde formula, the resistance 

and capacitance of the grounding electrode are related.  In other words, R need to be 

first obtained before the value of C is determined.  However, inductance, L, is 

determined independently.  These circuit elements (R, C, and L) have static rather 

than dynamic values, that is they do not change during the impulse current duration.  

Hence, the effect of current amplitude and current rate–of–rise are not taken into 

account when computing the voltage response.  Soil ionization is a phenomenon 

which occurs when impulse current is dispersed in the soil.  This is especially true 

when the amplitude of the discharge current is high.  The phenomenon substantially 

affects the values of R and C.  In addition, the impulse current rate–of–rise also has a 

significant effect on the electrode inductance.  Consequently, because of the soil 

ionization and current rate–of–rise are not taken into account [9] when computing R, 

C, and L, their static values are therefore overestimated.  Hence, the computed 

voltage response of the grounding electrode using those static values is erroneous 

and sometimes this error can be significantly large and require further attention.   

Various soil ionization models were proposed to improve the accuracy of 

computed R and C.  These include work by Bellaschi et al. [10], Mohamad Nor, et 

al. [11], CIGRE [12], Geri [13], and Liew and Darveniza [14]. An attempt to include 

the soil ionization mechanism is described by Geri in [13]. In addition, the author 

also describes electric field enhancement in soil when subjected to high impulse 

current discharge, which in turn causes the breakdown of air voids that do exist 

among the mostly solid soil particles.  The air breakdown is usually described in the 

form of arcs and arc growth.  The arc growth is also usually further described as 

either in continuous form or discrete (or stepped) form.  A discrete type of arc or 

ionization growth occurs because of the fact arcs cease to grow when the electric 

field intensity becomes less than the critical value, Ec.  It is to be noted that previous 

soil ionization models assume a continuous or diffused ionization growth.  

Furthermore, the models incorporate the soil ionization effect by modifying either 

the soil resistivity or the grounding electrode radius.  However, this modification is 

not a valid technique when considering the above–mentioned soil ionization 

mechanism.   
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It is also to be noted that, the majority of the soil ionization models proposed 

in [10–13] assume that the grounding electrode resistance is only a function of 

discharge current.  Therefore, these models fail to determine the transient grounding 

electrode resistance during the current decay (tail) period.  This is because in current 

decay period, the value of the grounding electrode resistance is mainly dependent on 

the energy balance between the produced heat energy in the arc within the voids and 

the absorbed heat energy by the soil particles.  The so–called energy balance concept 

is defined as a concept where the computation of the air void arc resistance (and 

hence the grounding electrode resistance) is obtained by computing the actual 

balanced heat energy transferred between the air voids and the soil solid particles. A 

detailed explanation of this concept is given in the methodology section of this 

thesis. 

In the grounding models developed by Bellaschi et al. [10], Mohamad Nor, 

et al. [11], CIGRE [12], and Geri [13], the arc resistance is assumed to be equal to 

zero.  Therefore, previous soil ionization models fail to characterize the relationship 

between grounding electrode resistance and impulse current, in particular the 

hysteresis characteristic.  It is known that neglecting the hysteresis characteristic 

causes a large error in the computation of the grounding electrode resistance 

especially when the impulse current reduces during the decaying period.  According 

to [103], compared to the experimental value, the grounding electrode resistances 

obtained by models proposed by CIGRE [12], Bellaschi et al. [10], and Mohamad 

Nor et al. [11] at the current half time (Th) give errors of 20%, 17%, and 25%, 

respectively.  

It is also known that the computation of resistance, R, and capacitance, C, are 

related.  Hence, the computation of C becomes erroneous when R is not accurate.  

Among the previous soil ionization models, only the soil ionization model proposed 

by Liew and Darveniza [14] gives an adequate accuracy when computing the 

transient grounding resistance.  This is because the energy balance between the arc 

and the bulk of soil is considered.  Nevertheless, the Liew–Darveniza’s model still 

has several shortcomings.  For example, the model assumes a diffused rather than a 
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discrete ionization growth.  Hence, the discrete–breakdown path, which exists 

because of an air breakdown in voids enclosed among the soil particles, cannot be 

modeled [14, 15].  Furthermore, the solution for the general expressions of the soil 

resistivity (with soil ionization effect) often results in numerical divergence [16].  

Another deficiency of the Liew–Darveniza’s model is that the effect of soil 

capacitance is not considered.  It is known that neglecting the soil capacitance leads 

to inaccurate grounding electrode voltage [9, 17].   

In addition, to overcome the deficiency caused by inductance value, L, on 

electrode voltage, two methods were previously proposed, namely, the constant and 

the length–dependent distribution of parameters along the electrode.  According to 

these methods the simultaneous effect of inductance value and current rate–of–rise 

factor on electrode voltage (v = L di(t) / dt) is reduced by distributing the inductance 

along the electrode.  However, the results obtained from the above–mentioned 

methods are only valid under slow–fronted current waves (that is, the front time, Tf  

> 1µs).  Incorrect voltage responses are still obtained when the circuits are under 

fast–fronted current waves (Tf  < 1 µs).   

Overall, the accuracy of the previously proposed models is dependent on 

several key parameters of the grounding electrode and the impulse current. The key 

parameters are defined as the electrode length, the current amplitude, the current 

front time, and the soil resistivity.  

It is concluded that the soil ionization and current rate–of–rise factors have 

significant effects on both the circuit element values and the voltage response of the 

grounding electrode.  However, these two factors are not properly considered in 

many grounding circuit models.  
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1.2 Research Problem Statement 

A major drawback of both lumped and distributed grounding circuit models 

is that they fail to produce the correct transient voltage at the injection point of the 

lightning current.  The root–cause of this error is due to the static nature and 

inaccurate estimation of R, C, and L, which are computed without considering two 

important influencing factors, namely, the soil ionization and current rate–of–rise.  

Although several soil ionization models were previously proposed to 

enhance the value of R, but they still have several shortcomings.  Firstly, in the 

previous models, the effect of soil ionization is only indirectly considered on the soil 

resistivity and on the electrode radius rather than the preferred direct effect on the 

grounding electrode resistance itself.  Secondly, the previous soil ionization models 

can only be used for continuous type of ionization growth rather than the preferred 

discrete type of ionization growth, which frequently occurs when the grounding 

electrode is subjected to high amplitude impulse currents.  Thirdly, apart from the 

soil ionization model proposed by Liew and Darveniza, all previous soil ionization 

models are inaccurate in determining the grounding electrode resistance because 

they neglect the effects of two important aspects, namely, the arc resistance and the 

so–called energy balance concept.  Even though the soil ionization model proposed 

by Liew and Darveniza can be considered as accurate, the proposed model is 

complicated and the general expressions given to compute the variation of the soil 

resistivity often result in numerical divergence.     

The effect of current rate–of–rise plays a direct role in determining the 

inductance, L.  Two previous methods, namely, the constant, and the length–

dependent distribution of parameters along the electrode, have been proposed to 

compute L.  Both methods do not provide a correct electrode voltage response under 

fast front current waves (that is, the front time, Tf  < 1 µs).  Under such current 

waveforms, correct electrode voltage response can only be obtained using a 

dynamically variable inductance depending on the front time of the waveform. It is 
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obvious that the effect of current rate–of–rise must be directly considered when 

computing the inductance L. 

It is important to consider the soil ionization and current rate–of–rise factors 

in designing and implementing the power system protection and safety. This is 

because these factors directly affect the resultant grounding electrode voltage when 

discharging high current impulses.  For example, the electrode peak voltage 

significantly reduces when the soil ionization is considered.  Consequently, a direct 

improvement in the grounding electrode performance is achieved [9].  According to 

[13], for a typical horizontal grounding electrode, a 66.5% reduction in electrode 

voltage is observed when the soil ionization is considered in the computation of the 

grounding electrode resistance and voltage.  Therefore, by considering the soil 

ionization effect on the behavior of the grounding electrode when discharging high 

current impulses, the margin of the protection level in power system can be 

increased.  On the contrary, the high current rate–of–rise factor together with the 

electrode inductance cause the peak voltage of the grounding electrode to increase 

considerably.  The peak voltage computed by the previously proposed grounding 

circuit model is considerably higher because of neglecting the current rate–of–rise 

factor.  According to [9] a difference of 26% in the peak voltage of a typical 

grounding electrode was observed when computed using the electromagnetic 

computational model and the circuit model. Therefore, an overestimation may exist 

when designing the power system insulation coordination including the ratings of 

the protective devices.  In short, by considering both the soil ionization and the 

current rate–of–rise factors, the cost of power system insulation coordination 

implementation can be reduced and hence the economic benefit of such 

considerations.  

In this thesis, several new methods of computation are developed and 

proposed to enhance the accuracy of the above–mentioned static R, C, and L circuit 

elements.  The key contribution to the success of the developed methods is the 

incorporation of two additional factors namely, 1) the effect of soil ionization (for 

improved R and C), and 2) the consideration of current rate–of–rise (for improved 

file:///C:/Users/Lenovo/Dropbox/Mehrdad-Dr.Zul/Thesis/Thesis%20Final%20format-RV04%20(Autosaved)JUST%20BEFORE%20BLACKOUTS.docx%23_ENREF_9
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L), in a new equivalent circuit model of a grounding electrode with dynamic 

elements for transient conditions. 

 

 

 

 

1.3 Research Objectives 

 

 

The objectives of the study are as follows: 

 

(i) To develop a new equivalent circuit model of a grounding electrode with 

dynamic resistance, capacitance, and inductance elements, which are 

achieved by considering the soil ionization and current rate–of–rise 

factors. 

 

(ii) To validate the accuracy of the equivalent circuit model of a grounding 

electrode by comparing the results obtained from the model with those 

obtained from other well–known experimental work and theoretical 

models.   

 

(iii) To evaluate the performance of the equivalent circuit model of a 

grounding electrode by changing the key parameters of the grounding 

electrode and impulse current. 

 

 

 

 

1.4 Research Scope 

In this research, an equivalent circuit model of a grounding electrode is 

developed to model the grounding electrode with the consideration of soil ionization 

and current rate–of–rise factors.  The effect of soil ionization is directly considered 
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in the form of a dynamic electrode resistance.  Similarly, a dynamic soil capacitance 

is also proposed using Sunde equation (RC = ρε).  As for the dynamic inductance, 

Ld, a new generalized formula is also derived.   

MATLAB codes and CDEGS software are used to compute the dynamic 

resistance, capacitance, and inductance of the equivalent circuit model.  When 

CDEGS software is used as a part in the computational step, all assumptions made 

in the corresponding electromagnetic approach with the method of moments are 

accepted as correct.  For example, the electrode is assumed as a thin wire to presume 

a zero current at the open ends of an electrode.  In addition, the grounding electrode 

is assumed to be made of cylindrical metallic conductor at which the ratio of the 

length of the conductor segment to its radius is larger than one.   

In the performance analysis of the model, the soil critical electric field value, 

Ec, is considered as 300 kV/m, as suggested by IEEE standard.  In the validation 

process, the results obtained from the model are compared to those obtained from 

the widely known theoretical models and experimental works.  In particular, the  

following ranges of parameters are used: 40 Ω.m ≤ ρ ≤ 5000 Ω.m, 3 m ≤ l ≤ 30 m, Im 

≤ 30 kA,  Tf  > 0.15 µs, d ≥ 0.5 m, and Ec ≥ 70 kV/m, where ρ is the soil resistivity, 

Im is the current amplitude, Tf   is the current front time, l is the electrode length, d is 

the burial depth, and Ec is the soil critical electric field. 

The application of the new equivalent circuit model is limited to single 

horizontal electrode (counterpoise) or single vertically driven rod.  Furthermore, the 

new equivalent circuit model is only valid for homogeneous and uniformed soil.  

Finally, the voltage response of the grounding electrode model is computed at the 

current injection point, which is usually at one end of the said electrode. 
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1.5 Research Contributions 

The significant contributions of the study are as follows.  

i) Critical Review on Previous Models 

 

Several lumped and distributed grounding circuit models were previously 

proposed to characterize the grounding electrode impedance behavior under 

transient conditions.  However, the previous models fail to accurately 

determine the electrode voltage.  In this study, previous models were 

critically reviewed to determine the root–causes of error in determining the 

electrode voltage response.  A critical and comprehensive review is 

presented in Chapter 2.  A review on the previously proposed circuit models 

of grounding electrodes revealed that neglecting two factors, namely, the soil 

ionization and current rate–of–rise factors, substantially affect the accuracy 

of the circuital models to determine the electrode voltage under slow– and 

fast–fronted currents.  The review had enabled the development of a new and 

more accurate equivalent circuit model for a grounding electrode. 

 

ii) A New Equivalent Circuit Model for Grounding Electrode with 

Improved Accuracy 

 

Previous transient models for a grounding electrode are inaccurate and 

require further improvements.  An innovative and accurate equivalent circuit 

model of a grounding electrode with consideration of the key factors of soil 

ionization and current rate–of–rise was developed.  In the equivalent circuit 

model of the grounding electrode, dynamic resistance, Rd, capacitance, Cd, 

and inductance, Ld, were used to characterize the grounding electrode 

resistance, soil capacitance, and electrode inductance, respectively.  New 

models and methods were developed to determine the above–mentioned 

dynamic circuit elements.  A new soil ionization model was developed to 

determine the grounding electrode resistance and soil capacitance.  The 
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principle of two–layer capacitor (TLC) was taken into account to model the 

soil particle and air void.  Differential equations were derived to incorporate 

the soil ionization phenomenon inside the TLC network.  A new method 

based on dynamic and static characteristics of arc and so–called energy 

balance concept was developed to compute the arc resistance in soil.  Finally, 

a set of formulae were derived to compute the dynamic grounding electrode 

resistance and dynamic soil capacitance with soil ionization effect.   

The significance of the developed soil ionization model are: 1) the dynamic 

grounding electrode resistance and dynamic soil capacitance values were 

obtained by considering the soil ionization effect, and 2) the hysteresis 

characteristic of the grounding electrode resistance was achieved.  A new 

generalized formula was derived to calculate the dynamic inductance value 

of the grounding electrode with the consideration of the current rate–of–rise 

factor.  The significance of the derived formula is that the dynamic 

inductance is accurately determined for all standard current wave shapes, 

such as CIGRE, double–exponential, and IEC 62305–1.  

 

iii) Validation and Comparative Data for the Model 

 

Several well–known experimental works and theoretical models were used to 

validate the accuracy of the new equivalent circuit model for a grounding 

electrode.  The results from the experimental work are more accurate.  The 

specifications and characteristics of the grounding electrode and impulse 

current defined in the several experimental works and theoretical models 

were used to set up the equivalent circuit model of the grounding electrode.  

The voltage responses and grounding electrode resistance values obtained 

from the equivalent circuit model were compared to those obtained by the 

experimental works and theoretical models.  The comparison of the results 

with other theoretical models shows that the equivalent circuit model gives a 

better performance and accuracy in terms of voltage waveform, peak voltage, 

and grounding electrode resistance value.  In addition, the grounding 
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electrode resistance shows a comparable hysteresis characteristic compared 

to experimental ones. 

 

iv) Evaluation and Performance Data of the Model 

 

The performance of the equivalent circuit model was evaluated by changing 

key parameters values of the grounding electrode and impulse current 

(electrode length, current amplitude, current front time, and soil resistivity).  

It is noted that the range of values are stated in the scope of this thesis.  The 

simultaneous effect of soil ionization and current rate–of–rise were taken into 

account.  The time variation of the grounding electrode resistance, arc 

resistance, hysteresis characteristic, grounding electrode impedance as well 

as the voltage of the electrodes were obtained.  The small differences 

between the values obtained from the equivalent circuit model and those 

from theoretical models show the excellent performance of the equivalent 

circuit model in the above–mentioned challenging conditions.  The proposed 

equivalent circuit model can be used as to provide reliable and more accurate 

results when computing grounding electrode response to various injected 

currents. 

 

v) Optimized Grounding Electrode Design 

 

The main significance of the study is the improved accuracy of the new 

equivalent circuit model of a grounding electrode with dynamic elements of 

Rd, Cd, and Ld. The elements can be obtained by simultaneous consideration 

of soil ionization and current rate–of–rise factors.  This research shows that 

the voltage response of the improved model is very accurate and comparable 

to the other theoretical and experimental results.  The new equivalent circuit 

model can be used to obtain the voltage response of a grounding electrode in 

typical installations and hence helps to optimize the overall grounding 

electrode design due to the improved accuracy.  This new model also 

indirectly addresses any safety concern arising from such grounding 

electrode design especially when subjected to fast transients. 
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vi)    Improved Insulation Coordination 

 

The obtained results can be used as a reliable source for validation of any 

grounding electrode model.  Another important significance of the model is 

that the equivalent circuit model can be directly applied or connected to 

power system equipment in standard simulation platforms.  In this way, an 

accurate grounding electrode effect on the transient performance of key 

power equipment such as surge arresters can be obtained.  Using this 

integrated approach, a better protection and insulation coordination 

characteristics can be designed.  

 

 

 

 

1.6 Thesis Outline 

Chapter 1 gives mainly emphasis to the objectives of the study and the 

methodology used to solve the stated problems.  Chapter 2 presents a critical review 

on related works conducted to model the grounding electrodes and highlights the 

existing problems of the models.  Chapter 3 presents a methodology used to develop 

a new grounding electrode model.  Chapter 4 is assigned to validate and evaluate the 

accuracy and the performance of the equivalent circuit model by comparing the 

results obtained from the equivalent circuit model with those obtained from the 

well–known experimental works and theoretical models.  Finally, Chapter 5 presents 

the conclusions and future recommendations. 
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