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ABSTRACT 
 
 
 
 

The focus of this study is on vegetation species mapping using high spatial 

resolution IKONOS-2 and digital Color Infrared (CIR) Aerial Photos (spatial 

resolution 4 m for IKONOS-2 and 20 cm for CIR) and Hyperion Hyperspectral data 

(spectral resolution 10 nm) in Pasoh Forest Reserve, Negeri Sembilan. Spatial and 

spectral separability in distinguishing vegetation species were investigated prior to 

vegetation species mapping to provide optimal vegetation species discrimination. A 

total of 88 selected vegetation species and common timber groups of the dominant 

family Dipterocarpaceae with diameter at breast height more than 30 cm were used 

in this study, where trees spectra were collected by both in situ and laboratory 

measurements of foliar samples. The trees spectra were analysed using first and 

second order derivative analysis together with scatter matrix plot based on multi-

objective optimization algorithm to identify the best separability and sensitive 

wavelength portions for vegetation species mapping. In high spatial resolution data 

mapping, both IKONOS-2 and CIR data were classified by supervised classification 

approach using maximum likelihood and neural network classifiers, while the 

Hyperion data was classified by spectral angle mapper and linear mixture modeling. 

Results of this study indicate that only a total of ten common timber group of 

dominant Dipterocarpaceae genus were able to be recognized at significant 

divergence. Both high spatial resolution data (IKONOS-2 and CIR) gave very good 

classification accuracy of more than 83%.  The classified hyperspectral data at 30 m 

spatial resolution gave a classification accuracy of 65%, hence confirming that 

spatial resolution is more sensitive in identification of tree genus.  However, for 

species mapping, both high spatial and spectral remotely sensed data used are 

marginally less sensitive than at genus level.   
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ABSTRAK 

 
 
 
 

Kajian ini memfokuskan pemetaan spesies tumbuhan dengan menggunakan 

data resolusi spatial yang tinggi IKONOS-2 dan foto udara berdigit inframerah 

berwarna (CIR) (resolusi spatial 4 m bagi data IKONOS-2 dan 20 cm untuk CIR) 

dan data Hyperion Hyperspectral (resolusi spektral 10 nm) di Hutan Simpanan 

Pasoh, Negeri Sembilan. Untuk memberi perbezaan spesies tumbuhan yang 

optimum, keupayaan pemisahan spatial dan spektral dikaji terlebih dahulu sebelum 

pemetaan spesies tumbuhan dijalankan. Sejumlah 88 jenis spesies tumbuhan terpilih 

dan tumbuhan dalam kumpulan balak umum untuk keluarga dominan 

Dipterocarpaceae yang mempunyai diameter pada ketinggian paras dada lebih 

daripada 30 cm telah digunakan di mana spektra pokok dikumpulkan dengan 

penyampelan folia lapangan dan makmal. Untuk mengenalpasti pemisahan bahagian 

panjang gelombang yang baik dan sensitif dalam pemetaan spesies tumbuhan, 

spektra pokok dianalisis dengan analisa derivatif pertama dan kedua bersama dengan 

plot matrik serakan berasaskan algoritma optimikasi multi-objektif. Dalam pemetaan 

data resolusi spatial tinggi, data IKONOS-2 dan CIR dikelaskan dengan pendekatan 

pengkelasan berpenyelia menggunakan pengkelas kemungkinan maksimum dan 

rangkaian saraf manakala data Hyperion dikelaskan dengan pemeta spektra bersudut 

dan model campuran berkadar langsung. Keputusan kajian ini menunjukkan bahawa 

hanya sejumlah sepuluh jenis kumpulan balak umum dalam keluarga dominan 

Dipterocarpaceae dapat dikenali dengan nyata perbezaannya pada peringkat genus. 

Kedua-dua data resolusi spatial yang tinggi (IKONOS-2 dan CIR) memberi 

ketepatan pengkelasan yang sangat baik, iaitu melebihi 83%. Data hyperspectal yang 

telah dikelaskan pada resolusi spatial 30 m memberi ketepatan pengkelasan 65%, 

maka disahkan bahawa resolusi spatial adalah lebih sensitif dalam mengenalpasti 

genus pokok. Walau bagaimanapun, bagi pemetaan spesies, kedua-dua data remote 

sensing yang mempunyai resolusi spatial dan spektral yang tinggi adalah kurang 

sensitif jika berbanding dengan pemetaan tumbuhan pada peringkat genus.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Introduction 
 
 

Vegetation can be defined as plant life of a region (i.e. plant community), 

which refers to land cover provided by plants without specific reference to any 

structure, spatial extent, or any other specific botanical or geographical 

characteristics (Jensen, 2000; Austin and Heyligers, 1991). Vegetation is broader 

than the term flora which refers exclusively to species composition (Laubenfels, 

1975). Vegetation is known to have a strong influence on land-atmosphere 

interactions, and major changes in land cover, associated primarily with deforestation, 

have been shown to have significant impacts on the local climate (Fuentes et al., 

2006). Vegetation is critical in local and global energy balances which helps in 

regulating the flow of numerous biogeochemical cycles, including water, carbon, and 

nitrogen.  

 
 
Most people have an understanding that vegetation refers to forest, plantation 

and grassland in which these terms conjure up an image of what such vegetation 

looks like. However, ecologists discriminate vegetation structure at a much more 

detailed level, whereby the vegetation structure is determined by an interacting 

combination of environmental and historical factors, as well as species composition 

(Kabat et al., 2004). In this study, the term vegetation is thus confined to the forest 

vegetation that exists in the study area.  
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Vegetation studies over the forested area have become a great interest of 

ecologists and scientists due to its importance in maintaining a sustainable biological 

diversity in this complex ecosystem (Clark et al., 2005).  Over 30 percent of the 

Earth's surface is covered with forests, a community of plants, animals, and many 

other micro-organisms with vegetation dominating the largest organism found on this 

planet. Out of this 30 percent, 6.4 percent is covered by tropical rainforest. The 

existing of tropical rainforest may not be so significant by looking at the percentage 

of total forests exist on Earth but it maintain a large proportion of the world’s 

biological diversity (Thomas et al., 2004; Whitmore, 1990).  Tropical rainforest has 

become the most notable storehouses of biological diversity on land, accumulating 

two-thirds of known terrestrial species and protects the largest share of threatened 

species. The type of forest in a given area depends on many elements, including the 

climate, soil, water source, rainfall patterns, seed sources and human influence.  

Forest can also be defined as a  biological system with distinctively big numbers of 

interrelationships of the living part of the environment (such as plants, animals and 

micro-organisms) to each other and to the non-living, inorganic or abiotic parts (e.g. 

soil, climate, water, organic debris, rocks) (Maarel, 2004).   

 
 
The tropical rain forest of Malaysia is a highly complex ecosystem which is 

rich and varied in plant and animal life. The forest maintains the environment 

stability of the country and is a store house of plant and animal species in such a way 

that their richness and diversity are considered as the centre of origin and diversity of 

many present-day as well as future crop plants (Chin and Lai, 1993). 

 
 
Vegetation studies, particularly the forests inventory and management, 

including species richness mapping have always remained as an issue of concern by 

all parties over the world (Revilla, 1994). It plays an important role in the economic 

development of a country, generating much government revenues, especially in 

terms of foreign exchange earnings, such as the development of local wood-based 

and related industries and employment. The complex ecological relationships 

involving forests could allow humans to benefit from them in a variety of ways (e.g. 

processing the wood from trees, adopting nutrition from animals, making the forest 
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into a recreation park, as a medicinal source and so on) (WWF, 2005). The 

importance of vegetation studies are further discussed in next section.  

 
 
 
 

1.2 Importance of Vegetation Studies 
 
 

Vegetation is one of the most important components in the biosphere. 

Vegetation being the primary producer and capable of photosynthesis, its growth, 

maintenance and development are sensitive to the environment. Therefore, it 

provides evidence or clues for us to understand other processes of the ecosystem, 

such as climate changes, carbon cycling, ecosystem evolution, and human-nature 

interaction. Understanding the vegetation community (including its species richness 

and evenness), alternations in vegetation phenological (growth) cycles, and 

modifications in plant physiology and morphology also provide us with valuable 

insight into the changing of climatic, geologic, and physiographic characteristics of 

an area (Jensen, 2000). 

 
 
The importance of vegetation study is getting more significant with the 

establishment of the Kyoto Protocol. The Kyoto Protocol is a protocol to the United 

Nations Framework Convention on Climate Change (UNFCCC or FCCC) and an 

international environmental treaty produced at the United Nations Conference on 

Environment and Development (UNCED) which is informally known as the Earth 

Summit held in Rio de Janeiro, Brazil from 3–14 June 1992.  During the convention, 

the member countries (and Malaysia is one of the member countries) who signed the 

treaty agreed and intended to achieve the "stabilization of greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous 

anthropogenic interference with the climate system" (UNFCC, 2005). The Kyoto 

Protocol establishes legally binding commitments for the reduction of four 

greenhouse gases (carbon dioxide, methane, nitrous oxide, sulfur hexafluoride). 

Vegetation plays an important role in reducing the emission of greenhouse gases and 

the circulation of carbon (Smith, 2003). Warmer global temperatures which linked 

directly to greenhouse gas emission may alter tree growth rates, recruitment and 
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mortality, thereby creating new assemblages of tree as global temperature increase 

and extinction of some vegetation species (Laurance et al., 2004).  

 
 
Some observations made have concluded that 80 percent of the nutrients in 

the tropical ecosystem are in the vegetation and this should always be carefully 

weighed in the design/formulation of forest management system in the tropics 

(McGinley and Finegan, 2003; Mendoza et al., 1999; Prabhu et al., 1996). This 

situation is more serious in cases where there is a danger of accelerated soil erosion 

resulting in the loss of most nutrients in the soil, or, in the event where the original 

vegetation has to give way to plantations (Zhang et al., 2003 and Revilla, 1994). 

Tropical rainforest biodiversity is endangered by large scale (e.g., 10-500 ha) 

deforestation and logging activities (Achard et al., 2002). Some vegetation species 

are very sensitive to environmental changes. For example, wetland vegetation 

species can be a good indicator of the environmental changes once the anticipated 

biophysical parameters are determined. The importance of vegetation in biodiversity 

has led to the concerns for forest inventories that include type of forest inventories 

involving precision of estimates, accuracy of estimates, control of re-enumeration, 

systematic sampling and monitoring of forest change.  

 
 
Malaysia is fully aware of the need for effective forest management and 

conservation, not only to ensure a sustained supply of timber but also to maintain 

environmental stability, providing sanctuary for wildlife and to serve as an 

invaluable storehouse of genetic resources useful for the improvement of its 

indigenous tree species, agricultural crops and live stocks (Razak et al., 2002; 

Appanah, 1999; Salleh and Musa, 1994).  From individual crown to landscape scales, 

vegetation in tropical rainforest has a dominant role in maintaining its rich 

environment sustainability. Furthermore, vegetation of the tropical rainforest 

represents a major pool of terrestrial carbon. In this instance, remote sensing can be 

used as an effective tool to monitor, perform inventory mapping and detecting the 

sustainable environment.  

 

The growing needs to conserve and provide accurate information on forest 

biophysical parameters implies the relative importance of different vegetation species, 
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their occurrence and distribution to be studied. Knowledge of vegetation species 

composition and diversity is therefore the most useful tool in evaluating overall 

species diversity and endemism in tropical forest, and it is critical for conservation 

planning. Subsequently, there is a need to formulate sound management policies and 

guidelines for the conservation of these species (Ashton, 1990). In order to meet this 

need, remote sensing technology has been widely used in vegetation and its related 

studies due to its advantages in wide coverage, cost effective and availability of multi 

temporal archived data.  

  
 
 
 
1.3 The Use of Remote Sensing Analysis in Vegetation Studies 
 

 
According to Yamada (1997), the obstacles faced by foresters and ecologists 

in studying the tropical rain forest can be categorized into three broad categories, 

namely: 1) human factors, 2) natural factors and 3) biological factors. Among these 

factors, one of the main problems in studying the tropical rain forest is accessibility. 

This can be further explained as the understanding, monitoring and inventory 

mapping of tropical rain forests are being influenced by a lack of spatially and 

temporally extensive information on vegetation composition, species richness and 

structure. Due to expensive costs and inaccessibility (as mentioned earlier), most 

available data only comes from relatively small field plots with infrequent re-

sampling intervals. With the existing plots, it is difficult to scale-up the field data to 

the landscape, regional or global scales needed in sustainability analysis of 

ecosystem in tropical rainforest (Tuomisto et al., 2003). 

 
 
 Since the launching of Landsat in 1972, remote sensing has become a 

powerful means in providing data from which updated forest cover and related 

information can be obtained. Passive remote sensing sensors provide multi-scale, 

good spatial and temporal measurement of radiance from tropical rainforest canopies 

which can be linked to species composition and richness mapping (Foody et al., 2006; 

Nagendra, 2001). However, remote sensing studies in tropical rainforest have only 

focused on the mapping of general forest cover classes for calculating the rate and 

extent of regional deforestation and forest fragmentation relied upon medium spatial 
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resolution imagery from multispectral spaceborne sensors due to the reasonable costs 

and acceptable accuracy (Roberts et al., 2002; Steininger et al., 2001). Remote 

sensing technology helps to resolve the accessibility problem as mentioned earlier in 

mapping the forest vegetation species and its related studies with reasonable costs.  

 
 
In vegetation studies that employ remote sensing techniques, two widely used 

data are satellite and airborne colour infrared (CIR) images (Gould, 2000; Madden et 

al., 1999; Welch, 1996). The first and second generation satellite data (i.e. the first 

generation of satellite data refer to Landsat MSS and second generation of satellite 

data refer to Landsat TM, SPOT HRV and other multispectral sensors with broad 

bands spectral resolution ) mostly do not have adequate spatial resolution to 

differentiate between detailed ground information. The airborne CIR images were 

then used to complement the satellite data. Both of these data complement each other 

when studying large areas where airborne data can be very costly to acquire, and are 

mostly used when detailed studies involving smaller areas are of interest. However, 

the complexity of the vegetation species composition in a tropical rainforest due to 

high tree diversity and both natural and human disturbances results in complex 

radiance signals that are difficult to discriminate using broad spectral and spatial 

resolution sensors. In order to delineate vegetation properly, the recent high spatial 

and hyperspectral remote sensing data therefore meet the needs in terms of both 

spatial and spectral resolution.  

 
 

A new generation of high spatial resolution multispectral sensor (less than 4 

meters) permitted the mapping of individual tree crown at species level as a group of 

image pixels (Gougeon & Leckie, 2003).  Such advancement in remote sensing 

technology could greatly improve multi-scale forest classifications of vegetation 

species richness, habitat and disturbance history mapping. With the temporal data, 

individual tree crown analyses may also provide a means to systematically monitor 

changes in some special valuable species (e.g. common timber species) due to 

logging and climate change. (Clark et al., 2004; Read et al., 2003 and Nagendra, 

2001). 
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With the advancement in remote sensing technology, the development of 

sensor has a great achievement in developing hand-held, airborne and spaceborne 

hyperspectral optical sensors which allow the spectral measurement over 50 narrow, 

continuous bands spanning the visible (400 nm to 700 nm), near infrared (700-1327) 

and two short wave infrared (1467-1771 nm and 1994-2435 nm respectively) regions 

of electromagnetic spectrum (Asner, 1998). The automated vegetation classification 

and species identification from tropical rainforest are now possible with 

hyperspectral imagery which is fine enough in terms of spectral wise. However, the 

accuracy may vary from different spatial resolution hyperspectral data and feature 

extraction techniques used, which will be discussed in later chapters. 

  
 
In Malaysia, the use of remote sensing techniques in mapping the tropical 

rain forest has been explored since 1990s (Nuraznin and Hashim, 2007; Okuda et al., 

2004;  Okuda et al., 2003; Hashim et al., 2002; Hashim et al, 1999; Khali et al., 1993, 

Radzali, et al., 1992, Sawada et al., 1991). Series of researches had been carried out 

by Forest Research Institute Malaysia (FRIM) with the aid of remote sensing 

technology to extract forest and vegetation information. Khali et al. (1993) had 

started a research at the North Selangor peat swamp forest to assess the forest 

condition after logging by using remote sensing techniques. Landsat-TM data were 

used and results showed that the peat swamp forest could be mapped using remote 

sensing analysis and the area was differentiated into different classes of damage 

severity and the area extent was calculated. (Khali et al, 1994). Because of the high 

demand for assessing and monitoring vegetation change, vegetation observation has 

long been an important application of remote sensing. 

 
 
 
 
1.4 Problem Statement 
 
 

Remote sensing is an important tool for measuring global biodiversity in 

forest ecosystems. Remote sensing techniques offer to deliver structural information 

about forest stands such as the nature of the canopy surface, the layering within the 

canopy and even individual tree identification (Innes and Koch, 1998). In this study, 

this information is being linked with ecological species information derived from 
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ground sampling to give estimates of species richness and distribution over much 

larger scales than previously available. 

 
 
 Moderate spatial resolution systems such as Landsat TM are able to provide 

valuable information on macro-level deforestation and fragmentation. It is used to 

make measurements of ecosystem properties and correlate these properties with 

‘invisible’ properties such as biodiversity and species distribution that serve as key 

indicator of forest sustainable management. Since eight years ago, high resolution 

remote sensing system with a spatial resolution finer than 4 m and spectral resolution 

better than 10 nm are available commercially in the market. It provides detailed 

information and shows great potential in providing information for many 

applications especially in vegetation and its related studies. With the existence of the 

new system, the ability to detect every single tree species, canopy structure and even 

soil properties is now possible (Johnson, 2002; Newman et al. 1998).  

 
 
However, the increase in spatial and spectral resolutions raises two common 

issues for effective extraction of information in either high spatial or spectral 

resolutions data respectively. In the case of high spatial resolution, the inherent 

effectiveness of spatial information have somehow ensured ‘busyness’ or variation in 

a ‘class of target’ hence preprocessing such as texture analysis need to be carried out 

prior to information extraction (Schowengerdt, 2007). On the other hand, the high 

spectral resolution such as found in hyperspectral data often face “Rayleigh 

phenomenon” and problem in selecting optimum bands from the voluminous data set. 

“Rayleigh phenomenon” refers to the fraction of light scattered are sensitive with the 

narrow bands and sometimes give false information in interpreting the target object 

(Borengasser et al., 2007). In selecting the optimum band for selected application, 

the voluminous spectral resolution data will have a lot of redundancy. A total of 

about 200 narrow bands may be available in hyperspectral data but only small 

portion of narrow wavebands are useful (for example in case of vegetation species 

recognition).  

 
 
It appears that the advancement of high resolution system which provides 

high spatial and hyperspectral data is having a dilemma - as the imagery is so 



 9 

detailed that individual pixels often lose their representation of the landscape. 

Consequently, a traditional pixel-based process becomes incapable due to 

insufficient consideration of the rich amount of information on spatial and spectral 

association. Vegetation information extraction, especially species mapping from high 

spatial resolution imagery and hyperspectral remote sensing analysis is one of the 

most important research topics in the field but not much effort has gone into this 

topic so far, especially in tropical rainforest of this region.  

 
 
Identification of individual crown species was traditionally performed by 

using visual interpretation method from high spatial resolution aerial photographs 

which are taken from film camera.  New digital forms of high spatial resolution 

imagery from airborne and spaceborne multispectral sensors (i.e. Digital Color 

Infrared Aerial photo and IKONOS-2 in this study) have stimulated the development 

of automated techniques for individual crown species detection, delineation and 

subsequent measurement of related information (Chubey et al. 2006). Automated 

individual crown species identification from micro to macro (which can be further 

explained as leaf to crown scale) algorithms have been optimized for species 

mapping in some tropical forests, and it is not clear how these algorithms will 

perform in tropical rainforest in Malaysia with high species diversity and complex 

canopies. Consequently, this study is undertaken to further examine the algorithms 

and techniques available for micro to macro level vegetation species mapping and to 

suggest the algorithm and processing flow which would be suitable for use in tropical 

rainforest region with some modifications of algorithm by selecting the suitable 

spectral regions which were identified and tested in this study for the purpose of 

species richness and forest health mapping. With all the selected algorithms and 

techniques examined and tested using high spatial and hyperspectral remote sensing 

analysis at micro level vegetation mapping, the challenge lies on how to implement 

the best algorithm chosen for the macro-level analysis in order to enable large scale 

biodiversity mapping so as to make full use of the algorithm for vegetation species 

mapping and its related analysis. 

 
 

There are some pre-processing requirements that should be first addressed 

when applying the hyperspectral remote sensing analysis in vegetation species 



 10 

mapping. These include the creation of a spectral library and the calibration of 

hyperspectral data. A spectral library is needed to compare the spectra recorded by 

the sensor to the spectra collected in the field work as a reference to find out the 

endmember (known as class in multispectral analysis). Most of the spectral libraries 

available created by Jet Propulsion Lab, (JPL) and United States Geological Survey, 

(USGS) are more focused on geological study such as mineral exploration. Recently, 

USGS has started developing spectral libraries for common vegetation types. In 

Malaysia, a complete set of hyperspectral libraries has yet to be developed. Therefore, 

to study Malaysian vegetations using hyperspectral data, a new set of spectral 

libraries is needed. These libraries should be complete because different regions of 

study may need a different spectral library to increase the accuracy of the study. 

From the spectral library created, series of analysis need to be carried out to study the 

separability of different species available in study area to make sure the species 

identification at micro level (leaf scale) is possible and further scale-up the species 

mapping to macro level (entire study area of this study).  

 
 
With the doubts and problems discussed, it is worthwhile to carry out the 

study and the detailed objectives and scope of this study are defined in the next two 

sections.   
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1.5 Objectives of the Study 
 
 

The overall aim of this study is to perform vegetation species mapping in 

tropical rainforest using high spatial resolution and hyperspectral remote sensing 

analysis. In order to achieve the overall aim, the following sets of specific objectives 

are formulated: 

 

1 To create a spectral library for tropical rainforest and investigate the spectral 

variation among tropical rainforest vegetation species, thereby permitting 

spectral-based species discrimination; 

 

2 To identify the spectral regions and spatial scale which provide optimal 

vegetation species discrimination by the analysis of spatial and spectral 

separability and variability in distinguishing vegetation species using high 

spatial and hyperspectral remote sensing analysis; 

 

3 To examine and identify the existing techniques in vegetation species 

mapping of tropical rainforest and develop an analytical procedure to perform 

species mapping of tropical rainforest using high spatial resolution and 

hyperspectral remote sensing analysis; 

 
4 To perform accuracy assessment on results obtained in objectives (1), (2) and 

(3) as compared to baseline information by using statistical approaches. 
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1.6 Scopes of the Study 
 
 

The scopes of the study are as follows: 

 

1. Vegetation species mapping in this study is confined to the identification 

of different types of vegetation, which means counting of the number of 

different type of plants in the study area by mapping the vegetation 

community in species, genus or family. The vegetation species mapping 

in this study is further confined to big families (at least 100 trees in each 

genus that existed in the study area with diameter at breast height, DBH > 

30 cm). Trees with DBH larger than 30 cm were used so as to ensure that 

the top layer of the canopy can be analysed by using remotely sensed data. 

In addition to this, common timber species available in the study area will 

also be identified. 

 

2. The high spatial resolution remotely sensed data used in the study is 

confined to multispectral IKONOS-2 data with 4 m spatial resolution and 

digital color infrared aerial photo by Z/I Imaging’s Digital Mapping 

Camera with 20 cm spatial resolution. Hyperspectral remotely sensed data 

used in this study are confined to Hyperion 

 

(provides 220 continuous 

spectral bands ranging in wavelength from 0.4 µm to 2.4 µm with spatial 

resolution of 30 m). More details will be given in Chapter 3 on Data 

Acquisition, Preprocessing and Data Enhancement. 

3. The study area is confined to tropical rainforest located in Pasoh Forest 

Reserve (PFR) 50 ha plot which contains 335,240 trees in 814 species, 

290 genus and 78 families. On a per hectare basis, the species diversity of 

trees at Pasoh is comparable with those recorded anywhere in the world 

species-rich tropical rain forest similar to many seasonal forests of 

Malaysia. The availability and continuous census used as ground truth is 

the important selection factor apart from the scientific documents on tree 

species mapping undertaken. 
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1.7 Significance of Research 
 
 

The monitoring, conservation and management of tropical rainforests has 

become a great challenge due to lack of spatially and temporally extensive 

information on tree floristic composition and vegetation species mapping (Foody et 

al., 2006 and Tuomisto et al., 2003). The vegetation species distribution map can be 

an important tool for understanding the extent and pattern of old growth forests, 

predicting rare plant habitat, modelling the spread of invasive species, and modelling 

how vegetation might change under various climate change scenarios (Clark et al., 

2005). The introducing of high spatial resolution and hyperspectral remote sensing 

provided a good solution in vegetation species mapping which was done earlier in 

relatively small field plots with infrequent re-sampling intervals but involved 

prohibitive costs and inaccessibility problems.  Thus, this study is carried out to 

perform vegetation species mapping of tropical rainforest using high spatial and 

hyperspectral remotely sensed data.  Furthermore such a study have not being 

reported for tropical rainforest species or even at genus level due to the remoteness, 

dense, complex multi-storey canopies. 

 
 
Spectral library of tropical rainforest species even for common timber species 

have not been reported to be available.  Lack of this basic information, have cause 

major set-back for not enabling hyperspectral data to be classified optimally at full 

capacity to derive absolute forest information. Worst still, even the fine resolution 

hyperspectral airborne data is only being relatively classified due to lack of the 

spectral library.  This study have successfully created spectral library which consists 

of common timber species of the dominant family Dipterocarpaceae; thereby would 

serve as baseline information for vegetation species identification in any tropical 

rainforest of this region by using hyperspectral remote sensing analysis. 

 
 

This study has also placed contribution to the assessment of the spatial and 

spectral sensitivity of high spatial resolution and hyperspectral remotely sensed data 

in mapping the vegetation species in tropical rainforest. In particular whole 

electromagnetic spectrum from 400-1200 nm have been explored and had 

successfully identified the wavelengths as well as spectral band for identification of 
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all common timber groups of the dominant family Dipterocarpaceae. This 

information is very vital for any mission and design of future sensing systems 

including satellite for forestry and related vegetation studies in tropical rainforest. 

 
 

Apart from the above,  this thesis has also significantly contribute to new 

knowledge on understanding of the vegetation species mapping and determine the 

advantages and limitations of high spatial and hyperspectral remote sensing analysis 

in vegetation species mapping in tropical rainforest environment. This research thus, 

produces a series of accurate vegetation distribution maps of vegetation in genus and 

species level for Pasoh Forest Reserve. 

 
 
 
 

1.8 Study Area 
 
 

The area of this study is confined to Pasoh Forest Reserve which located at 2° 

55' N latitude and 102° 18' E longitude, about 8 km from the town of Simpang 

Pertang, Negeri Sembilan, approximately 70 km southeast of Kuala Lumpur (Figure 

1.1).  The Pasoh Forest Reserve comprises of low hills and alluvium rising to a 

granite ridge along its eastern border.  A buffer zone of 700 ha within the western 

and southern margins was logged in the 1950s. The study area was further confined 

to 50-ha plot 1 km long by 0.5 km wide of Pasoh Forest Reserve. The plot was 

established between 1985 and 1988 for research purposes. The first detailed 

descriptions of the forest botany and stand structure were published in 1990 

(Kochummen et al., 1990; Manokaran and LaFrankie 1990). The enumeration 

included all free standing trees and shrubs > 30 cm diameter-at-breast-height (DBH) 

excluding climbers. According to the details by which the plot was first surveyed, the 

50-ha plot contains 335 240 trees in 814 species, 290 genus and 78 families. In 2000, 

another detailed survey was carried out and there were 338 924 trees in 818 species 

in 295 genus and 81 families. The number of trees has increased and the variety of 

the vegetation community in the 50-ha plot of Pasoh Forest Reserve is enough to 

represent any other tropical rain forest available within this region (Okuda et al., 

2003). 
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The 30 species of Dipterocarpaceae family dominated the 50-ha plot, 

accounting for 27.3% of the total basal area

Family 

 (Manokaran and LaFrankie, 1990). The 

Euphorbiaceae with 85 species was the richest family in the plot and had the highest 

number of trees in the plot with 13.4% of total tree numbers. Shorea was the most 

important genus in the 5-ha research plot in terms of tree number (20 960 trees, 6.2 % 

of all trees). Shorea was the fifth most diverse genus in the plot with 14 species (1.7% 

of all species). As for the common timber groups, the family Dipterocarpaceae once 

again dominated the plot with 10 common genus. Red Meranti was the biggest genus 

under Shorea with a total of 13 401 trees (43.36% of total basal area) follow by 

Balau under same genus (shorea) with 6842 trees (22.13%) (Davies et al., 2003). 

More details can be obtained in Table 1.1. 

 
 
The selection of the study area was based on: (1) the variety of vegetation 

types and (2) the availability of airborne and spaceborne high spatial and 

hyperspectral data over the study area. As mentioned earlier, the variety of the 

vegetation species that exist in the 50-ha plot of Pasoh Forest Reserve is enough to 

represent any other tropical rain forest available within this region and suitable to be 

selected as study area due to its completeness of secondary data, for example the 

complete census plot of the 50-ha plot of Pasoh Forest Reserve. It is not easy to 

acquire both high spatial resolution and hyperspectral remote sensing data for same 

tropical rainforest with ready and complete set of secondary data. Large number of 

biological researches had been carried out at Pasoh Forest Reserve since 1970s 

which also helps when performing the literature search. 

 

Table 1.1: The most important families for 50-ha plot of Pasoh Forest Reserve. 

 
Basal Area 

(m2) 

Family  Total number 

of Trees 

Family  Species 

number 

Dipterocarpaceae 453.21 Euphorbiaceae 45436 Euphorbiaceae 85 

Fabaceae 141.47 Dipterocarpaceae 31178 Lauraceae 49 

Euphorbiaceae 120.46 Annoaceae 24752 Myrtaceae 48 

Burseraceae 100.91 Rubiaceae 20506 Rubiaceae 47 

Myrtaceae 56.96 Burseraceae 17701 Annoaceae 42 

Source: Davies et al., (2003) 



 16 

Pasoh 
Forest 
Reserve 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Study area; (a) location map, (b) the raw IKONOS satellite image of the 
study area and (c) the detailed plan of Pasoh Forest Reserve.
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1.9 
 
 

This thesis comprises of six chapters. Chapter 1 explains the research 

background of the study and gives the problem statement, objectives and scope of the 

study. The review of the high spatial and hyperspectral remote sensing techniques, 

together with its applications and works previously done using remote sensing 

techniques for vegetation and its related studies are addressed in Chapter 2. The 

literature review on vegetation mapping, especially on vegetation health mapping 

and species richness mapping (identification of different vegetation species), are also 

addressed in this chapter. In Chapter 3, preparation of two sets of high spatial and 

hyperspectral remote sensing data and pre-processing employed in the study are 

discussed. Data preparation includes the collection of field and image spectra for 

spectral library. All the pre-processing works including radiometric calibration, 

geometric correction and data mosaic, data masking, and image enhancements 

(Minimum Noise Fraction and Pixel Purity Index), which need to be done prior to 

feature extraction and data classification of vegetation species mapping, are also 

presented in this chapter. Chapter 4 presents the flow for creating a spectral library 

for different vegetation species available in the study area, which will be used later in 

the hyperspectral data processing. The sensitivity of high spatial resolution data and 

hyperspectral remote sensing data used in this study were also analysed in the same 

chapter. The feature extraction process and data classification, which are carried out 

using different approaches (i.e. Band Selection Feature Extraction, Spectral Angle 

Mapper, and Linear Mixture Modelling for hyperspectral data) on hyperspectral data 

(neural network classifier and maximum likelihood for high spatial data) are 

discussed in Chapter 5. Results and analyses of the feature extraction and 

classification of the vegetation are also presented and discussed in this chapter. 

Conclusions of the research and recommendations for future work are given in 

Chapter 6. 

 
 

Thesis Outline 
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