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ABSTRACT 
 

 

 

 

Recent methods for detailed and accurate biomass and carbon stock estimation are 

driven by advances in remote sensing technology. However, this method heavily relies on 

the availability of species and area dependent allometric equations, which has been long 

based on the destructive method. This study introduces a non-destructive laser-based 

approach for individual tree aboveground biomass estimation by developing a semi-

automatic approach of individual tree measurement using the collected point cloud. 

Biomass of individual trees was derived from tree parameters estimated using terrestrial 

laser scanner (TLS) data and assessed with field collected data. This study also improvised 

available allometric models for aboveground biomass estimation based on tree species and 

individual tree properties obtained from TLS. Point cloud for this study were generated 

using TLS (Riegl-VZ400) representing 118 random trees from 39 plots established in 

Royal Belum forest reserve in the state of Perak, Malaysia. Individual tree census was 

carried out to collect detailed primary tree attributes such as diameter at breast height and 

tree height. The scanning process using TLS was done to acquire point cloud in multiple 

positions to ensure good visibility of individual tree. Detailed tree measurement was 

carried out on the point cloud generated from TLS and the results were compared with the 

ground collected data. The volume of tree trunk is estimated based on cylinder model 

fitting on point cloud. The biomass of tree trunk is calculated by multiplying the volume 

with the species dependent wood density values. The biomass of branches and leaves were 

estimated based on the same concept and the point cloud were fitted with convex-hull 

approach. The estimated biomass from TLS was compared with the biomass estimated 

using existing allometric equations. Measurements of individual tree attributes from the 

point cloud produced diameter at breast height estimates with of 0.06 cm root mean square 

error with overestimation of 0.03cm. The root mean square error value for tree height and 

crown base height estimates is 7.10m and 4.31m with underestimation of 3.07m and 1.05m 

respectively.  In general, the estimated biomass of tree trunk shows strong correlation with 

biomass value obtained from the allometric equation with r value of 0.97. The estimated 

branch and leaves biomass show poor relationship with biomass estimated using existing 

allometric equations with r value of -0.12 and 0.24 respectively. The findings on species-

specific non-destructive laser-based approach suggests similar correlation pattern 

observed for biomass of stem, branches, leaves and total aboveground biomass of all tree 

species with mean of r value of 0.92, -0.12, 0.24 and 0.91 respectively. The proposed 

methodology and results obtained in this study allow generation of species-specific 

allometric equations in which suitable with LiDAR-derived variables for individual trees 

biomass estimation which is a promising alternative approach to the destructive method.  
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ABSTRAK 

 

 

 

 
Kaedah terkini bagi penganggaran biojisim dan stok karbon secara terperinci dan 

tepat telah didorong oleh kemajuan dalam teknologi penderiaan jauh. Walau 

bagaimanapun, kaedah ini banyak bergantung kepada kebolehsediaan persamaan 

allometrik yang bergantung kepada ketersediaan spesis dan kawasan, yang telah lama 

digunakan berdasarkan kaedah memusnah. Kajian ini memperkenalkan pendekatan tidak 

memusnah berasaskan laser untuk penganggaran biojisim atas tanah bagi setiap pokok 

dengan menghasilkan kaedah penganggaran pokok individu secara separa automatik 

menggunakan titik awan. Biojisim bagi setiap pokok telah diperolehi menggunakan 

penganggaran pemboleh ubah pokok yang dianggarkan menggunakan pengimbas laser 

darat (TLS) dan dinilai menggunakan data lapangan. Kajian ini juga menambahbaik model 

allometrik sedia ada untuk penganggaran biojisim atas tanah berdasarkan spesis tertentu 

dan ciri-ciri pokok individu yang diperoleh daripada TLS. Titik awan untuk kajian ini telah 

dijana menggunakan TLS (Riegl-VZ400) yang mewakili 118 pokok secara rawak 

daripada 39 plot di hutan simpan Royal Belum, Perak, Malaysia. Bancian pokok secara 

individu telah dilakukan untuk mengumpul ciri-ciri utama pokok iaitu garis pusat pada 

paras dada dan ketinggian pokok secara terperinci. Proses imbasan menggunakan TLS 

untuk mendapatkan titik awan telah dilakukan pada beberapa posisi untuk memastikan 

penglihatan yang baik terhadap setiap pokok. Pengukuran pokok secara terperinci 

dijalankan pada titik awan yang dijana oleh TLS dan hasilnya dibandingkan dengan data 

lapangan. Isipadu batang pokok dianggar berdasarkan pemasangan model silinder pada 

titik awan. Biojisim batang pokok dikira dengan mendarabkan isipadu dengan ketumpatan 

kayu yang bergantung kepada spesis. Anggaran biojisim dahan dan daun adalah 

berdasarkan konsep yang sama dan titik awan dipasang menggunakan pendekatan hul 

cembung. Biojisim yang dianggar menggunakan data TLS telah dibandingkan dengan 

nilai anggaran menggunakan persamaan allometrik yang sedia ada. Pengukuran sifat-sifat 

pokok daripada titik awan telah memberi anggaran garis pusat pada paras dada dengan 

nilai punca purata ralat kuasa dua bersamaan 0.06cm dan dengan lebihan anggaran 

sebanyak 0.03cm. Nilai punca purata ralat kuasa dua untuk anggaran ketinggian pokok 

dan ketinggian dasar mahkota adalah 7.10m dan 4.31m dengan bawah anggaran 3.07m 

dan 1.05m. Secara umumnya, anggaran biojisim batang pokok menunjukkan korelasi yang 

kukuh terhadap nilai biojisim daripada persamaan allometrik dengan nilai r bersamaan 

0.97. Anggaran biojisim dahan dan daun menunjukkan hubungkait yang lemah terhadap 

nilai biojisim persamaan allometrik dengan nilai r bersamaan -0.12 dan 0.24. Dapatan dari 

kaedah pendekatan laser tidak memusnah terhadap spesis tertentu menunjukkan corak 

hasil korelasi yang sama terhadap biojisim batang, dahan, daun dan keseluruhan biojisim 

atas tanah bagi setiap spesis dengan nilai purata r bersamaan 0.92, -0.12, 0.24 dan 0.91. 

Kaedah yang dicadang dan hasil daripada kajian ini membolehkan persamaan allometrik 

spesis khusus yang bersesuaian dengan pemboleh ubah daripada LiDAR digunakan untuk 

penganggaran biojisim pokok-pokok dan menjadi pendekatan alternatif kepada kaedah 

memusnah.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

Forests area occupies thirty percent of terrestrial land surface with high 

biological diversity in which they shelter over two-thirds of known terrestrial species 

(WWF-Malaysia, 2013). It is hard to define a forest in few words in which when asked 

of it, most people will straightaway be thinking of trees. Forest is a whole lot more 

than just a large area full of trees, they are comprise of complex ecosystem of trees, 

animals and microorganism in which they help by providing habitats and food to 

maintain biodiversity (FAO, 2013). Amongst all types of forests, tropical rainforest is 

the most productive type of forest and rich in term of biodiversity as they provide home 

to variety of wildlife and tree species (WWF-Malaysia, 2013).  

 

 

Tropical forests lie in the equatorial region between tropics of cancer (23°N) 

and tropics of Capricorn (23°S), latitudes that receive constant sunlight throughout the 

year. According to Nix (2014), the global distribution of tropical rainforests can be 

divided into four realms which is the Neotropical, Afrotropical, Australian and 

Indomalayan as shown in Figure 1.1. The Neotropical realm includes the Amazon 
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River Basin, the largest continuous rainforest on earth. Afrotropical rainforest is 

mostly located in Congo River Basin and also some in western Africa characterized 

by dry and seasonal compared to other realm. Most of the Australian rainforest realm 

is located at New Guinea with only small portion in the northeast part of Australia. 

The remaining Asia’s tropical rainforest is in Indonesia, Malaysia, Cambodia and Laos 

known as the Indomalayan rainforest in which it is believed to be the oldest rainforest 

in the world (WWF-Malaysia, 2013). In tropical rainforest, trees can grow up 

incredibly tall as there is great competition to sunlight. Buttresses can be seen at the 

base of these huge trees to support their height and stabilize them in shallow forest 

soil. The structure of tropical rainforests are consists of several vertical layer which is 

the floor, shrub layer, understory, canopy and the overstorey (Butler, 2013b). 

 

 

 
Figure 1.1 Global distribution of Tropical Rainforest (Butler, 2013b) 

 

 

This study was conducted in Malaysia, one of the country listed as the world’s 

mega-diverse countries as it is ranked twelfth in the world on the National Biodiversity 

Index (The REDD Desk, 2012). Malaysia has experienced loss of forest area since 

1970s where the major factors are decentralised management of forest resources, 

reforestation, rapid expansion of industrial timber and palm oil industry. According to 

Butler (2013a), the released of high resolution Google forest map (Figure 1.2) have 

shown that Malaysia has the highest percentage of forest loss from 2000 to 2012. 

Planted trees or secondary forests unable to provide the same quality of primary forests 

in term of biodiversity, carbon sink and maintenance of ecological services in which 

showing that Malaysia suffered very extensive decrease of natural capital base.  
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Figure 1.2 Google forest map showing forest loss between 2000 to 2012  

(Butler, 2013a) 

 

 

The United Nation Reduced Emissions from Deforestation and Forest 

Degradation (REDD) programme has assigned financial value on the biomass and 

carbon stored in the forests in which has emphasised the importance of forests in 

carbon sequestration and mitigating climate change. Developing countries are given 

incentives based on the total land of their forested area (Parker et al., 2008). According 

to The REDD Desk (2012), Malaysia signed the UNFCCC in June 1992 and agreed to 

maintain at least 50 per cent of forest area and pledge to reduce 40 per cent of carbon 

from year 2005 to 2020. Malaysia also signed up to the Kyoto Protocol and take part 

as observer country to the REDD programme.  

 

 

Tropical rainforest capable of providing wide range of benefits mainly in 

ecological services. One of the most significant contributions is to encounter the issue 

of climate change by sequestering billions of tons of carbon. Forests canopies absorb 

carbon dioxide (CO2) from the atmosphere and store the carbon through 

photosynthesis process in their stem, branches, leaves and roots in which later 

deposited into soil carbon pool. As stated by FAO (2009), forest monitoring and 

management activities particularly in quantifying above-ground and below-ground 

biomass of trees are the essential input in climate change forecasting models. The 
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carbon stock and above-ground biomass terminology will be used interchangeably 

throughout this study as we acknowledge that biomass is typically 50 per cent of 

carbon (FAO, 2009). The role of forests in reducing carbon in the atmosphere has been 

highlighted in United Nations Framework Convention on Climate Change (UNFCCC) 

and Kyoto Protocol in which member countries are required to provide temporally and 

spatially fine-gained assessments of carbon stocks (Basuki et al., 2009).  

 

 

 Deforestation and forest degradation, specifically in the tropical regions 

contributes 12-20% of global green gases in the 1900s and early 2000s in which have 

reduced the future potential of carbon sink from forest area (Saatchi et al., 2011). 

Deforestation activity is one of the major source of carbon as the carbon are released 

to the atmosphere from the burning and clearing process. Even with only small 

increase in carbon sink into forest and soil may help in encountering the effect of 

human-induced carbon dioxide emission. The long term carbon exchange between 

terrestrial carbon pool and the atmosphere is influenced by changes of forests area and 

per hectare changes in forest biomass as a result of management and regrowth 

(Houghton, 2005).  

 

 

 
Figure 1.3 Greenhouse gases emission in 2000 by sources (Parker et al., 2008) 

 

 

 Billions of dollars will be spent as the compensation by REDD to the 

developing countries in preservation of their forested area. Considerable efforts have 

been done in quantifying and mapping the carbon stocks or above-ground biomass and 

one of the major challenge is the uncertainties and errors in the estimated biomass 

especially in tropics (Houghton, 2005). The effectiveness of REDD programme in 

above-ground biomass and carbon stocks mapping is depending on the quality of the 
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data. In the past, people normally estimates carbon or biomass by solely depending on 

the field measurements, a slow and labour intensive approach that highly anticipated 

with errors over large area due to sparse sampling. Traditional methods in acquiring 

forest parameters are time consuming and expensive to conduct. Besides, accurate 

measurements of biomass from individual trees are currently done through felling and 

weighing process in which are not practical in operational forestry (Kankare et al., 

2013a). Conventional method of allometric model development requires trees from 

various species and sizes to be cut down. Tree components (stem, branches and leaves) 

from felled trees are separated and weighed separately as individual components of 

tree biomass (Picard et al., 2012). This destructive approach is considered the most 

accurate methods for field measurement for the time being where it is used to calibrate 

carbon and biomass estimation using remote sensing technology.  

 

 

Recent methods for accurate carbon and biomass stock estimation have been 

driven by remote sensing technology. This remote sensing approach is supported by 

field measurements data where the biomass estimation is done by calibrating the 

measurement in the field with the remotely sensed data (Picard et al., 2012; FAO, 

2009) .The advancement in remote sensing have introduced laser scanning, a 

technology capable in describing the three dimensional forest structure from its high 

density point clouds data. Laser scanning technology is divided into two major 

platforms which is airborne and terrestrial. Airborne laser scanning capture the point 

clouds data from airplane providing a wide area coverage while terrestrial laser 

scanning is done on the ground placed on a tripod in which provides denser point 

clouds with labour- and cost effective accurate measurement that scales from single 

tree to plot level. Previous studies have shown that TLS capable in measuring several 

essential parameters in deriving individual stem volume and biomass estimation such 

as diameter at breast height, tree height, height to crown base, crown projection area, 

crown volume (Kankare et al., 2013a; Seidel et al., 2013; Hopkinson et al., 2004; Yao 

et al., 2011; Watt & Donoghue, 2005; Thies et al., 2004). Stem biomass contributes 

75-85% of total above-ground biomass in Boreal Forest Zone and therefore it must be 

measured accurately (Kankare et al., 2013a).  
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There are two approaches in estimating stem biomass of individual trees using 

TLS which is by (i) using existing allometric models (Seidel et al., 2013; Kankare et 

al., 2013a; Yao et al., 2011), and (ii) through direct volume to biomass conversion 

(Feliciano et al., 2014) . Allometric models is the study of relative size of plant parts 

and relationships between tree parameter such as diameter at breast height, tree height 

and tree species with total above-ground biomass. The models are highly affected by 

uncertainties and errors during the development. General models were normally 

developed to cope with multi-species and multi-site while some models are site-

specific in which supposedly able to provide better biomass estimation over the same 

forest environment (Seidel et al., 2013). The direct volume to biomass conversion can 

be done by multiplying volume of the stem with wood density as different tree species 

will have different density (Feliciano et al., 2014). The second method is more likely 

to produce a better estimation of stem biomass thus contributes to better estimation of 

total above-ground biomass.  

 

 

Many studies have been conducted using terrestrial laser scanning in tree 

measurements (Yao et al., 2011; Watt & Donoghue, 2005; Bucksch et al., 2009; 

Raumonen et al., 2013; Thies et al., 2004; Hopkinson et al., 2004) and pre-harvest 

biomass estimation (Kankare et al., 2013a; Seidel et al., 2013; Feliciano et al., 2014; 

Yao et al., 2011) to assess the accuracy and reliability of this technology in practical 

forestry. However, the use of terrestrial laser scanning in biomass estimation using 

volume to biomass conversion especially in tropical rainforest are still unclear. Further 

study and development should be focussing on applying this technology in complex 

forest structure of tropical rainforest and replacing the destructive conventional 

methods. The purpose of this study is to introduce a non-destructive laser-based 

method for above-ground biomass estimation of dominant tree species in Malaysia 

rainforest.  
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1.2 Problem Statement 

 

 

Measurement of biomass and carbon stock has become increasingly important 

especially one contributed by vegetation (Yao et al., 2011). Inevitably, large-scale 

estimation of carbon stock and biomass is heavily relied on the availability of 

allometric equation that allows estimation to be made accurately at individual tree 

level. However, the availability of local allometric equation is hindered by several 

factors including conventional approach in determining such equation, which usually 

based on a time consuming and expensive destructive sampling method (Singh et al., 

2011; Basuki et al., 2009; Ketterings et al., 2001). This further complicates by the fact 

that the equation is usually tree species, topographic and local climatic dependent 

(Chen et al., 2012; Næsset & Gobakken, 2008; Ni-Meister et al., 2010).  

 

 

Besides, allometric equation only employing several easy to measure tree 

parameters such as diameter at breast height, tree height and tree species (Chave et al., 

2014) which contain insufficient information from the crown structure. Crown 

biomass is assembled from combination of leaves and branch biomass (Kato et al., 

1978; Kankare et al., 2013a) where the parameters in describing the crown structure 

using conventional methods are time consuming and requires tremendous effort. 

Therefore, not enough attention were given on the crown biomass in which it is 

generally estimated using allometric equation in relationship with the stem biomass 

(Kato et al., 1978). Kankare et al., (2013a) have studied several biomass estimation 

models and one of the models does not employed information of crown structure and 

contributes errors for crown biomass during growing seasons in boreal zone. This 

crown size information might be considered as a source of error in crown biomass 

estimation in tropical rainforest with high density of crown structure throughout the 

year. Another method of converting volume of the stem directly to biomass supposed 

to give better estimation of biomass but still it requires destructive sampling.  

 

 

Recent methods for detailed and accurate carbon and biomass stock estimation 

over large area have been driven by remote sensing technology. However, indirect or 

inference methods from optical remote sensing and radar backscatter are regularly 

inaccurate due to shadowing effects (Gemmell, 1995) and signal saturation (Hamdan 
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et al., 2011). Nowadays, LiDAR-based remote sensing approach has been used 

effectively for detailed measurement of man-made and natural objects. The geometry 

of any object can easily reconstructed from point clouds and detailed measurement can 

be carried out on the object. Airborne and terrestrial LiDAR have been used to estimate 

above-ground biomass of vegetation at different scales and details (Yao et al., 2011; 

Hauglin et al., 2014; Lucas et al., 2006; Zhao et al., 2009). The scientific community 

has been exposed to significant increase in the availability of different global satellite 

data with various spatial and spectral resolutions. However, the use of these data is 

currently not supported by accurate field data in which most of allometric equations 

developed are based on easily measured tree parameter which is DBH (Brown et al., 

1989; Basuki et al., 2009; Chave et al., 2014; Kato et al., 1978).  

 

 

Terrestrial LiDAR have proven to be useful in providing detailed measurement 

of single tree, which is mostly required for development of allometric equation and 

estimation of individual tree above-ground biomass (Yao et al., 2011). Feliciano et al. 

(2014) have applied terrestrial LiDAR to measure stem volume at different height and 

quantify biomass of individual trees providing a non-destructive volume to biomass 

conversion method. Effort of utilizing terrestrial LiDAR for biomass estimation is still 

very limited and its advantage and limitation over tropical rainforest remain unclear. 

Challenge arise when using denser point cloud data from terrestrial LiDAR in tropical 

rainforest because the data is easily affected by noise and occlusion from overlapping 

emergent trees. Scanning position were configured to cope with the topography. 

Placement of scanning position also must consider the size of the tree because huge 

trees requires scanning distance of half the height of the tree according to the scan 

angle range of the scanner to cover the information of the crown structure. Therefore, 

all these factors must be thoroughly investigated to determine the effectiveness of 

terrestrial LiDAR in tropical rainforest. The purpose of this study is to evaluate the 

effectiveness of non-destructive laser based method for aboveground biomass 

estimation of dominant tree species in Malaysia rainforest. This is a novel method that 

combines detailed measurements of single tree with supplementary data of wood and 

leaf density in which so far has never been tested by previous studies. Development of 

terrestrial LiDAR technology and study in this field of research is crucial which 
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enables generation of a more effective and reliable ground data that could replace the 

conventional method. 

 

 

 

 

1.3 Research Objectives 

 

 

The aim of this research is to estimate the above-ground biomass using non-destructive 

laser scanning approach for selective tree species in Malaysia’s tropical rainforest. 

This aim is supported by several specific objectives: 

 

 

i) To develop a semi-automatic method of individual tree measurement based 

on detailed geometric reconstruction of different tree parts from point 

clouds. 

 

 

ii) To estimate individual tree total above-ground biomass based on TLS 

derived tree parameters and field collected data (i.e. tree species, wood 

density and leaf density). 

 

 

iii) To assess the estimated tree properties and biomass obtained from laser 

scanning method with field collected data and available allometric 

equation. 

 

 

iv) To improvise available allometric aboveground biomass models for 

aboveground biomass estimation based on tree species and individual tree 

properties obtained from TLS. 
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1.4  Research Questions 

 

 

i) To develop a semi-automatic method of individual tree measurement based 

on detailed geometric reconstruction of different tree parts from point 

clouds. 

 

 

a) How accurate the measurement of stem (eg. diameter at breast height 

and volume) based on cylinder fitting applied on the point clouds 

surface? 

b) How accurate the tree height measured from point clouds compared to 

the tree height derived from allometric models? 

 

 

ii) To estimate individual tree total above-ground biomass based on TLS 

derived tree parameters and field collected data (i.e. tree species, wood 

density and leaf density). 

 

 

a) Is it feasible to estimate branches and leaves biomass solely from TLS 

data? 

 

 

b) How much improvement does supplementary information from crown 

structure provides on TAGB estimation? 
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iii) To assess the estimated tree properties and biomass obtained from laser 

scanning method with field collected data and available allometric 

equation. 

 

 

a) How close is biomass estimated for every tree component from TLS in 

comparison with existing allometric model? 

 

b) How significant are the tree parameters (DBH, tree height, crown base 

height, stem volume, branches and leaves volume measured from TLS 

data) in biomass estimation? 

 

 

c) Does the size of the tree influence the accuracy of the measurements? 

 

 

iv) To improvise available allometric aboveground biomass models for 

aboveground biomass estimation based on individual tree properties 

obtained from TLS. 

 

 

a) What is the relationship between TLS estimated stem, branches and 

leaves volume with stem, branches and leaves biomass? 

 

 

b) What is the relationship between tree parameters estimated from TLS 

with TAGB? 

 

 

c) How much improvement does species-specific relationships 

contributes to regression models? 
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1.5 Significance of Study 

 

 

According to UN-REDD Programme (2009), Reducing emissions from 

Deforestation and Forest Degradation (REDD) is an effort to create a financial value 

for the carbon stored in forests. REDD offer incentives for developing countries to 

reduce emissions from forested lands and invest in low-carbon paths to sustainable 

developments. Malaysia have also prepared on the roadmap to REDD+ 

implementation consists of strategy, scope, financing and management structure 

(NRE, 2011). Detailed forest inventory and mensuration of individual trees for the 

purpose of biomass estimation have drawn attention of research society mainly to 

support sustainable forest management and global carbon sequestration. This study 

will utilize terrestrial laser scanning, a ground-based remote sensing technique that 

capable in retrieving three dimensional vegetation structure in high detail for 

aboveground biomass estimation. Traditional methods in acquiring forest parameters 

are time consuming and expensive to conduct. Accurate quantification of biomass 

from individual trees are currently done through felling and weighing process in which 

are not practical in operational forestry.  

 

 

This study is an effort to produce a non-destructive method for individual tree 

or plot-level biomass estimation. Through the reconstruction of the individual tree 

parts, tree parameters such as diameter at different level of height, tree height, height 

to crown base and stem volume can be computed digitally with high accuracy using 

dense terrestrial LiDAR point clouds. The measurement from TLS also include the 

crown metrics which is hard to measure in forest inventory and basically are modelled 

based on other easily measured tree parameters such as height and diameter at breast 

height. Direct measurement from TLS is expected to provide more effective tree 

measurement and biomass estimation in which will be investigated throughout this 

study. Multi-scan approach (Hauglin et al., 2014; Hopkinson et al., 2004; Kankare et 

al., 2013a) employed in this study will provide detailed datasets that can be used in 

tree components reconstruction to measure stem, branches and leaves volume directly 

from the point clouds, providing a geometrical approach of biomass estimation rather 

than depending on allometric equations (Yao et al., 2011).  
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This study will promote terrestrial laser scanning as a viable option for a fast 

and accurate aboveground biomass estimation compared to conventional methods. 

Local agencies such as Forest Research Institute of Malaysia (FRIM) which is actively 

involved with monitoring carbon changes in Peninsular Malaysia and Borneo region 

can get exposed to this kind of technology and utilize it in forest measurement. This 

study also capable in proving that TLS also can be used effectively in precision 

agriculture to effectively monitor growth of individual trees through temporal 

measurements of tree attributes in which is also currently researched by Malaysia 

Rubber Board (LGM). This technology will provide a non-destructive pre-harvest 

measurement and biomass estimation in determining the value of individual trees. 

Therefore, the output of this study which is the biomass estimation in the plot level 

using state-of-the-art terrestrial LiDAR technology can be seen as a future potential in 

replacing the destructive conventional methods for sustainable forest management in 

Malaysia rainforest. 

 

 

 

 

1.6 Scope of Study 

 

 

 This study is conducted in Royal Belum State Park located at 45 kilometers 

from Gerik, Perak in Malaysia. Primary data collected for this study is high density 

point clouds data generated from Riegl VZ400, a time-of-flight terrestrial laser scanner 

for 35 forest plots that includes various sizes of dominant trees and some parts of 

understory vegetation. However, trees from only several plots were used for this study 

due to manually intensive individual tree extraction and time constraint. This study is 

also based on biomass estimation on individual trees level not on stand-level 

measurement because this study is focusing on developing a tool for detail biomass 

estimation of individual trees in which the tool is still under development.  

 

 

Besides, this kind of study is still uncommon in tropical rainforest where most 

of the study and practical forestry works done by the local institutions such as Forest 

Research Institute of Malaysia (FRIM) are depending solely on utilizing the existing 

allometric models. The point clouds from different scanning position were registered 

into a relative projected coordinate system and not assigned into local coordinate 
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system because this study only focused on the tree measurements and development of 

biomass estimation model which does not require precise positioning of points to 

represents the real world. Every plots have radius of 12.6 meters, scanned with 4 

positions, which covers the centre and 3 edge locations of the forest plot with distance 

approximately 2 meters from the plot boundary. Each scanning position was selected 

based on the location of trees and the condition of the terrain. This multi-scan approach 

is the only way to cover any occluded trees from any scanning station and to get as 

much data as possible considering the gigantic size of trees, huge creepers twine over 

trees and topography of the surrounding area. Measurement is carried out on individual 

tree by separating it with neighboring and understory vegetation that may complicate 

the processing stage.  

 

 

Previous studies have shown that point cloud generated from terrestrial laser 

scanning can be used to retrieve several tree parameters such as tree height, height to 

crown base, diameter at breast height, trunk volume, crown projection area, crown 

volume, leaf area index. However, this study only focused on measuring the crucial 

parameters for biomass estimation which is diameter at breast height, tree height, 

height to crown base, stem volume, branches volume, leaves volume and crown 

volume. The selection of parameters is based on the previous studies on volume to 

biomass conversion and the available biometric data. The estimated stem volume is 

measured roughly using point cloud fitting method without any validation because 

validation can only be done by cutting down trees and measure every dimension of its 

stem in which have not been done anymore by any local institution or forestry 

department. Same goes to the estimated biomass in which the results can only be 

compared with the existing allometric models to see the reliability of this methods. 

Further study on this matter is required to assess the accuracy of the trunk volume 

measured from point clouds data that will contribute errors in the biomass estimation 

and to see how accurate biomass estimation using this method. 
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1.7 Description of Study Area 

 

 

 This study is carried out at the northern part of Peninsular Malaysia in Royal 

Belum State Park, Gerik in the state of Perak. The coordinate of the area is around 5º 

33’ 25.68” N and 101º38’29.41” E, located at 230km away from Ipoh and 430.5km 

from Kuala Lumpur. This area receiving 1998 to 2300mm of mean annual rainfall, 

varies throughout the year. Royal Belum State Park is considered as one of the World’s 

oldest rainforest which is believed to have been existence for more than 130 million 

years, older than the Amazon and the Congo. According to (WWF-Malaysia, 2013), 

Royal Belum State Park (RBSP) was gazetted as a protected area on 3 May 2007 under 

the Perak State Parks Corporation Enactment 2001. The park covers a total area of 

117,500ha in the most northerly region of the State of Perak in northern Peninsular 

Malaysia. RBSP lies between border of Thailand on the north, the state of Kelantan to 

the east and Sungai Gadong in the west. Royal Belum State Park consists of forest, 

grassland, abandoned agricultural plots, and a large man-made lake, Tasik Temenggor. 

Forest types found here are mainly lowland dipterocarp, hill dipterocarp and upper 

dipterocarp. The majority of species are characteristic of tropical rainforest in 

Peninsular Malaysia, Sumatra and Bornea such as Meranti and Keruing.  
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Figure 1.4 Map and Boundary (red boundary) of in Royal Belum Forest Reserve, 

Gerik, Perak, Malaysia  
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1.8 Thesis Outline 

 

 

 This thesis consists of five chapters in which each chapter are separated 

systematically to clearly show the significance of this study towards sustainable 

biomass estimation using state-of-the-art terrestrial laser scanner (TLS). Chapter 1 

contains sub-chapters that drive the initiative in conducting this research with 

background of study showing roles of aboveground biomass in carbon cycle modelling 

and the importance of accurate aboveground biomass estimation according to REDD 

Programme under United Nation. This chapter also stated the problem faced with 

conventional approach and previous study using TLS in tree measurements and 

aboveground biomass estimation. Objectives and research questions developed were 

also outlined in this thesis as a guideline throughout the study.  Significance of study 

discussed on the contributions of this study to knowledge on the usage of TLS in 

forestry applications particularly in aboveground biomass estimation. Furthermore, 

this sub-chapter discussed on potential local agencies that has shown interest in the use 

of TLS in forestry or agricultural in terms of accurate tree measurements and tree 

growth monitoring. Scope and limitation of this study also presented in this chapter to 

ensure that this study can be completed within proposed timeframe. 

 

 

 Chapter 2 summarizes reviews from relevant literatures in which this chapter 

discusses on the advancement of remote sensing technology particularly in forest 

biomass mapping and tree measurements from conventional method to satellite-based 

and to laser-based approach. This chapter also highlighted problems faced from the 

development of allometric equations from conventional method and also insufficient 

studies on using TLS for biomass estimation in tropical rainforest that will be partially 

fulfilled by this study. Chapter 3 are fully devoted to introduce datasets and several 

methodologies used in this study. Methodologies highlighted are plot configuration in 

the field, semi-automatic measurements of tree attributes from TLS point cloud data 

and volume-to-biomass conversion that derived the TLS-estimated individual tree 

aboveground biomass. Methods of validation were also discussed in which tree semi-

automatic tree measurements are validated using biometric data while aboveground 

biomass were validated using existing allometric equation (Kato et al., 1978) suited 

for the purpose of this study. 
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 Chapter 4 focusses on presenting and discussing the results from data 

processing outlined in Chapter 3. This chapter shows detailed results from data 

preparation in pre-processing phase in which includes point cloud registration, multi-

station adjustment, individual tree extraction, and separation of point clouds from 

different tree components. Distribution of tree sizes and tree species and number of 

trees involved in this study are shown in descriptive statistics. Besides, this chapter 

also discussed on the accuracy of tree measurements obtained from TLS in which most 

of the discussion is about the problems of tree height measured from TLS that causes 

from multi-layered trees that obstruct the laser pulses from reaching the tree tops. 

Crown base height (CBH) measurement are subjective to error due to absent of any 

markings on the tree at CBH position during data collection in the field. Diameter at 

breast height shows as the best tree attributes that can be derived from TLS. Volume 

estimation for each of tree components (stem, branches and leaves) were used in 

conversion into biomass through multiplication with wood and leaves density. 

Individual tree measurements and aboveground biomass estimation for every tree 

component were validated with biometric data and existing allometric model. Results 

obtained were used to develop general and species-specific allometric equations based 

on existing primary allometric equation. 

 

 

The results obtained shown in Chapter 4 are then used in Chapter 5 to answer 

all research questions thus proved that objectives from this study were successfully 

achieved. Chapter 5 also presented recommendation to improve current status of this 

study as continuation of this study is highly recommended due to the findings shows 

by this study which is biomass estimation and development of allometric equations in 

condition of tropical rainforest using TLS. The overall organization of this thesis is 

shown in Figure 1.5. 
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Figure 1.5 Schematic outline of the thesis 

 

Chapter 1 

Introduction 

Chapter 2 
Reviews on related studies and technological advances in remote 

sensing for aboveground biomass estimation 

Chapter 3 
Methological framework for semi-automatic tree measurements, 

aboveground biomass estimation and allometric model development using 

terrestrial laser scanner 

Chapter 4 
Results and discussion for individual tree measurements, individual tree 

aboveground biomass estimation and secondary allometric models derived 

from terrestrial laser scanner 

Chapter 5 
Conclusion and recommendations 
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