CIRCUIT–BASED TRANSIENT MODEL OF GROUNDING ELECTRODE WITH CONSIDERATION OF SOIL IONIZATION AND CURRENT RATE–OF–RISE FACTORS

MEHRDAD MOKHTARI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2016

DEDICATION

To my wife Sepideh, to my daughter Bahar, and to my parents

ACKNOWLEDGEMENTS

First, I would like to express my thanks to my supervisor Professor Dr. Zulkurnain Abdul–Malek for his comments, guidance, and advices during my research. I am also grateful to my family for their patience during the entire study.

ABSTRACT

The behaviour of a grounding electrode can be predicted by using either the electrical circuit model or electromagnetic computation. Despite its advantages over the latter, the grounding circuit model fails to accurately predict the behaviour under transient conditions due to the absence of two key factors, namely the soil ionization, and the current rate-of-rise. A new equivalent circuit model of a grounding electrode with dynamic circuit elements $(R_d, C_d, \text{ and } L_d)$ was developed to consider both soil ionization and current rate-of-rise factors. A generalized formula was derived to calculate the dynamic inductance, L_d , for all standard current wave such Conseil International shapes as des Grands Réseaux *Électriques* (CIGRE), double-exponential, and IEC 62305-1 (International Electrotechnical Commission). The computed inductance, L_d , dynamically changes with the change in the lightning current parameters, thus improving its accuracy for all current rate-of-rise conditions. The consideration for the soil ionization effect on grounding electrode resistance, R_d , and soil capacitance, C_d , within the equivalent circuit model was achieved by modelling the soil with a network of two layer capacitors (TLC) in which soil particles and air voids are the TLC components. Differential equations were derived to incorporate the soil ionization phenomenon inside the TLC network. The voltage response of the new equivalent circuit model and the dynamic circuit elements were determined by using the above-suggested methods, is more accurate than that of the conventionally determined grounding circuit models. The overall differences between the equivalent circuit model and several experiments are 3.3% for the electrode resistance and 2.8% for the electrode peak voltage. The new equivalent circuit model helps to optimize the overall grounding electrode design, and to provide a better fast transient protection and insulation coordination.

ABSTRAK

Tingkah laku elektrod pembumian boleh diramal dengan menggunakan sama ada model litar elektrik atau menggunakan pengiraan elektromagnetik. Walaupun mempunyai kelebihan dari yang kedua, model litar pembumian gagal untuk meramal dengan tepat kelakuan pada keadaan fana disebabkan ketiadaan dua faktor iaitu pengionan tanah dan juga kadar kenaikan arus. Satu model litar setara yang baru yang mempunyai unsur litar yang dinamik $(R_d, C_d, dan L_d)$ telah dibangunkan untuk mengambil kira kedua-dua faktor iaitu pengionan tanah dan juga kadar kenaikan arus. Satu formula umum telah diterbitkan untuk mengira kearuhan dinamik, L_d , untuk kesemua bentuk gelombang arus piawai seperti Conseil International des Grands Réseaux Électriques (CIGRE), eksponen kembar dan IEC 62305-1 (International Electrotechnical Commission). Kearuhan L_d yang dikira secara dinamiknya berubah dengan perubahan parameter arus kilat, seterusnya ia meningkatan ketepatan pada kesemua keadaan kadar kenaikan arus. Kesan pengionan tanah pada perintang elektrod pembumian, R_d , dan kemuatan tanah, C_d , di dalam model litar setara telah dicapai dengan memodelkan tanah menggunakan kapasitor dua lapisan (TLC) di mana zarah tanah dan juga lompang udara adalah komponen TLC. Persamaan pembezaan diterbitkan untuk menggabungkan fenomena pengionan tanah di dalam rangkaian TLC ini. Sambutan voltan model litar setara baru di mana elemen litar dinamiknya ditentukan dengan menggunakan kaedah yang disyorkan di atas, adalah lebih tepat daripada model litar pembumian konvensional. Perbezaan keseluruhan di antara model litar setara dan beberapa uji kaji ialah 3.3% untuk rintangan elektrod dan 2.8% untuk voltan puncak elektrod. Model litar setara baru ini membantu untuk mengoptimumkan reka bentuk elektrod pembumian secara keseluruhan, dan untuk menghasilkan perlindungan dan koordinasi penebatan fana pantas yang lebih baik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xix
	LIST OF ABBREVIATIONS	xxi
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Research Problem Statement	5
	1.3 Research Objectives	7
	1.4 Research Scope	7
	1.5 Research Contributions	9
	1.6 Thesis Outline	12
2	LITERATURE REVIEW	13
	2.1 Introduction	13
	2.2 Modeling of Grounding Systems	15

	2.2.1 Electron	nagnetic Model with the Method of Moment	16
	2.2.2 Circuit	Model	18
	2.2.3 Hybrid	Model	20
	2.2.4 Transm	ission Line Model	23
	2.2.5 Compar	ison of the Models	26
2.3	Impulse Char	acteristics of a Grounding Electrode	28
2.4	Impulse Coef	ficient of a Grounding Electrode	31
2.5	Factors Affec	ting the Voltage Response of Circuit Model	33
	2.5.1 Current	Rate-of-Rise Factor	34
	2.5.1.1	Current Waveform Characteristics	34
	2.5.1.2	Voltage Response Analysis of the Lumped	
		Circuit Model	40
	2.5.1.3	Voltage Response Analysis of the	
		Transmission Line Model	44
	2.5.2 Soil Ion	ization Factor	47
	2.5.2.1	Transient Soil Characteristics	48
	2.5.2.2	Soil Conduction Mechanism	48
	2.5.2.3	Thermal Process	49
	2.5.2.4	Ionization Process	52
	2.5.2.5	Soil Critical Electric Field Value, E_c	54
	2.5.2.6	Influence of Water Content and	
		Temperature on E _c	55
	2.5.2.7	Influence of Grain Size on E_c	57
	2.5.2.8	Influence of Soil Compaction on E_c	58
	2.5.2.9	Soil Ionization Effect on Voltage Response	
		of the Grounding Electrode	59
2.6	A Critical Rev	view on Soil Ionization Modeling	61
	2.6.1 Charact	eristics of Grounding Electrode Resistance	61
	2.6.2 Soil Ion	ization Models	63
	2.6.2.1	CIGRE Model	63
	2.6.2.2	Bellaschi Model	64
	2.6.2.3	Mohamad Nor Model	66
	2.6.2.4	Liew–Darveniza Model	68

	2.6.2.5	Accuracy Analysis of Soil Ionization	
		Models	72
	2.7 Summary		77
3	METHODOLO	GY	78
	3.1 Introduction		78
	3.2 Equivalent C	ircuit Model of Grounding Electrode	80
	3.3 Determination	n of Dynamic Circuit Element Values	81
	3.3.1 Dynam	ic Resistance, R_d , and Capacitance, C_d	81
	3.3.1.1	Soil Ionization Model	81
	3.3.1.2	Two-layer Capacitor (TLC) Network	83
	3.3.1.3	Ionization in TLC Network	90
	3.3.1.4	Determination of Required Parameter	
		Values for Soil Ionization Modeling	93
	3.3.1.5	Equivalent Circuit Model of Soil Ionization	96
	3.3.1.6	Energy Balance Concept	98
	3.3.1.7	Arc Resistance Computation	99
	3.3.1.8	Equations to Determine the Dynamic	
		Grounding Electrode Resistance and Soil	
		Capacitance	105
	3.3.2 Dynam	ic Inductance, L _d	107
	3.3.2.1	Circuit Response of the Double-	
		Exponential Current Waveform	111
	3.3.2.2	Circuit Response of the CIGRE Current	
		Waveform	112
	3.3.2.3	Circuit Response of the IEC Current	
		Waveform	112
	3.4 Validation of	the Equivalent Circuit Model	113
	3.5 Performance	Evaluation of the Equivalent Circuit Model	115
	3.5.1 Method	lology of the Hybrid Model	117
	3.5.1.1.	Electric Field Computations	118
	3.5.1.2.	Equivalent Radius and Grounding	
		Electrode Resistance	119

ix

	3.5.2 Methodology for Incorporation of Soil Ionization in	
	CDEGS Software	120
	3.5.2.1 Step 1: Specifying the System	
	Configuration	121
	3.5.2.2 Step 2: Computing the Current in an	
	Electrode	122
	3.5.2.3 Step 3: Computing the Electric Field	122
	3.5.2.4 Step 4: Computing the Equivalent Radius	122
	3.5.2.5 Step 5: Recomputing the Electric Field	123
	3.5.2.6 Computation of the Equivalent Radius	123
	3.6 Summary	126
4	RESULTS AND DISCUSSIONS	127
	4.1 Introduction	127
	4.2 Development of the Equivalent Circuit Model	128
	4.3 Validation of the Equivalent Circuit Model	130
	4.3.1 Validation with Bellaschi's Experimental Work and	
	Liew-Darveniza's Theoretical Model	131
	4.3.2 Discussion on the Results of Validation with	
	Bellaschi's Experimental Work and Liew-	
	Darveniza's Theoretical Model	137
	4.3.3 Validation with Geri's Experimental Work and	
	Theoretical Model	138
	4.3.4 Discussion on the Results of Validation with Geri's	
	Experimental Work and Theoretical Model	140
	4.3.5 Validation with Greev's Electromagnetic	
	Computational Model	140
	4.3.6 Discussion on the Results of Validation with Geri's	
	Experimental Work and Theoretical Model	145
	4.4 Performance Evaluation of the Equivalent Circuit Model	146
	4.4.1 Equivalent Circuit Model Setup	146
	4.4.1.1 Lightning Current Specifications	147
	4.4.1.2 Grounding Electrode Specifications	148

	4.4.1.3	Required Parameters for Soil Ionization	
		Modeling	149
	4.4.2 Simulati	ion Results	151
	4.4.2.1	A Sample Electrode Configuration: 10-m-	-
		long Electrode Buried in 200–Ω.m Soil	152
	4.4.2.2	Eight Other Electrode Configurations	157
	4.4.2.3	Summary of Key Parameters	157
	4.4.3 Analysis	s on the Simulation Results	159
	4.4.3.1	Influence of Electrode Length and Soil	
		Resistivity on Grounding Electrode	
		Resistance	159
	4.4.3.2	Influence of Current Parameters on	
		Grounding Electrode Impedance	162
	4.4.3.3	Influence of Soil Resistivity on Grounding	I
		Electrode Voltage Response	165
	4.4.3.4	Influence of Energy Balance on Grounding	5
		Electrode Resistance	166
	4.4.3.5	Influence of Energy Balance on Grounding	5
		Electrode Voltage Response	167
	4.4.4 Compar	ison of the Results with other Work	169
	4.5 Summary		171
5	CONCLUSIONS	AND FURTHER WORK	172
	5.1 Conclusions		172
	5.2 Recommenda	tions for Future Work	174
REFERENC	ES		176
Appendices A	А-С		187-207

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Typical rock-soil permittivity values	20
2.2	Summary of the grounding system transient modeling	28
2.3	Critical breakdown strength for soils with different	
	grain sizes [102]	58
2.4	Critical breakdown strength of soils with different	
	densities [74]	59
2.5	The specifications of the grounding electrode from the	
	experiment [10]	72
2.6	The resistances computed by the models and their	
	errors compared to the experimental value	74
2.7	The peak voltage values computed by the models and	
	their errors compared to the experimental value	76
3.1	Type of soil based on soil resistivity and resistance of a single	
	rod [107]	95
3.2	Size range of soil particles based on British standard	
	BS 5930 [108]	95
4.1	Grounding electrode specifications for ground types F, M, and	l
	K [10]	132
4.2	Comparison between the resistance and peak voltage	
	values obtained from the equivalent circuit model (EC)	
	and experimental work performed by Bellaschi (B)	132
4.3	Comparison of the results obtained from the equivalent	
	circuit model (EC) and Liew-Darveniza's model (LD)	

	with experimental work performed by Bellaschi for	
	ground types F, M, and K	135
4.4	The specifications and current parameters of the slow-	
	fronted current	147
4.5	The specifications and current parameters of the fast-	
	fronted current	147
4.6	The specifications of the grounding electrode	149
4.7	Required parameters for soil ionization modeling	150
4.8	Condition of grounding electrode and main parameter	
	values obtained under slow-fronted current	150
4.9	Condition of grounding electrode and main parameter	
	values obtained under fast-fronted current	151
4.10	Identification of the eight electrodes presented in	
	Appendix B	157
4.11	Transient values of grounding electrodes under slow-	
	fronted current	158
4.12	Transient values of grounding electrodes under fast-	
	fronted current	159
4.13	Comparison between resistance, impedance, and voltage	
	obtained under slow-fronted current by the equivalent	
	circuit model (EC), CIGRE model, hybrid model, and	
	CDEGS software with soil ionization consideration	170
4.14	Comparison between resistance, impedance, and voltage	
	obtained under fast-fronted current by the equivalent	
	circuit model (EC), CIGRE model, hybrid model, and	
	CDEGS software with soil ionization consideration	171

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	A representation of critical review flow on transient	
	grounding system	15
2.2	Representation of a typical grounding electrode under	
	lightning current by an equivalent lumped circuit model	19
2.3	Distributed model of a grounding electrode system. V_i	
	and i_i correspond to the voltage and current at the	
	respective section. V_{Li} is the inductive voltage at the	
	respective section [7]	25
2.4	Ratio of harmonic impedance to low frequency	
	resistance for the horizontal electrodes with (a) 1-m	
	length, (b) 10-m length, and (c) 30-m length [9]	30
2.5	CIGRE concave current waveform [17]	37
2.6	IEC 62305–1 current waveform [17]	39
2.7	Current steepness versus time [17]	40
2.8	Illustration of the grounding electrode under impulse	
	current	41
2.9	Current waveforms with 10–kA amplitude and $1-\mu s$	
	front time	42
2.10	CIGRE and double-exponential current derivatives	42
2.11	The voltage response of the lumped circuit model of a	
	horizontal 15-m-long grounding electrode at the point	
	of applied current [17]	43

2.12	Impulse current distribution (i_{Li}) illustrated for the first	
	three sections of the 15-m-long grounding electrode and	
	relevant leakage currents (i_{R-Ci})	45
2.13	Voltage distribution illustrated for the first three sections	
	of the 15–m–long grounding electrode. $V_{R'-C'i}$ and V_{Li}	
	are the resistive-capacitive and inductive voltages,	
	respectively	45
2.14	Voltage response of the distributed circuit with 15, 30,	
	45, and 60 sections	47
2.15	Breakdown initiation time of soil for different	
	conductivities (the continuous lines are the best-fit	
	curves) [91]	49
2.16	Current responses to an applied 30 kV, 2.5 μ s voltage of	
	(a) large grounding grid system of the utility substation,	
	and (b) 10 m by 10 m grounding grid system [93]	51
2.17	Soil ionization propagation model [11]	52
2.18	Electrical discharge in a void inside a dialectic material	
	and its equivalent circuit [95]	52
2.19	Critical electric field values obtained based on Oettle	
	and Manna for moderate soil moisture ($\varepsilon_g=10$)	55
2.20	Influence of water content on the critical impulse	
	breakdown field strength of soil at different temperature	
	[101]	56
2.21	Influence of temperature on the critical impulse	
	breakdown field strength of soil at different water	
	content [101]	57
2.22	Computed components of the potential at the injection	
	point of current of a 10-m-long electrode in earth with	
	$\rho = 100 \ \Omega.m \ [9]$	60
2.23	Transient potential rise at the current injected point of	
	the grounding grid system [58]	60
2.24	Variation of grounding electrode resistance under	
	impulse current discharge [10]	62

2.25	Hysteresis characteristics of grounding electrode	
	resistance [10]	62
2.26	Equivalent circuit model of soil ionization proposed by	
	Mohamad Nor <i>et al.</i> [11]	67
2.27	Soil characteristics under impulse current in a	
	hemispherical model for a direct sparking connection	
	[14]	69
2.28	The resistivity profile of the soil ionization zone in the	
	Liew– Darveniza's model [14]	69
2.29	Resistance variation of the grounding electrode	73
2.30	Hysteresis characteristics of the grounding electrode	
	resistance	74
2.31	Voltage response of the grounding electrode	75
3.1	Research methodology flow	79
3.2	An equivalent circuit model of a grounding electrode	
	with dynamic elements	80
3.3	Microstructure photo of soil [74]	82
3.4	A network of soil particles and air voids to represent a	
	portion of soil medium. The grey and white cells	
	represent the soil particle and the air void, respectively	82
3.5	A portion of soil modeled with a network of soil	
	particles and air voids under impulse current (a) without	
	ionization and (b) with ionization occurrence in air voids	83
3.6	Physical dimensions and electrical characteristics of a	
	typical TLC	84
3.7	A representation of a portion of soil with a network of	
	two-layer capacitors (TLCs)	85
3.8	Waveforms of key voltages in a typical TLC	91
3.9	Variations of the electric field in soil particle and air	
	inside a typical TLC	92
3.10	Soil ionization circuital model under impulse condition	97
3.11	V-I characteristics of the arc for different current rate-	
	of-rise values. The current rate-of-rise increases in	
	curves I to III	102

3.12	A grounding electrode with a length l and radius a	
	buried in a uniform soil with an injected impulse current	118
3.13	Construction of a mesh with the size of $m \times n$ to	
	determine the nodes	118
3.14	Summary of the developed five-step method	121
3.15	Representations of the (a) constructed mesh in the lower	
	region of the horizontal electrode to determine the	
	electric field, E , in the defined nodes n_{mn} and (b) typical	
	electric field variation along a typical profile, P_c	124
3.16	Variation of ionization distance, $P_c(t) \times DBP$, and	
	equivalent radius, $a_{eq}(t)$, for electrode with time	125
4.1	Developed circuit model of grounding electrode with the	
	consideration of soil ionization and current rate-of-rise	
	factors	128
4.2	The flow of the equivalent circuit model	129
4.3	Resistance variation and voltage response of the	
	grounding electrodes obtained by using the equivalent	
	circuit model, Bellaschi's experiment, and Liew and	
	Darveniza's computational model in (a) Ground F, (b)	
	Ground M, and (c) Ground K	133
4.4	Hysteresis characteristic of the grounding electrodes	
	obtained by using the equivalent circuit model,	
	Bellaschi's experiment, and Liew and Darveniza's	
	computational model in (a) Ground F, (b) Ground M,	
	and (c) Ground K	136
4.5	Comparison of voltage responses of a horizontal	
	electrode obtained by the equivalent circuit model,	
	Geri's experiment, Geri's model, and Grcev's model	139
4.6	Comparison of voltage responses of a vertical electrode	
	obtained by the equivalent circuit model, Geri's	
	experiment, Geri's model, and Grcev's model	139
4.7	Typical slow- and fast-fronted current waveforms	142

4.8	Voltage responses of the 10-m-long electrode in soil	
	with resistivity of 100 Ω .m under (a) slow– and (b) fast–	
	fronted currents obtained by the equivalent circuit model	
	and by the Grcev's electromagnetic model	143
4.9	Voltage responses of the 30-m-long electrode in soil	
	with resistivity of 100 Ω .m under (a) slow– and (b) fast–	
	fronted currents obtained by the equivalent circuit model	
	and by the Grcev's electromagnetic model	144
4.10	Representation of (a) current waveforms and (b) current	
	derivatives	148
4.11	Transient characteristics of grounding electrode with $l =$	
	10 m, $\rho = 200 \ \Omega$.m under slow–fronted current	154
4.12	Transient characteristics of grounding electrode with $l =$	
	10 m, $\rho = 200 \ \Omega$.m under fast–fronted current	156
4.13	Variation of the grounding electrode resistance versus	
	soil resistivity obtained at current maximum	160
4.14	Variation of the grounding electrode resistance versus	
	electrode length obtained at current maximum	161
4.15	Grounding electrode impedance under slow-fronted	
	current	163
4.16	Grounding electrode impedance under fast-fronted	
	current	164
4.17	Grounding electrode impedance versus soil resistivity	165
4.18	Grounding electrode resistance at $t = T_h$	167
4.19	Grounding electrode voltage at $t = T_h$	168

LIST OF SYMBOLS

a	_	Physical electrode radius
a_{eq}	_	Equivalent electrode radius
L	-	Electrode inductance
n	_	Maximum number of consecutive TLCs along
		which soil ionization occurs
q	-	Electric charge
Q	-	Total electric charge
R	-	Low current and low frequency grounding electrode
		resistance
x	-	Soil ionization length
a_{eq}	_	Equivalent radius
A_{arc}	_	Area of the arc channel
C_d	_	Dynamic capacitance
C_g	-	Soil capacitance of non-ionized region
C_{1i}	_	Soil capacitance of ionized region
d_a	_	Length of air void
d_s	-	Length of soil particle
d_{TLC}	-	Length of TLC
E_a	-	Electric field in air void
E_{arc}	-	Electric field intensity in arc channel
E_s	_	Electric field in soil particle
J_a	_	Current density in air void
J_s	-	Current density in soil particle
k_{μ}	_	Electron mobility
L_d	_	Dynamic inductance

$P_a(t)$	_	Instantaneous heat power absorbed by the soil
$P_b(t)$	_	Instantaneous heat power balance in the arc channel
$P_p(t)$	_	Instantaneous heat power produced in the arc channel
Q_b	-	Heat energy balance
R_d	-	Dynamic resistance
R_g	-	Soil resistance of non-ionized region
$R_G(t)$	_	Dynamic grounding electrode resistance
R_{1i-arc}	-	Arc resistance
R _{1i-soil}	_	Soil resistance of ionized region
T_{br}	_	Time to breakdown
T_{f}	_	Current front time
T_h	-	Current half value
t_i	-	Required time for air breakdown
t_u	-	Sufficient voltage breakdown time
U_a	_	Voltage across the air void
U_s	-	Voltage across the soil particle
U_{sa}	_	Voltage across a TLC
v(t)	_	Grounding electrode voltage at current injection point
x_{max}	_	Maximum soil ionization length
$Z_{li}(t)$	_	Equivalent impedance of the parallel elements
		$R_{1i-soil}(t), R_{1i-arc}(t)$, and $C_{1i}(t)$
Z_g	_	Equivalent impedance of the parallel elements
		R_g and C_g
3	_	Permittivity
σ	-	Conductivity
ρ	_	Soil resistivity
τ	-	Time constant
\mathcal{E}_{S}	-	Soil permittivity
ε_a	_	Air permittivity
σ_s	_	Soil particle conductivity
σ_a	_	Air conductivity
σ_{arc}	_	Arc conductivity
$\sigma_{arc}(t)$	_	Time dependent arc conductance
v_d	_	Electron drift velocity

LIST OF ABBREVIATIONS

CDEGS	_	Current Distribution, Electromagnetic Fields,	
		Grounding, and Soil Structure Analysis	
CIGRE	_	The International Council on Large Electric Systems	
		(in French: Conseil International des Grands Réseaux	
		Électriques, abbreviated CIGRÉ)	
DBN	_	Distance Between Nodes	
DBP	_	Distance Between Points	
DFS	_	Distance From Surface	
EM	_	Electromagnetic Approach	
ЕМ-МоМ	_	Electromagnetic Approach with Method of Moment	
EMTP	_	Electromagnetic Transient Program	
FFT	_	Fast Fourier Transform	
IEC	_	The International Electrotechnical Commission	
IEEE	_	The Institute of Electrical and Electronics Engineers	
IFFT	_	Inverse Fast Fourier Transform	
MATLAB	_	Matrix Laboratory	
МоМ	_	Method of Moment	
PSCAD	_	Power System Computer Aided Design	
TLC	_	Two–Layer Capacitor	

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Numerical Computations of a 10–m–long Grounding				
	Electrode	187			
В	Transient Characteristics of the Grounding Electrodes	189			
С	List of Publications	205			

CHAPTER 1

INTRODUCTION

1.1 Research Background

Grounding electrodes are used to efficiently disperse the high amplitude currents in the event of power system faults or lightning strikes. In addition, they are also important to ensure low and safe ground voltage levels are maintained. A typical configuration of a single grounding electrode is a buried horizontal electrode (counterpoises) or a driven vertical electrode (rod). The current that flows through these electrodes, especially due to lightning strikes, has a fast rate-of-rise and together with the effect of soil resistivity, it dictates the characteristic of the grounding electrode as either inductive or capacitive. This characterization is a significant factor in determining the overall grounding electrode impedance. The grounding electrode impedance can be modeled under transient conditions by using circuit models [1–5]. In the circuit models, the grounding electrode is represented either as a distributed or as a lumped circuit [6] with R, C, and L elements. In the lumped circuit model, the circuit elements are combined together into one section to give only a single resistance, inductance, and capacitance to represent the whole electrode impedance. On the other hand, in the distributed model, the elements are uniformly (as per-unit-length parameters) or non-uniformly distributed along the electrode. The elements of the circuits are computed by using relevant formulae

proposed by Sunde [7] and Dwight [8]. According to Sunde formula, the resistance and capacitance of the grounding electrode are related. In other words, R need to be first obtained before the value of C is determined. However, inductance, L, is determined independently. These circuit elements (R, C, and L) have static rather than dynamic values, that is they do not change during the impulse current duration. Hence, the effect of current amplitude and current rate–of–rise are not taken into account when computing the voltage response. Soil ionization is a phenomenon which occurs when impulse current is dispersed in the soil. This is especially true when the amplitude of the discharge current is high. The phenomenon substantially affects the values of R and C. In addition, the impulse current rate–of–rise also has a significant effect on the electrode inductance. Consequently, because of the soil ionization and current rate–of–rise are not taken into account [9] when computing R, C, and L, their static values are therefore overestimated. Hence, the computed voltage response of the grounding electrode using those static values is erroneous and sometimes this error can be significantly large and require further attention.

Various soil ionization models were proposed to improve the accuracy of computed R and C. These include work by Bellaschi et al. [10], Mohamad Nor, et al. [11], CIGRE [12], Geri [13], and Liew and Darveniza [14]. An attempt to include the soil ionization mechanism is described by Geri in [13]. In addition, the author also describes electric field enhancement in soil when subjected to high impulse current discharge, which in turn causes the breakdown of air voids that do exist among the mostly solid soil particles. The air breakdown is usually described in the form of arcs and arc growth. The arc growth is also usually further described as either in continuous form or discrete (or stepped) form. A discrete type of arc or ionization growth occurs because of the fact arcs cease to grow when the electric field intensity becomes less than the critical value, E_c . It is to be noted that previous soil ionization models assume a continuous or diffused ionization growth. Furthermore, the models incorporate the soil ionization effect by modifying either the soil resistivity or the grounding electrode radius. However, this modification is not a valid technique when considering the above-mentioned soil ionization mechanism.

It is also to be noted that, the majority of the soil ionization models proposed in [10–13] assume that the grounding electrode resistance is only a function of discharge current. Therefore, these models fail to determine the transient grounding electrode resistance during the current decay (tail) period. This is because in current decay period, the value of the grounding electrode resistance is mainly dependent on the energy balance between the produced heat energy in the arc within the voids and the absorbed heat energy by the soil particles. The so–called energy balance concept is defined as a concept where the computation of the air void arc resistance (and hence the grounding electrode resistance) is obtained by computing the actual balanced heat energy transferred between the air voids and the soil solid particles. A detailed explanation of this concept is given in the methodology section of this thesis.

In the grounding models developed by Bellaschi *et al.* [10], Mohamad Nor, *et al.* [11], CIGRE [12], and Geri [13], the arc resistance is assumed to be equal to zero. Therefore, previous soil ionization models fail to characterize the relationship between grounding electrode resistance and impulse current, in particular the hysteresis characteristic. It is known that neglecting the hysteresis characteristic causes a large error in the computation of the grounding electrode resistance especially when the impulse current reduces during the decaying period. According to [103], compared to the experimental value, the grounding electrode resistances obtained by models proposed by CIGRE [12], Bellaschi *et al.* [10], and Mohamad Nor *et al.* [11] at the current half time (T_h) give errors of 20%, 17%, and 25%, respectively.

It is also known that the computation of resistance, R, and capacitance, C, are related. Hence, the computation of C becomes erroneous when R is not accurate. Among the previous soil ionization models, only the soil ionization model proposed by Liew and Darveniza [14] gives an adequate accuracy when computing the transient grounding resistance. This is because the energy balance between the arc and the bulk of soil is considered. Nevertheless, the Liew–Darveniza's model still has several shortcomings. For example, the model assumes a diffused rather than a

discrete ionization growth. Hence, the discrete–breakdown path, which exists because of an air breakdown in voids enclosed among the soil particles, cannot be modeled [14, 15]. Furthermore, the solution for the general expressions of the soil resistivity (with soil ionization effect) often results in numerical divergence [16]. Another deficiency of the Liew–Darveniza's model is that the effect of soil capacitance is not considered. It is known that neglecting the soil capacitance leads to inaccurate grounding electrode voltage [9, 17].

In addition, to overcome the deficiency caused by inductance value, L, on electrode voltage, two methods were previously proposed, namely, the constant and the length–dependent distribution of parameters along the electrode. According to these methods the simultaneous effect of inductance value and current rate–of–rise factor on electrode voltage (v = L di(t) / dt) is reduced by distributing the inductance along the electrode. However, the results obtained from the above–mentioned methods are only valid under slow–fronted current waves (that is, the front time, $T_f > 1\mu$ s). Incorrect voltage responses are still obtained when the circuits are under fast–fronted current waves ($T_f < 1 \mu$ s).

Overall, the accuracy of the previously proposed models is dependent on several key parameters of the grounding electrode and the impulse current. The key parameters are defined as the electrode length, the current amplitude, the current front time, and the soil resistivity.

It is concluded that the soil ionization and current rate–of–rise factors have significant effects on both the circuit element values and the voltage response of the grounding electrode. However, these two factors are not properly considered in many grounding circuit models.

1.2 Research Problem Statement

A major drawback of both lumped and distributed grounding circuit models is that they fail to produce the correct transient voltage at the injection point of the lightning current. The root-cause of this error is due to the static nature and inaccurate estimation of R, C, and L, which are computed without considering two important influencing factors, namely, the soil ionization and current rate-of-rise.

Although several soil ionization models were previously proposed to enhance the value of R, but they still have several shortcomings. Firstly, in the previous models, the effect of soil ionization is only indirectly considered on the soil resistivity and on the electrode radius rather than the preferred direct effect on the grounding electrode resistance itself. Secondly, the previous soil ionization models can only be used for continuous type of ionization growth rather than the preferred discrete type of ionization growth, which frequently occurs when the grounding electrode is subjected to high amplitude impulse currents. Thirdly, apart from the soil ionization model proposed by Liew and Darveniza, all previous soil ionization models are inaccurate in determining the grounding electrode resistance because they neglect the effects of two important aspects, namely, the arc resistance and the so-called energy balance concept. Even though the soil ionization model proposed by Liew and Darveniza can be considered as accurate, the proposed model is complicated and the general expressions given to compute the variation of the soil resistivity often result in numerical divergence.

The effect of current rate-of-rise plays a direct role in determining the inductance, L. Two previous methods, namely, the constant, and the length-dependent distribution of parameters along the electrode, have been proposed to compute L. Both methods do not provide a correct electrode voltage response under fast front current waves (that is, the front time, $T_f < 1 \ \mu$ s). Under such current waveforms, correct electrode voltage response can only be obtained using a dynamically variable inductance depending on the front time of the waveform. It is

obvious that the effect of current rate–of–rise must be directly considered when computing the inductance *L*.

It is important to consider the soil ionization and current rate-of-rise factors in designing and implementing the power system protection and safety. This is because these factors directly affect the resultant grounding electrode voltage when discharging high current impulses. For example, the electrode peak voltage significantly reduces when the soil ionization is considered. Consequently, a direct improvement in the grounding electrode performance is achieved [9]. According to [13], for a typical horizontal grounding electrode, a 66.5% reduction in electrode voltage is observed when the soil ionization is considered in the computation of the grounding electrode resistance and voltage. Therefore, by considering the soil ionization effect on the behavior of the grounding electrode when discharging high current impulses, the margin of the protection level in power system can be increased. On the contrary, the high current rate-of-rise factor together with the electrode inductance cause the peak voltage of the grounding electrode to increase considerably. The peak voltage computed by the previously proposed grounding circuit model is considerably higher because of neglecting the current rate-of-rise factor. According to [9] a difference of 26% in the peak voltage of a typical grounding electrode was observed when computed using the electromagnetic computational model and the circuit model. Therefore, an overestimation may exist when designing the power system insulation coordination including the ratings of the protective devices. In short, by considering both the soil ionization and the current rate-of-rise factors, the cost of power system insulation coordination implementation can be reduced and hence the economic benefit of such considerations.

In this thesis, several new methods of computation are developed and proposed to enhance the accuracy of the above-mentioned static R, C, and L circuit elements. The key contribution to the success of the developed methods is the incorporation of two additional factors namely, 1) the effect of soil ionization (for improved R and C), and 2) the consideration of current rate-of-rise (for improved

L), in a new equivalent circuit model of a grounding electrode with dynamic elements for transient conditions.

1.3 Research Objectives

The objectives of the study are as follows:

- (i) To develop a new equivalent circuit model of a grounding electrode with dynamic resistance, capacitance, and inductance elements, which are achieved by considering the soil ionization and current rate-of-rise factors.
- (ii) To validate the accuracy of the equivalent circuit model of a grounding electrode by comparing the results obtained from the model with those obtained from other well-known experimental work and theoretical models.
- (iii) To evaluate the performance of the equivalent circuit model of a grounding electrode by changing the key parameters of the grounding electrode and impulse current.

1.4 Research Scope

In this research, an equivalent circuit model of a grounding electrode is developed to model the grounding electrode with the consideration of soil ionization and current rate–of–rise factors. The effect of soil ionization is directly considered in the form of a dynamic electrode resistance. Similarly, a dynamic soil capacitance is also proposed using Sunde equation ($RC = \rho \varepsilon$). As for the dynamic inductance, L_d , a new generalized formula is also derived.

MATLAB codes and CDEGS software are used to compute the dynamic resistance, capacitance, and inductance of the equivalent circuit model. When CDEGS software is used as a part in the computational step, all assumptions made in the corresponding electromagnetic approach with the method of moments are accepted as correct. For example, the electrode is assumed as a thin wire to presume a zero current at the open ends of an electrode. In addition, the grounding electrode is assumed to be made of cylindrical metallic conductor at which the ratio of the length of the conductor segment to its radius is larger than one.

In the performance analysis of the model, the soil critical electric field value, E_c , is considered as 300 kV/m, as suggested by IEEE standard. In the validation process, the results obtained from the model are compared to those obtained from the widely known theoretical models and experimental works. In particular, the following ranges of parameters are used: 40 Ω .m $\leq \rho \leq 5000 \Omega$.m, 3 m $\leq l \leq 30$ m, I_m ≤ 30 kA, $T_f > 0.15 \mu$ s, $d \geq 0.5$ m, and $E_c \geq 70$ kV/m, where ρ is the soil resistivity, I_m is the current amplitude, T_f is the current front time, l is the electrode length, d is the burial depth, and E_c is the soil critical electric field.

The application of the new equivalent circuit model is limited to single horizontal electrode (counterpoise) or single vertically driven rod. Furthermore, the new equivalent circuit model is only valid for homogeneous and uniformed soil. Finally, the voltage response of the grounding electrode model is computed at the current injection point, which is usually at one end of the said electrode.

1.5 Research Contributions

The significant contributions of the study are as follows.

i) Critical Review on Previous Models

Several lumped and distributed grounding circuit models were previously proposed to characterize the grounding electrode impedance behavior under transient conditions. However, the previous models fail to accurately determine the electrode voltage. In this study, previous models were critically reviewed to determine the root–causes of error in determining the electrode voltage response. A critical and comprehensive review is presented in Chapter 2. A review on the previously proposed circuit models of grounding electrodes revealed that neglecting two factors, namely, the soil ionization and current rate–of–rise factors, substantially affect the accuracy of the circuital models to determine the electrode voltage under slow– and fast–fronted currents. The review had enabled the development of a new and more accurate equivalent circuit model for a grounding electrode.

ii) A New Equivalent Circuit Model for Grounding Electrode with Improved Accuracy

Previous transient models for a grounding electrode are inaccurate and require further improvements. An innovative and accurate equivalent circuit model of a grounding electrode with consideration of the key factors of soil ionization and current rate–of–rise was developed. In the equivalent circuit model of the grounding electrode, dynamic resistance, R_d , capacitance, C_d , and inductance, L_d , were used to characterize the grounding electrode resistance, soil capacitance, and electrode inductance, respectively. New models and methods were developed to determine the above–mentioned dynamic circuit elements. A new soil ionization model was developed to determine the grounding electrode resistance and soil capacitance. The

principle of two-layer capacitor (TLC) was taken into account to model the soil particle and air void. Differential equations were derived to incorporate the soil ionization phenomenon inside the TLC network. A new method based on dynamic and static characteristics of arc and so-called energy balance concept was developed to compute the arc resistance in soil. Finally, a set of formulae were derived to compute the dynamic grounding electrode resistance and dynamic soil capacitance with soil ionization effect.

The significance of the developed soil ionization model are: 1) the dynamic grounding electrode resistance and dynamic soil capacitance values were obtained by considering the soil ionization effect, and 2) the hysteresis characteristic of the grounding electrode resistance was achieved. A new generalized formula was derived to calculate the dynamic inductance value of the grounding electrode with the consideration of the current rate–of–rise factor. The significance of the derived formula is that the dynamic inductance is accurately determined for all standard current wave shapes, such as CIGRE, double–exponential, and IEC 62305–1.

iii) Validation and Comparative Data for the Model

Several well-known experimental works and theoretical models were used to validate the accuracy of the new equivalent circuit model for a grounding electrode. The results from the experimental work are more accurate. The specifications and characteristics of the grounding electrode and impulse current defined in the several experimental works and theoretical models were used to set up the equivalent circuit model of the grounding electrode. The voltage responses and grounding electrode resistance values obtained from the equivalent circuit model were compared to those obtained by the experimental works and theoretical models. The comparison of the results with other theoretical models shows that the equivalent circuit model gives a better performance and accuracy in terms of voltage waveform, peak voltage, and grounding electrode resistance value. In addition, the grounding

electrode resistance shows a comparable hysteresis characteristic compared to experimental ones.

iv) Evaluation and Performance Data of the Model

The performance of the equivalent circuit model was evaluated by changing key parameters values of the grounding electrode and impulse current (electrode length, current amplitude, current front time, and soil resistivity). It is noted that the range of values are stated in the scope of this thesis. The simultaneous effect of soil ionization and current rate–of–rise were taken into account. The time variation of the grounding electrode resistance, arc resistance, hysteresis characteristic, grounding electrode impedance as well as the voltage of the electrodes were obtained. The small differences between the values obtained from the equivalent circuit model and those from theoretical models show the excellent performance of the equivalent circuit model in the above–mentioned challenging conditions. The proposed equivalent circuit model can be used as to provide reliable and more accurate results when computing grounding electrode response to various injected currents.

v) Optimized Grounding Electrode Design

The main significance of the study is the improved accuracy of the new equivalent circuit model of a grounding electrode with dynamic elements of R_d , C_d , and L_d . The elements can be obtained by simultaneous consideration of soil ionization and current rate–of–rise factors. This research shows that the voltage response of the improved model is very accurate and comparable to the other theoretical and experimental results. The new equivalent circuit model can be used to obtain the voltage response of a grounding electrode in typical installations and hence helps to optimize the overall grounding electrode design due to the improved accuracy. This new model also indirectly addresses any safety concern arising from such grounding electrode design especially when subjected to fast transients.

vi) Improved Insulation Coordination

The obtained results can be used as a reliable source for validation of any grounding electrode model. Another important significance of the model is that the equivalent circuit model can be directly applied or connected to power system equipment in standard simulation platforms. In this way, an accurate grounding electrode effect on the transient performance of key power equipment such as surge arresters can be obtained. Using this integrated approach, a better protection and insulation coordination characteristics can be designed.

1.6 Thesis Outline

Chapter 1 gives mainly emphasis to the objectives of the study and the methodology used to solve the stated problems. Chapter 2 presents a critical review on related works conducted to model the grounding electrodes and highlights the existing problems of the models. Chapter 3 presents a methodology used to develop a new grounding electrode model. Chapter 4 is assigned to validate and evaluate the accuracy and the performance of the equivalent circuit model by comparing the results obtained from the equivalent circuit model with those obtained from the well–known experimental works and theoretical models. Finally, Chapter 5 presents the conclusions and future recommendations.

REFERENCES

- Ametani A., Chikaraa T., Morii H., Kubo T. Impedance characteristics of grounding electrodes on earth surface. *Electric Power Systems Research*, 2012; 85: 38–43.
- Zhang B., Wu J., He J., Zeng R. Analysis of Transient Performance of Grounding System Considering Soil Ionization by Time Domain Method. *IEEE Transactions on Magnetics*, 2013; 49(5): 1837–1840.
- Theethayi N., Thottappillil R., Paolone M., Nucci C. A., Rachidi F. External impedance and admittance of buried horizontal wires for transient studies using transmission line analysis. *IEEE Transactions on Dielectrics and Electrical Insulation*, 2007; 14(3): 751–761.
- Velazquez R., Mukhedkar D. Analytical Modelling of Grounding Electrodes Transient Behavior. *IEEE Transactions on Power Apparatus and Systems*, 1984; 103(6): 1314–1322.
- Okabe S., Takami J., Nojima K. Grounding System Transient Characteristics of Underground GIS Substations. *IEEE Transactions on Power Delivery*, 2012; 27(3): 1494–1500.
- 6. Grcev L., Popov M. On high–frequency circuit equivalents of a vertical ground rod. *IEEE Transactions on Power Delivery*, 2005; 20(2): 1598–1603.
- Sunde E. D. Earth Conduction Effects in Transmission Systems. 2nd. ed. New York: Dover. 1968.
- Dwight H. B. Calculation of the resistances to ground. *Electral Engineering*, 1936; 55: 1319–1328.
- 9. Grcev L. Modeling of Grounding Electrodes Under Lightning Currents. *IEEE Transactions on Electromagnetic Compatibility*, 2009; 51(3): 559–571.

- Bellaschi P. L., Armington R. E., Snowden A. E. Impulse and 60–Cycle Characteristics of Driven Grounds–II. *Transactions of the American Institute* of Electrical Engineers, 1942; 61(6): 349–363.
- Mohamad Nor N., Haddad A., Griffiths H. Characterization of ionization phenomena in soils under fast impulses. *IEEE Transactions on Power Delivery*, 2006; 21(1): 353–361.
- Conseil International des Grands Réseaux Électriques (1991). *CIGRE 33–01–* 67. Paris: Conseil International des Grands Réseaux Électriques.
- Geri A. Behaviour of grounding systems excited by high impulse currents: the model and its validation. *IEEE Transactions on Power Delivery*, 1999; 14(3): 1008–1017.
- Liew A. C., Darveniza M. Dynamic model of impulse characteristics of concentrated earths. *Proceedings of the Institution of Electrical Engineers*, 1974; 121(2): 123–135.
- Wang J., Liew A. C., Darveniza M. Extension of dynamic model of impulse behavior of concentrated grounds at high currents. *IEEE Transactions on Power Delivery*, 2005; 20(3): 2160–2165.
- Sekioka S., Lorentzou M. I., Philippakou M. P., Prousalidis J. M. Current– dependent grounding resistance model based on energy balance of soil ionization. *IEEE Transactions on Power Delivery*, 2006; 21(1): 194–201.
- Mokhtari M., Abdul–Malek Z., Salam Z. An Improved Circuit–Based Model of a Grounding Electrode by Considering the Current Rate–of–rise and Soil Ionization Factors. *IEEE Transactions on Power Delivery*, 2015; 30(1): 211– 219.
- IEEE. Guide to Measurement of Impedance and Safety Characteristics of Large, Extended Or Interconnected Grounding Systems. IEEE Std 812. United States of America. 1992.
- Ackerman A., Sen P. K., Oertli C. Designing Safe and Reliable Grounding in AC Substations With Poor Soil Resistivity: An Interpretation of IEEE Std.80. *IEEE Transactions on Industry Applications*, 2013; 49(4): 1883–1889.
- Markovski B., Grcev L., Arnautovski–Toseva V. Step and touch voltages near wind turbine grounding during lightning strokes. *International Symposium on Electromagnetic Compatibility (EMC EUROPE)*. 17–21 September, 2012. Rome: IEEE. 2012. 1–6.

- Mokhtari M., Abdul–Malek Z. Influence of Soil Ionization on Earthing System Performance. *Progress Earthing Studies for Modern Life Style*. Johor Bahru, Malaysia: Universiti Teknologi Malaysia. 2015.
- Mokhtari M., Abdul–Malek Z., Khosravifard M., Ahmadi H., Omidi H. The Effects of Lightning Current Parameters on the Residual Voltage of ZnO Lightning Arrester with High Frequency Ground Model. *4th International Graduates Conference on Engineering, Science, and Humanities.* 16–17 April, 2013. Johor, Malaysia: Universiti Teknologi Malaysia. 2013. 156–159.
- Jong-Hyuk C., Hee-Kyung S., Dong-Seong K., Bok-Hee L. Grounding impedance based on the current distribution for the horizontal ground electrode installed in two-layer soil structure. 7th Asia-Pacific International Conference on Lightning (APL), 4 Nov, 2011. Chengdu, China: IEEE. 2011. 1–4.
- Grange F., Gourdan T., Blasquez P., Leschi D., Dawalibi F. P. A new methodology of cranes modeling for ITER grounding safety assessment. *International Symposium on Electromagnetic Compatibility (EMC Europe)*. 1–4 September, 2014. Gothenburg, Sweden: IEEE, 2014. 910–915.
- Jie L., Dawalibi F. P., Mitskevitch N., Joyal M. A., Tee S. Realistic and accurate model for analyzing substation grounding systems buried in various backfill material. *Power and Energy Engineering Conference (APPEEC)*. 7– 10 December, 2014. Hong Kong: IEEE PES Asia–Pacific. 2014. 1–6.
- Towne H. M. Impulse Characteristics of Driven Grounds. Generation Electrical Review. 1928; 31(11): 605–9.
- Cavka D., Rachidi F., Poljak D. On the Concept of Grounding Impedance of Multipoint Grounding Systems. *IEEE Transactions on Electromagnetic Compatibility*, 2014; 56(6): 1540–1544.
- Wang J., Zhang B., He J., Zeng R. A Comprehensive Approach for Transient Performance of Grounding System in the Time Domain. *IEEE Transactions* on *Electromagnetic Compatibility*, 2015; 57(2): 250–256.
- Run X., Bin C., Cheng G., Yun Y., Wen Y. FDTD Calculation Model for the Transient Analyses of Grounding Systems. *IEEE Transactions on Electromagnetic Compatibility*, 2014; 56(5): 1155–1162.
- IEEE. Recommended Practice for Electric Power Distribution for Industrial Plants. United States of America. IEEE Std 141. 1994

- Nelson J., Billman J., Bowen J. The Effect of System Grounding, Bus Insulation and Probability on Arc Flash Hazard Reduction – The Missing Link. *IEEE Transactions on Industry Applications*, 2014; (99):123–131.
- Zhang Z., Liu X., Piao Z. Fault line detection in neutral point ineffectively grounding power system based on phase–locked loop. *IET Generation*, *Transmission & Distribution*, 2014; 8(2): 273–280.
- Grcev L. Time– and Frequency–Dependent Lightning Surge Characteristics of Grounding Electrodes. *IEEE Transactions on Power Delivery*, 2009; 24(4): 2186–2196.
- Mohamad Nor N., Abdullah S., Rajab R., Ramar K. Field tests: Performances of practical earthing systems under lightning impulses. *International Journal* of Electrical Power and Energy Systems. 2013; 45(1): 223–228.
- Cavka D., Mora N., Rachidi F. A Comparison of Frequency–Dependent Soil Models: Application to the Analysis of Grounding Systems. *IEEE Transactions on Electromagnetic Compatibility*, 2014; 56(1): 177–187.
- Dos Santos T. L. T., De Oliveira R. M. S., Da S. S., Sobrinho C. L., Almeida J. F. Soil ionization in different types of grounding grids simulated by FDTD method. *Microwave and Optoelectronics Conference (IMOC)*. 3–6 November, 2009. Blem, Brazil: IEEE. 2009. 127–132.
- Fernández Pantoja M., Yarovoy A. G., Rubio Bretones A., González García S. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation. *Radio Science*. 2009;44(6): 145–155.
- Grcev L. Computation of transient voltages near complex grounding systems caused by lightning currents. Electromagnetic Compatibility, 17–21 Aug 1992. *IEEE International Symposium*. Anaheim, CA, USA: IEEE. 1992. 393–400.
- Grcev L. Lightning Surge Efficiency of Grounding Grids. *IEEE Transactions* on Power Delivery, 2011; 26(3): 1692–1699.
- 40. Grcev L., Dawalibi F. An electromagnetic model for transients in grounding systems. *IEEE Transactions on Power Delivery*, 1990; 5(4): 1773–1781.
- 41. Grcev L. Computer analysis of transient voltages in large grounding systems. *IEEE Transactions on Power Delivery*, 1996;11(2):815–823.
- 42. Grcev L., Menter F. E. Transient electromagnetic fields near large earthing systems. *IEEE Transactions on Magnetics*, 1996; 32(3): 1525–1528.

- 43. Li J., Yuan T., Yang Q., Sima W., Sun C., Zahn M. Numerical and Experimental Investigation of Grounding Electrode Impulse–Current Dispersal Regularity Considering the Transient Ionization Phenomenon. *IEEE Transactions on Power Delivery*, 2011; 26(4): 2647–2658.
- Nekhoul B., Guerin C., Labie P., Meunier G., Feuillet R., Brunotte X. A finite element method for calculating the electromagnetic fields generated by substation grounding systems. IEEE Transactions on Magnetics, 1995; 31(3): 2150–2153.
- Nekhoul B., Labie P., Zgainski F. X., Meunier G., Morillon F., Bourg S. Calculating the impedance of a grounding system. *IEEE Transactions on Magnetics*, 1996; 32(3): 1509–12.
- 46. Mohamad Nor N., Trlep M., Abdullah S., Rajab R., Ramar R. Determination of Threshold Electric Field of Practical Earthing Systems by FEM and Experimental Work. *IEEE Transactions on Power Delivery*, 2013; 28(4): 2180–2184.
- Otani K., Shiraki Y., Baba Y., Nagaoka N., Ametani A., Itamoto N. FDTD simulation of grounding electrodes considering soil ionization. *International Conference on Lightning Protection (ICLP)*. 2–7 September, 2012. Viena, Swtizerland: IEEE. 2012. 1–6.
- Poljak D., Lucic R., Doric V., Antonijevic S. Frequency domain boundary element versus time domain finite element model for the transient analysis of horizontal grounding electrode. *Engineering Analysis with Boundary Elements*. 2011; 35(3): 375–382.
- Run X., Bin C., Yun–Fei M., Wei D., Qun W., Yan–Yu Q. FDTD Modeling of the Earthing Conductor in the Transient Grounding Resistance Analysis. *IEEE Antennas and Wireless Propagation Letters*, 2012; 11: 957–960.
- Trlep M., Jesenik M., Hamler A. Transient Calculation of Electromagnetic Field for Grounding System Based on Consideration of Displacement Current. IEEE Transactions on Magnetics, 2012; 48(2): 207–210.
- Wang F .H., Jin Z. J. The FEM Analysis of Grounding System When Considering the Soil Ionization Phenomenon under Different Soil Structures. *Power and Energy Engineering Conference (APPEEC)*. 25–28 March, 2011. Wuhan, China: IEEE. 2011. 1–4.

- Miller E. K. and Deadrick F. J. Analysis of Wire Antennas in the Presence of a Conductive Half Space: Part III: The Buried Antenna. U.S Department of Energy by Lawrence Livermore National Laboratory. Report UC-37. 1977.
- Andolfato R., Bernardi L., Fellin L. Aerial and grounding system analysis by the shifting complex images method. *IEEE Transactions on Power Delivery*, 2000; 15(3): 1001–1009.
- Dawalibi F. Electromagnetic Fields Generated by Overhead and Buried Short Conductors Part 1 – Single Conductor. *IEEE Transactions on Power Delivery*, 1986;1(4):105–111.
- Dawalibi F. Electromagnetic Fields Generated by Overhead and Buried Short Conductors Part 2 – Ground Networks. *IEEE Transactions on Power Delivery*, 1986; 1(4): 112–119.
- 56. Salari J. C., Portela C. Grounding Systems Modeling Including Soil Ionization. *IEEE Transactions on Power Delivery*, 2008; 23(4): 1939–1945.
- 57. Visacro S., Soares A. HEM: a model for simulation of lightning-related engineering problems. *IEEE Transactions on Power Delivery*, 2005; 20(2): 1206–1208.
- Zhang B., He J., Lee J. B., Cui X., Zhao Z., Zou J. Numerical analysis of transient performance of grounding systems considering soil ionization by coupling moment method with circuit theory. *IEEE Transactions on Magnetics*, 2005; 41(5): 1440–1443.
- 59. Meliopoulos A. P., Moharam M. G. Transient Analysis of Grounding Systems. *IEEE Transactions on Power Apparatus and Systems*, 1983; 102(2): 389–399.
- Papalexopoulos A. D., Meliopoulos A. P. Frequency Dependent Characteristics of Grounding Systems. IEEE Transactions on Power Delivery, 1987; 2(4): 1073–1081.
- Devgan S. S, Whitehead E. R. Analytical Models for Distributed Grounding Systems. *IEEE Transactions on Power Apparatus and Systems*, 1973; 92(5): 1763–1770.
- Long W., Cotcher D., Ruiu D., Adam P., Lee S., Adapa R. EMTP–a powerful tool for analyzing power system transients. *IEEE Computer Applications in Power*, 1990; 3(3): 36–41.
- Mazzetti C., Veca G. M. Impulse Behavior of Ground Electrodes. *IEEE Power* Engineering Review, 1983; 3(9): 46–52.

- 64. Mentre F. E, Grcev L. EMTP-based model for grounding system analysis. *IEEE Transactions on Power Delivery*, 1994; 9(4): 1838–1849.
- 65. Richmond J. Radiation and scattering by thin-wire structures in a homogeneous conducting medium. *IEEE Transactions on Antennas and Propagation*, 1974; 22(2):365–73.
- 66. Verma R., Mukhedkar D. Impulse Impedance of Buried Ground Wire. *IEEE Transactions on Power Apparatus and Systems*, 1980; 99(5): 2003–2007.
- Liu Y., Theethayi N., Thottappillil R. An engineering model for transient analysis of grounding system under lightning strikes: nonuniform transmission–line approach. *IEEE Transactions on Power Delivery*, 2005; 20(2): 722–730.
- Sommerfeld A. Uber Die Ausbritung der Wellen in der Draftlosen Telegraphe. Annalen der Physik. 1909; 28: 665–736.
- 69. Harrington R. *Field Computation by Moment Methods*. Picataway, NJ: Wiley– IEEE Press. 1993.
- Ramamoorty M., Narayanan M. M. B, Parameswaran S., Mukhedkar D. Transient Performance of Grounding Grids. *IEEE Power Engineering Review*, 1989; 9(10):48–55.
- Rudenberg R. *Electrical Shock Waves in Power Systems*. Cambridge: Harvard University Press. 1986
- Snowden D. P., Morris G. C, Van Lint V. A. J. Measurement of the Dielectric Constant of Soil. *IEEE Transactions on Nuclear Science*, 1985; 32(6): 4312– 4314.
- Gadani D. H., Vyas A. D. Measurement of complex dielectric constant of soils of Gujarat at X– and C–band microwave frequencies. *Indian Journal of Radio and Space Physics*. 2008; 37: 221–229.
- 74. He J., Zeng R., Zhang B. *Methodology and Technology for Power System Grounding*. Singapore: John Wiley & Sons; 2013
- Lorentzou M. I., Hatziargyriou N. D., Papadias B. C. Time domain analysis of grounding electrodes impulse response. *IEEE Transactions on Power Delivery*, 2003; 18(2): 517–524.
- Mata C. T., Fernandez M. I., Rakov V. A., Uman M. A. EMTP modeling of a triggered–lightning strike to the phase conductor of an overhead distribution line. *IEEE Transactions on Power Delivery*, 2000; 15(4): 1175–1181.

- Gary C. The impedance of horizontally buried conductors. *International Symposium on Lightning Mountains*. Chamonix–Mont–Blanc, France: IEEE. 1994. 1–4.
- Mokhtari M., Abdul–Malek Z, Wooi C. L. Integration of Frequency Dependent Soil Electrical Properties in Grounding Electrode Circuit Model. *International Journal of Electrical and Computer Engineering*, 2016; 6(2), forthcoming.
- 79. Stoll R. L, Chen G., Pilling N. Comparison of two simple high-frequency earthing electrodes. *IEE Proceedings on Generation, Transmission and Distribution*, 2004; 151(2): 219–224.
- Grcev L. Improved earthing system design practices for reduction of transient voltages. *CIGRE conference*; 1998; Paris, France, Paper 36–302.
- He J., Zeng R., Tu Y., Zou J., Chen S., Guan Z. Laboratory investigation of impulse characteristics of transmission tower grounding devices. *IEEE Transactions on Power Delivery*, 2003; 18(3): 994–1001.
- 82. Gupta B. R., Thapar B. Impulse Impedance of Grounding Grids. *IEEE Transactions on Power Apparatus and Systems*, 1980; 99(6): 2357–2362.
- Bellaschi P. L., Armington R. E. Impulse and 60–cycle characteristics of driven grounds–III effect of lead in ground installation. *Electrical Engineering*, 1943; 62(6): 334–344.
- 84. British Standards Institution (2011). *IEC 62305–1*. London: British Standards Institution.
- Heidler F., Zischank W., Flisowski Z., Bouquegneau C., Mazzetti C. Parameters of Lightning Current Given in IEC 62305–Background, Experience and Outlook. 29th Int Conf on Lightning Protection. 23–26 June, 2008. Uppsala, Sweden: IEEE. 2008. 1–22.
- Mishra A. K., Ametani A., Nagaoka N., Okabe S. Nonuniform Characteristics of a Horizontal Grounding Electrode. *IEEE Transactions on Power Delivery*, 2007; 22(4): 2327–2334.
- Flanagan T. M., Mallon C. E., Denson R., Smith I. Electrical Breakdown Characteristics of Soil. *IEEE Transactions on Nuclear Science*, 1982; 29(6): 1887–1890.
- Petropoulos G. M. The high–voltage characteristics of earth resistances–Part I. Journal of the Institution of Electrical Engineers, 1948; 95(88): 172–174.

- 89. Petropoulos G. M. The high–voltage characteristics of earth resistances. *Journal of the Institution of Engineering*, 1948; 95(43): 59–70.
- Snowden D. P., Beale E. S., Van Lint V. A. J. The Effect of Gaseous Ambient on the Initiation of Breakdown in Soil. *IEEE Transactions on Nuclear Science*, 1986; 33(6): 1669–1674.
- Snowden D. P., Erler J. W. Initiation of Electrical Breakdown of Soil by Water Vaporization. *IEEE Transactions on Nuclear Science*, 1983; 30(6): 4568–4571.
- 92. Scott J. H. *Electrical and Magnetic Properties of Rock and Soil*. Theoretical Note 18. 1966.
- 93. Mohamad Nor N., Abdullah S., Rajab R., Othman Z. Comparison between utility sub-station and imitative earthing systems when subjected under lightning response. *International Journal of Electrical Power and Energy Systems*. 2012; 43(1): 156–161.
- 94. Manna T. K., Chowdhuri P. Generalised equation of soil critical electric field EC based on impulse tests and measured soil electrical parameters. *IET Generation, Transmission, and Distribution*, 2007; 1(5): 811–817.
- Naidu M. S, Kamaraju V. *High Voltage Engineering*. 2nd. ed. United States of America: McGraw–Hill. 1996
- 96. Mohamad Nor N., Abdullah S., Rajab R., Othman Z. Comparison between utility sub-station and imitative earthing systems when subjected under lightning response. *International Journal of Electrical Power and Energy Systems*, 2012; 43(1): 156–161.
- 97. Mohamad Nor N., Trlep M., Abdullah S., Rajab R. Investigations of earthing systems under steady-state and transients with FEM and experimental work. *International Journal of Electrical Power and Energy Systems*, 2013; 44(1): 758–763.
- Mousa A. M. The soil ionization gradient associated with discharge of high currents into concentrated electrodes. *IEEE Transactions on Power Delivery*, 1994; 9(3): 1669–1677.
- Oettle E. E. A new general estimation curve for predicting the impulse impedance of concentrated earth electrodes. *IEEE Transactions on Power Delivery*, 1988; 3(4): 2020–2029.

- 100. Oettle E. E. The characteristics of electrical breakdown and ionization processes in soil. *Transactions of the South African Institute of Electrical Engineers*, 1988: 63–70.
- 101. He J., Zhang B., Kang P., Zeng R. Lightning Impulse Breakdown Characteristics of Frozen Soil. *IEEE Transactions on Power Delivery*, 2008; 23(4): 2216–2223.
- 102. He J., Gau Y. Q., Zeng R. Soil Ionization Phenomenon Around Grounding Electrode under Lightning Impulse. Asia–Pacific International Symposium and Exhibition on Electromagnetic Compatibility: APEMC 2013. 20–23 May, 2013. Barton: Engineers Australia. 2013. 94–98.
- 103. Mokhtari M., Abdul–Malek Z. A Critical Review on Soil Ionisation Modelling for Grounding Electrodes. *Archives of Electrical Engineering*, 2016; 65(257): forthcoming.
- 104. Electrical Power Research Institution. *Improving Overhead Transmission Line Lightning Performance*. Palo Alto, California. Rep.1002019. 2004
- 105. Mokhtari M., Abdul–Malek Z. The Effect of Grounding Electrode Parameters on Soil Ionization and Transient Grounding Resistance using Electromagnetic Field Approach. *Applied Mechanics and Materials*, 2014; 554: 628–632.
- 106. Dwight H. B. Calculation of resistances to ground. *Electrical Engineering*, 1936; 55(12): 1319–1328.
- IEEE. Recommended Practice for Grounding of Industrial and Commercial Power Systems. United States. IEEE Std 142–2007 (Revision of IEEE Std 142–1991). 2007
- 108. British Standard Institution. Code of practice for ground investigations. London. BS 5930:2015. 2015
- 109. Mokhtari M., Abdul–Malek Z., Salam Z. The effect of soil ionization on transient grounding electrode resistance in non–homogeneous soil conditions. *International Transactions on Electrical Energy Systems*. DOI: 10.1002/etep.2157, 2015, forthcoming.
- Naderi M. S, Gharehpetian G. B., Abedi M., Blackburn T. R. An Experimental Investigation and Model Development of Arc Discharge during Impulse Test. 8th International Conference on Properties and applications of Dielectric Materials. 26–30 June, 2006. Bali: IEEE. 2006. 305–308.

- 111. Naderi M. S., Gharehpetian G. B., Abedi M., Blackburn T. R. Modeling and detection of transformer internal incipient fault during impulse test. *IEEE Transactions on Dielectrics and Electrical Insulation*, 2008; 15(1): 284–291.
- 112. Guardado J. L., Maximov S. G., Melgoza E., Naredo J. L., Moreno P. An improved arc model before current zero based on the combined Mayr and Cassie arc models. *IEEE Transactions on Power Delivery*, 2005; 20(1): 138– 142.
- 113. Mayr O. Beitrage zur theorie des statschen und des dynamischen lichtbogens. Arch fur Elektrotechnik. 1943; 37: 588–608.
- Ress J. A. *Electrical Breakdown of Gases*. Norwich, England: John Wiley & Sons. 1978
- 115. Mousa A. M. Breakdown Gradient of the Soil under Lightning Discharge Conditions. International Aerospace and Ground Conference on Lightning and Static Electricity. 6–8 October,1992; Atlantic City, New Jersey, U.S.A.: Addendum.1992.
- 116. Mokhtari M., Abdul–Malek Z., Wooi C. L. The Effects of Frequency on Soil Electromagnetic Model Behavior. *International Conference on Energy and Thermal Sciences 2014.* 26–27 November, 2014. Malaysia: Universiti Teknologi Malaysia. 2014. 169–172.
- 117. Mokhtari M., Abdul–Malek Z., Wooi C. L. The Effect of Frequency Dependence Soil Electrical Properties on Lightning Transient Response of Grounding Electrodes. *International Conference on Innovation in Science and Technology (IICIST 2015).* 20 April, 2015. Kuala Lumpur, Malaysia: Universiti Teknologi Malaysia. 2015. 504–507.
- 118. Mokhtari M., Abdul–Malek Z., Wooi C. L. Incorporating the Influence of Soil Dispersive Behavior in Electromagnetic Grounding System Analysis Using the Method of Moments in Frequency Domain. *International Conference on Innovation in Science and Technology (IICIST 2015).* 20 April, 2015. Kuala Lumpur, Malaysia: Universiti Teknologi Malaysia. 2015. 508–511.