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ABSTRACT 

Precise flow control has always been a necessity for developing easier approaches or 

instrumentation for two-phase flow regime. An important method for monitoring this process 

is called process tomography such as electrical tomography, optical tomography and 

ultrasonic tomography (UT). In the case of high-acoustic impedance mixtures e.g. bubbly 

flow, UT has the advantages in monitoring real time data. Although various researches were 

conducted using UT systems in bubbly flow regimes, there are still weaknesses especially in 

real time image reconstruction techniques for monitoring the process. Some efforts such as 

linear back projection (LBP), filter back projection (FBP), convolution back projection 

(CBP) and iterative techniques are utilized for reconstructing the image with few views data 

for UT system. Regardless of the utilized method there still exist two main issues in UT 

image reconstruction both in forward and inverse problems. In the case of forward problem, 

the gaps between sensitivity maps cause artifacts in a reconstructed image. Moreover, for 

inverse problem, limited number of sensors causes artifacts in reconstructed image. In the 

case of high noisy environment, the LBP, FBP and CBP methods are not capable of totally 

removing the noise and artifacts level. Dynamic motion of flow regime is considered as 

another issue in UT system which causes inaccuracy in image reconstruction. Therefore, 

these issues were considered in developing a modified image reconstruction algorithm which 

was based on improving the CBP algorithm both in forward and inverse problems. A 

modified sensitivity map based on Gaussian distribution was utilized to combat the gaps in 

forward problem, and for the case of inverse problem, the wavelet fusion technique was 

applied to reduce the noise level, artifacts and the effects of dynamic motions. The 

simulation and the experimental works had been conducted based on different static profiles. 

Various types of image reconstruction algorithms were implemented and compared with the 

proposed technique. The quality of the final reconstructed images was evaluated using 

structural similarity (SSIM) and peak signal to noise ratio (PSNR). Results show that the 

WCBP outperforms LBP and CBP in case of SSIM and PSNR. Comparing to LBP, the 

SSIM and PSNR were improved at least by 30% and 5% respectively while for CBP the 

improvement were about 5% and 1% respectively. 
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ABSTRAK 

Kawalan aliran jitu sentiasa menjadi satu keperluan untuk membangunkan pendekatan 

yang lebih mudah atau peralatan untuk rejim aliran dua fasa. Satu kaedah penting bagi memantau 

proses ini dipanggil proses tomografi seperti tomografi elektrik, optik dan ultrasonik (UT). 

Dalam kes campuran galangan akustik tinggi contohnya aliran berbuih, UT mempunyai 

kelebihan dalam memantau data masa sebenar. Walaupun pelbagai kajian telah dijalankan 

menggunakan sistem UT dalam rejim aliran berbuih, masih terdapat kelemahan terutama dalam 

teknik-teknik pembinaan semula imej masa sebenar untuk memantau proses. Beberapa algoritma 

seperti unjuran belakang lelurus (LBP), unjuran belakang bertapis (FBP) dan teknik lelaran 

digunakan untuk membina semula imej dengan beberapa paparan data untuk sistem UT. Tidak 

kira apa kaedah yang digunakan, masih terdapat dua isu utama dalam pembinaan semula imej UT 

dalan kedua-dua masalah hadapan dan songsang. Jurang dalam peta sensitiviti mempunyai kesan 

negatif ke atas imej yang dibina semula dalam kes masalah hadapan. Selain itu, untuk masalah 

songsang jumlah penderia yang terhad menyebabkan artifak dalam imej yang dibina semula. 

Dalam kes persekitaran yang amat hingar, kaedah LBP, FBP dan CBP mampu mengenepikan 

sepenuhnya tahap hingar dan artifak itu. Gerakan dinamik rejim aliran dianggap sebagai isu lain 

dalam sistem UT yang menyebabkan ketidaktepatan dalam pembinaan semula imej. Oleh itu, isu-

isu tersebut telah diambil kira dalam mengubah suai algoritma pembinaan semula imej yang 

bertujuan memperbaiki algoritma CBP dalam masalah hadapan dan songsang. Sebuah peta 

kepekaan yang telah diubah suai berasaskan taburan Gaussian digunakan untuk mengatasi jurang 

yang wujud dalam masalah hadapan dan bagi kes masalah songsang teknik pelakuran gelombang 

kecil digunakan untuk mengurangkan tahap hingar, artifak dan kesan gerakan dinamik. Simulasi 

dan ujikaji telah dijalankan dalam profil statik yang berbeza. Pelbagai jenis algoritma pembinaan 

semula imej telah  dilaksanakan dan dibandingkan dengan teknik yang dibentangkan. Kualiti 

imej akhir yang dibina semula dinilai dengan menggunakan persamaan struktur (SSIM) dan 

nisbah isyarat puncak kepada bunyi (PSNR). Keputusan menunjukkan keunggulan kaedah 

WCBP berbanding dengan LBP dan CBP untuk SSIM dan PSNR. Berbanding dengan LBP, 

SSIM dan PSNR telah diperbaiki sekurang-kurangnya masing-masing 30% dan 5% manakala 

untuk CBP, perbaikannya ialah masing-masing 5% dan 1%. 
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CHAPTER 1 

1 INTRODUCTION 

 Background of the Study 1.1

Multi-phase flow takes place as two or more discrete phases flow in a closed 

pipe or a vessel. Examples of phases include gas, liquid or solid and also different 

immiscible liquids or solids [1]. Two phase flow of fluids (e.g. gas/liquid, 

liquid/liquid, etc.) is an important phenomenon in which two immiscible phases 

coexist in a thermodynamic equilibrium. As a two phase flow regime, bubbly flow 

column are intensively used as multiphase contactors and reactors in chemical, 

biochemical and petrochemical industries. Investigation of design parameters 

characterizing the operation and transport phenomena of bubble columns have led to 

better understanding of the hydrodynamic properties, heat and mass transfer 

mechanisms and flow regime characteristics ongoing during the operation [2, 3].  

Due to the stringent regulations on precise flow control especially in the case of two 

phase fluid flow,, there has always been a necessity for developing an easier to use, 

yet more precise approaches or instrumentation. Accordingly, tomographic 

measurement is more significant and attractable especially in today's industrial 

process [4].  

Process tomography (PT) provides a novel tool for visualizing the internal 

behavior of industrial processes. PT which has been applied to various industries is a 

versatile technique for producing cross-sectional images of a continuum with the 

ability of discerning between the compartments of a heterogeneous phase from the 

continuous one [3]. These images provide valuable information on a process, which 
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are applicable in monitoring, mathematical model verification and also intelligent 

control. In PT the interest is often in extracting valuable information, such as void 

fraction (VF), mean velocity. [5]. This information which is provided by processing 

the signals received at multiple locations enables the researchers to acquire a global 

knowledge of the measured field. 

Since 1980 there have been some efforts to develop the industrial PT 

techniques. Electrical capacitance tomography (ECT), electrical impedance 

tomography (EIT), electrical charge tomography (ECHT), optical tomography (OT), 

Gamma-ray, X-ray, magnetic resonance imaging (MRI) and ultrasonic tomography 

(UT) are examples of these techniques which are applied in PT based on the inherent 

properties of materials [6]. These methods can be categorized as hard-field and soft-

field which in the former case regardless of the type of material or medium, the 

direction of travel of the energy waves from the source is constant. UT and X-ray are 

two examples of hard-field tomography. On the other hand, in the soft-field, the 

electric current is introduced to the medium being imaged and an electric field 

distribution is determined based on the physical electrical properties of that material, 

allowing a map of resistance, capacitance or impedance distribution to be 

reconstructed by a computer to form the tomogram. The nature of soft field is much 

more complex than hard field and requires considerably more computer analysis and 

algorithms to reconstruct the image [7] because soft field is a nonlinear process while 

hard field is a linear one. ECT is an example of soft-field tomography. 

Among all these methods, ultrasound is able to detect changes in acoustic 

impedance ( ), which is closely related to the density ( ) of the media (      , 

where c is the velocity of sound), and thus complements other tomographic imaging 

technologies such as ECT and EIT [8]. Therefore, UT imaging can be used in 

liquid/gas two-phase flow regime with two-component high-acoustic impedance 

mixtures e.g. bubbly flow[9]. Moreover, it is low in cost compared to X-ray or 

Gamma-ray methods [10].  

UT consists of two parts; hardware and software. Hardware includes the 

sensing array which is mounted peripherally around the pipe, electrical circuits 
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including signal conditioning and controllers as well as a PC for data processing and 

monitoring. After exciting a sensor with an electrical pulse, physical waves will 

propagate from the ultrasonic sensor towards the medium. The propagated waves 

inside the pipe are scattered and attenuated while they encountered with a wall of 

two materials. Therefore, a wave with a weak amplitude can be sensed by the 

receivers mounted on the other side of the pipe. After collecting the data from all 

receivers, the next step is to feed these data to a PC in order to reconstruct an image 

which represent the profile of the materials inside the pipe cross section. This 

procedure is called the image reconstruction technique. 

The software consists of image reconstruction algorithms which plays an 

important role in the last step of cross-sectional monitoring of a pipe. Image 

reconstruction consists of two parts namely forward and inverse problem. The 

forward problem deals with the theoretical output of each sensor and the sensing area 

using sensitivity maps while the objective of the inverse problem is to reconstruct an 

image to find the distribution of materials such as gas bubbles inside water.  

There are two major categories in the field of image reconstruction methods; 

analytical/single step and series expansion/iterative methods [11]. Beside these two 

major categories there are some heuristic methods which have been used for image 

reconstruction including non-linear, artificial neural network (ANN) [12, 13] and 

fusion methods (wavelet fusion) [14, 15], where a dual mode tomography is applied. 

Contrary to the speed and simple implementation of analytical methods, they have 

limitations in terms of the less number of sensors being used or few view data, which 

leads to less accuracy. On the other hand, iterative methods are insensitive to noise 

and they are capable of reconstructing an optimal image in the case of incomplete 

data but they suffered mostly from low computational speed [16].  

There have been some attempts to improve the setup of ultrasonic hardware 

for two-phase flow measurement as reported in [17-22]. They deal with different 

ultrasonic frequencies, various numbers of sensors, different types of sensors and 

speeding up the data acquisition systems to enhance the resulting image. Apart from 

hardware setup, some efforts have been made on utilizing new techniques for 
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improving the reconstructed image in UT. These image reconstruction techniques 

mostly use analytical methods such as linear back projection and filter back 

projection to reconstruct an image from projections [23-25]. The high speed of 

analytical methods which is a critical point in real-time processing is the main reason 

in selecting them rather than the iterative methods. However, the drawback of the 

analytical methods is that they do not generate an optimal quality image in the case 

of incomplete data. 

In UT, the limited number of sensors yields incomplete data which leads to 

artifacts and noise in images reconstructed using the analytical method. Therefore, in 

this case the VF which depends on the quality of the reconstructed images in UT is 

also poor. It should be noted, in industrial process data obtained from VF is used to 

calculate some parameters of materials which is very important and critical for 

measurement analysis [26, 27]. In order to improve the VF parameter for 

reconstructed image, this thesis focuses on developing an image reconstruction 

algorithm based on an analytical method for ultrasonic transmission mode 

tomography (UTT) system. To this end, for the forward problem a new sensitivity 

map is developed to improve the quality of the reconstructed image and in the 

inverse problem the wavelet fusion is utilized to reduce noise which appears in the 

image.  

 Problem Formulation 1.2

Some efforts utilizing linear back projection (LBP) [28], filter back projection 

(FBP) [29] and algebraic reconstruction techniques [30] have been employed for 

reconstructing images with few views of data for the UTT system. Regardless of the 

utilized method there still exist two main issues in UTT image reconstruction both in 

forward and inverse problems. The subsequent subsections will briefly describe these 

issues. 
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 Forward Problem  1.2.1

Figures 1.1(a) to (d) illustrates the 2-D phantom of three air bubbles in liquid 

as well as its reconstructed images with LBP method using different sensitivity maps. 

The images were reconstructed by considering 16-sensors mounted around the cross 

section of a pipe. Figure 1.1 (b) shows the sensitivity maps generated with respect to 

the physical length and position of sensors (S1-S16). Figure 1.1 (c) is the 

reconstructed image by the LBP method using the sensitivity maps with gaps. 

Finally, Figure 1.1(d) is reconstructed using a sensitivity map without gaps. By 

comparing Figures 1.1 (c) and (d) it can be concluded that the reconstructed image 

by modified sensitivity maps improve the quality of images. 

   

Figure ‎1.1 (a) Phantom simulated in MATLAB (b) sensitivity map of S16-S1-S2 

sensors in 2-D view (c) ) Image reconstructed by LBP method with gaps in 

sensitivity maps (d) Image reconstructed by LBP method using sensitivity maps 

without gap 
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In order to reduce the effect caused by gaps, [23] virtually considered the 

length of the sensors twice than the physical length and used an equation based on 

the inclusion of each pixel with the line between excited transmitter and receiver. 

Even this method had covered the gaps but doubling the length of sensors would 

result to increase the detectable size of bubbles as well, therefore, the error rate is 

still high. 

 Inverse Problem 1.2.2

Because of the high accuracy of the iterative methods they have been utilized 

for offline processing, but their accuracy suffered due to the slow processing speed in 

real-time applications [31]. Hence, the analytical method is the best choice for the 

UT system.  

Based on the physical aspects of the ultrasonic wave propagation which 

depends on the properties of the medium, the obtained images from the analytical 

methods are noisy and include artifacts.  A four bubbles phantom in Figure 1.2 (a) 

simulated in MATLAB and its reconstructed images by the LBP and FBP methods in 

Figures 1.2 (b) and (c) shows an example of such noisy images. In the case of high 

noisy environment the LBP and FBP methods are not capable of totally removing the 

noise and artifacts level as shown in Figures 1.2 (b) and (c).  

 

Figure ‎1.2 (a) Phantom simulated in MATLAB (b) Noisy image reconstructed by 

the LBP method (c) Noisy image reconstructed by the FBP method 
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The dynamic motion of flow regime is considered as another issue in the UT 

system which causes inaccuracy in image reconstruction. In a vertical pipe, the 

bubble shape and its velocity is changed during movement from the bottom to top 

which effects on temporal and spatial resolution. High frequency is needed to 

achieve higher spatial resolution. As an example, the spatial resolution of a system 

using array of 333 kHz ultrasonic sensors should be 2.25% of a pipe with inner 

diameter of 100 mm [32], but conventional method e.g. LBP and CBP reconstruct 

images with low spatial resolution. 

 Objectives of Study 1.3

A limited number of sensors in UTT system cause difficulties in two-phase 

flow regimes image reconstruction such as creating gaps in the resulting image. The 

presence of noise, which commonly occurs in industrial processes, lead to additional 

problems. In this research a method is proposed to improve image reconstruction 

using a limited number of sensors in UTT system.  

According to the stated problems, the main objectives of this thesis are as 

follows: 

(i) To develop an image reconstruction technique based on the analytical method 

in both forward and inverse problems for two-phase flow regimes inside a 

vertical pipe using the UT system.  

(ii) To implement a real 16-channel UT system for bubbly flow regime by 

transceivers sensors. 

(iii) To validate the accuracy of modified method results using different image 

quality criterions. 
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 Scope of the Study 1.4

The research scopes of this thesis consist of the following parts: 

 To study image reconstruction principles and methods employed in 

UTT system i.e. LBP, algebraic reconstruction techniques (ART), and 

CBP and image fusion techniques based on the wavelet transform.  

 To simulate bubbly flow regime in MATLAB software for image 

reconstruction techniques and accessed the performance of proposed 

image reconstruction algorithms. 

 To implement an experimental UTT setup with transceiver sensors for 

image reconstruction validity.  

 Thesis Layout  1.5

The organization of this thesis is structured as follows:  

In the first chapter of the thesis an overview of process tomography is 

presented and the existing problems in the theory of image reconstruction by UTT 

system are elaborated. Based on the formulated problems the objectives and scopes 

of the thesis have been defined.  

Chapter 2 presents a literature review on tomography including ultrasonic 

tomography system.  While, some important related works in this  area were 

critically reviewed and deeply scrutinized, current challenging problems facing each 

image reconstruction method are also discussed.  

Chapter 3 provides the proposed methods to improve the image 

reconstruction technique for UTT systems in both forward and inverse problems and 

also presents a new technique to combat the noise effects in image reconstruction. 
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Chapter 4 describes the proposed technique using software simulation in 

MATLAB.  The analytical formulation of the new technique is also presented in this 

chapter.  

The proposed technique is experimentally verified and the results are 

presented in chapter 5.  Chapter 5 also discusses the system performance and the 

comparison was made with other research works in this scope. 

Finally, the research contributions, conclusions and future work as well as 

project constraints and limitations are discussed and presented in chapter 6. 
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