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ABSTRACT

Soliton generated by the Korteweg de Vries (KdV) equation forms a group

of solitons ladder. During full interaction of multi-soliton solutions, three types

of peaks were obtained, namely single, flat and double peak. Soliton generated by

the forced Korteweg de Vries (fKdV) equation forms uniform solitons trains with

equal amplitude. Various aspects of solitons interactions of the fKdV equation

for free surface flow over uneven bottom topography have been investigated.

Fluid flowing over uneven bottom topography can support wave propagation

that generates upstream and downstream nonlinear wavetrains. Such forced

nonlinear solitary waves occur naturally in the shallow water near the coastal

region. The fKdV equation models the above phenomena in many cases, such

as in the transcritical, weakly nonlinear and weakly dispersive region. Numerical

method which involves the pseudo-spectral method is used to solve the fKdV

equation as it is difficult to obtain the solution analytically, due to the presence

of the forcing term and the broken symmetry. A group of uniform solitons having

the same amplitude and speed will not collide when the bump size and bump

speed are constant. A wave profile with time-dependent transcritical velocity

was investigated with a variation of Froude number. As the Froude number

changes, two sets of solitary waves travelling upstream were discovered. A

set of these solitary waves have nearly uniform amplitude, while another set

comprises of solitary waves with variable amplitude, which forms a pairwise

and two pairwise interactions pattern in the transcritical region. In the case

of multiple bumps, upstream-advancing nonlinear solitary waves which may be

generated continuously and interact with each other when the distance between

bumps, width and height of bumps were varied. Interesting interaction patterns

of the collision between uniform solitons will provide a better understanding of the

forcing caused by multiple bumps on water flow at the uneven bottom topography

of a shallow water in a rectangular channel.
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ABSTRAK

Soliton yang dijana oleh persamaan Korteweg de Vries (KdV) membentuk

sekumpulan soliton bertingkat. Ketika interaksi penuh penyelesaian soliton

majmuk, tiga jenis puncak diperolehi iaitu satu, rata, dan dua puncak. Soliton

yang dijana oleh persamaan Korteweg de Vries paksaan (fKdV) membentuk

sekumpulan soliton seragam yang sama amplitud. Pelbagai aspek interaksi

antara soliton bagi persamaan fKdV untuk aliran permukaan bebas yang

merentasi topografi bahagian bawah yang tidak sekata telah dikaji. Bendalir

mengalir merentasi topografi bahagian bawah yang tidak sekata boleh menjana

perambatan gelombang tak linear huluan dan hiliran. Gelombang paksaan

tak linear terjana secara semula jadi di kawasan air cetek berhampiran pantai.

Persamaan fKdV adalah model yang menggambarkan fenomena dalam pelbagai

kes, seperti dalam rantau transkritikal, tak linear lemah dan serakan lemah.

Kaedah berangka yang melibatkan kaedah pseudospektral digunakan untuk

menyelesaikan persamaan fKdV kerana penyelesaian analitikal sukar didapati

dengan kewujudan unsur paksaan dan simetri yang termusnah. Sekumpulan

soliton seragam yang mempunyai amplitud dan kelajuan yang sama tidak akan

berlanggar apabila saiz bonggol dan kelajuan bonggol adalah tetap. Profil

gelombang dengan halaju transkritikal yang bergantung kepada masa telah

dikaji dengan variasi nombor Froude. Apabila nombor Froude diubah, dua

set gelombang huluan ditemui. Salah satu set gelombang beramplitud hampir

seragam, manakala satu set lagi terdiri daripada gelombang dengan amplitud

yang berubah-ubah, membentuk sepasangan dan dua pasang perambatan

gelombang huluan dalam rantau transkritikal. Dalam kes beberapa bonggol,

penjanaan berterusan hulu-mara gelombang tak linear mungkin berinteraksi

antara satu sama lain apabila jarak antara bonggol, lebar dan ketinggian bonggol

diubah-ubah. Pola interaksi yang menarik untuk perlanggaran antara soliton

seragam akan memberikan kefahaman yang lebih baik tentang halangan yang

disebabkan oleh beberapa bonggol pada aliran air yang merentasi topografi

bahagian bawah yang tidak sekata dalam saluran segi empat tepat.
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CHAPTER 1

INTRODUCTION

1.1 Preface

In recent decades, many researchers have focused their research on linear

and nonlinear waves, emphasizing on the importance of solitary waves and the

theory of solitons. In mathematics and physics, a soliton is a class of nonlinear

dispersive wave that maintains a balance between the effects of dispersion and

nonlinearity. This balance admits localized solitary waves, where after a collision,

the solitary waves reemerge, retain its shape and speed, which shows a similarity

to the property of the elastic collision of a particle (Lakshmanan, 2011). When

the solitons collide, the only result of the interaction of two solitons is a phase

shift, whereby the faster soliton is further ahead, and the slower soliton further

behind (Grimshaw, 2005).

Solitary water waves are long nonlinear waves that can propagate over long

distances without dissipating. They consist of a single isolated wave elevation, or

depression, whose speed is an increasing function of the amplitude (Grimshaw,

2002). The phenomenon of solitary waves was first observed by John Scott Russell

in August 1834 whilst riding on a horseback alongside the Union Canal near

Edinburgh in Scotland. The field of nonlinear dispersive waves has developed

rapidly over the past 50 years. The origin of the water wave problems go back to

the work of Stokes in 1847, Boussinesq in the 1870s and Korteweg and de Vries in
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1895. The famous Korteweg de Vries (KdV) equation is then derived by Korteweg

and de Vries and provides an explanation of the phenomenon observed by Scott

Russell. Thus, the KdV equation was not just a notable integrable equation, but

also a suitable model for solitary waves in a wide range of important physical

fields. Indeed, the KdV equation is a “universal”model which arises whenever

there are weak dispersive and nonlinear systems as the governing system.

There has been considerable interest in the generation of water surface

flow due to uneven bottom topography. The problem of flow over a bump can

be applied in many branches of fluid mechanics, especially in oceanographic

applications. The fluid flow over a bump can be found generating upstream

and/or downstream wavetrain depending on the system parameters (Grimshaw,

2010). The study of the generation of upstream propagating solitary waves

forced by moving objects or bottom topographies has received much attention,

for example, Huang et al. (1982) carried out laboratory experiments and Wu

and Wu (1982) performed numerical simulation. Wu and Wu (1982) used a

generalized Boussinesq (g-B) model, which is good for long waves (i.e. h0

λ

is small, where h0 is the mean water depth and λ is a typical wavelength.)

generated by moving-surface pressure distribution or bottom topography. The

remarkable findings by Wu and his colleagues is a transcritical water flow over

bump generating a train of upstream-advancing uniform solitons, a depression

zone behind the forcing site, followed by a zone of wake propagating downstream.

Later, many theoretical studies (Wu, 1987) and objective experiments (Lee et al.,

1989) were conducted to better understand the phenomena of generation of forced

nonlinear waves caused by forcing disturbance.

When the oncoming flow is closed to critical, i.e., the linear long wave

speed is closed to zero in the reference frame of the obstacle. The linear solutions

fail near criticality, thus energy cannot propagate away from the bump at the
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linear group velocity and hence a strongly nonlinear response happens. This

flow is termed resonant or transcritical (Smyth, 1990). Therefore, the forced

Korteweg de Vries (fKdV) equation is an appropriate model and suitable theory

due to its weak nonlinearity, under the assumptions that the upstream Froude

number is near one. The bump base is relatively short compared to the length

of the surface waves, and the bump height is relatively small compared to the

wave amplitude (Shen, 1995). Grimshaw and Smyth (1986) and Smyth (1987)

studied the flow of a stratified fluid over topography, where the upstream solution

consists of a train of solitary waves when the flow is closed to a linear resonance.

Due to the complexity of the generalized Boussinesq (g-B) model, a simpler and

the most widely used nonlinear theoretical model for studying the phenomenon

of upstream-running solitary waves is the fKdV equation. A comparison between

experimental and numerical simulations of the fKdV and g-B models was carried

out by Lee et al. (1989) for the generation of upstream wavetrains. According to

Lee et al. (1989), for the fKdV model, the forcing provided by external surface

pressure and the bottom bump is equal. For the g-B model, the external surface

pressure acted as a stronger disturbance than the bottom bump. As a result,

larger waves were produced in a shorter period.

The study of the transcritical flow over an obstacle using the fKdV

equation has continued to attract the attention of many authors in more recent

years. Grimshaw et al. (2009) considered the flow over a hole, and the

results showed that the interaction over the obstacle occurs when two wavetrains

are generated. Grimshaw (2010) studied on the effect of the obstacle width,

which examined a local steady solution over the obstacle. Chardard et al.

(2011) investigated the stability of the supercritical solitary-wave and hydraulic

fall solutions over a single obstacle and table-top like solutions over a double

bump. They derived exact stationary solutions of the fKdV equation using

an inverse method. Grimshaw and Maleewong (2013) studied the stability of
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both subcritical and supercritical steady waves generated by a moving localised

pressure disturbance over water of finite depth. Yi and Lee (2014) proposed a

new numerical method called Locally Conservative Eulerian-Lagrangian Finite

Difference Method (fdLCELM) to solve the fKdV equation in the presence of one

bump and two bumps.

The transcritical flow over a step has been studied using the fKdV

equation. Zhang and Zhu (1997) integrated the time-dependent forced KdV

equation numerically and found steady transcritical flows for negative forcing.

Grimshaw et al. (2007) extended the asymptotic theory developed by Grimshaw

and Smyth (1986) and compared it with numerical simulations of the full Euler

equations for surface water waves (Zhang and Chwang, 2001). They found that

a positive step generates an upstream propagating undular bore, and a negative

step generates a downstream propagating undular bore.

The main interest in this research is the fKdV equation. However,

transcritical flow over an obstacle can also be modelled by other forced nonlinear

evolution equations depending on the physical circumstances. The forced

extended KdV equation, also known as the forced Gardener equation, is an

additional cubic nonlinear term which has been used to study the transcritical

flow over an obstacle by Grimshaw et al. (2002) and transcritical flow over a hole

by Ee et al. (2011). Besides, the forced Su-Gardner equation has been used to

study the transcritical flow of a stratified fluid over a broad localised topographic

obstacle by El et al. (2009) and Kamchatnov et al. (2013).

1.2 Background of the Problem

Transcritical flows over uneven bottom topographies have received

considerable attention from many applied mathematicians in the last three
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decades due to its physically rich and mathematically tractable phenomena

of a nonlinear dispersive system, which extends a linear resonance condition

(Redekopp and You, 1995). These phenomena can happen in atmospheric and

oceanic waves. It is necessary to include a forcing term especially in oceanographic

applications. Typical examples are when waves are generated by ships moving

along canals or flowing over uneven bottom topography (Grimshaw et al., 2002).

The flow over a bump in a horizontal channel will reach criticality when

the upstream flow velocity equals a linear long wave velocity. The linear solution

fails when the flow nears criticality, thus the energy of the waves cannot propagate

away from the bump. Indeed it is this feature which leads to the necessity for

invoking weak nonlinearity to obtain a suitable theory. The fKdV equation is

then used as a successful mathematical model equation to describe the nonlinear

surface waves forced by an uneven bottom topography. In the transcritical

regime, the flow over an obstacle generates upstream and downstream nonlinear

wavetrains, connected by a locally steady solution over the obstacle which is

elevated on the upstream and depressed on the downstream (Grimshaw et al.,

2009).

The study of the flow over a bump has been quite well-known for the

past decades but much less is known about the flow over multiple bumps.

Such forced nonlinear solitary waves with multiple bumps occur naturally in

many physical phenomena, especially in oceanographic applications. Fluid flow

phenomena over the bumps generate various interaction patterns depending on

the upcoming stream velocity and bump shape. The most interesting feature

of this phenomenon is that the fluid interaction of multiple bumps where the

disturbance profiles local to each bump can interact. Obtaining this remarkable

result which differ drastically from the flow over a bump at the bottom topography

of the earlier work will be more fascinating.
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Mathematically, the classical KdV equation without the forcing term is

completely integrable, which means that it is easier to obtain analytical solutions.

However, analytical solutions are not found for forced nonlinear evolution

equations including various forms of perturbed KdV equation. Therefore,

numerical simulations of perturbed or forced KdV class equations play an

important role for modelling a wave evolution on a free surface and simulations

of these wave patterns seem to be an important contribution in forced nonlinear

evolution systems.

1.3 Statement of the Problem

One and two soliton solution of KdV equation are well-known solutions.

There are three types of peaks during full interaction for two solitons, which are

single peak, plateau and double peak. The two-soliton solutions can be solved

analytically and numerically easily. However, the construction of multi-soliton

solutions become complicated and lengthy as the number of soliton increases.

Moreover, it is not simple to obtain the critical value that determines the different

types of peaks for multi-soliton solutions. Therefore, three and four-soliton

solutions or even more soliton solutions are no longer easy to solve. Hence,

an iterative method will be useful to obtain the critical value which will become

more complex as the number of soliton increases.

It is still a challenge to understand the flow over obstacles, especially in

the atmosphere or oceans because of various ambient conditions and responses.

Typical factors that control the phenomena are the uneven bottom topography

and the time-varying upstream flow speed. The effects of transcritical flow

over uneven bottom topography are important, due to the circumstances of the

physical effect which can cause a forcing effect. These obstacles cause hindrance

and resistance to the smooth flow of wind and water waves and the forcing effects
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create interesting physical happening with nonlinearity phenomenon, such as

the flow over uneven bottom topography creates various interaction patterns.

Interactions of trains of multiple solitons arise from the fKdV equation that

models surface water wave flow over a bump is interesting. Past researchers

concentrated on the studies of periodical generation of upstream solitary waves

of uniform amplitude, equally spaced and speed, with parameters of the bump

size and speed set to constants. Thus these parameters do not resemble the

real physical problem. With interaction patterns that change due to the varying

upstream velocity, more complicated problems will arise. The KdV equation no

longer models this phenomenon well and a more suitable mathematical model will

be needed. Moreover, this type of forced nonlinear evolution equation become

more difficult as no analytical solution has ever been found. With the presence

of a forcing term, the translation-invariant type of group symmetry is broken,

hence the traditional analytical method such as inverse scattering method and

Bäcklund transformations can no longer generate analytic solutions of solitons.

When the above method fails, numerical solution will be a useful tool to solve a

system of forced nonlinear evolution equation.

However, due to the complex geometries (localized multiple bumps,

holes, or platform, etc.), more interaction patterns of surface dynamics can be

observed. Most studies for multiple bumps focused on the hydraulic falls solution.

Nevertheless, the study of forced solitary waves generated by multiple bumps has

not been carried out yet. With the focus on numerical methods in solving fKdV

equations, more work on physical phenomenon involving two or more bumps

at the bottom topography will be investigated. A more suitable mathematical

model is sought to fit in two bumps or more since it can represent a real physical

phenomenon.
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1.4 Objectives of the Study

Objectives of this study are to:

(a) investigate and obtain simulation for types of peaks of full interaction in

multi-soliton solutions of Korteweg de Vries (KdV) equation.

(b) investigate and obtain simulation of interaction patterns of trains of multiple

forced solitons using the forced Korteweg de Vries (fKdV) equation that

models surface water waves in a flow over uneven bottom topography.

(c) generate and simulate 3D forced solitary waves of interaction patterns

created by multiple bumps.

1.5 Scope of the Study

In this research, an incompressible, inviscid fluid in a two-dimensional

channel forced by a distributed pressure on a free surface and a small bump on

the flat bottom topography, which uses the forced Korteweg de Vries (fKdV)

equation

Ut + λUx + 2α U Ux + β Uxxx =
γ

2
f ′(x), (1.1)

where α < 0, β < 0 and γ are constants, f(x) is the forcing term.

1.6 Significance of the Study

In mathematics, this research will provide an advanced application of

modelling of nonlinear wave. In real life, this research will provide advanced

knowledge on the concept of solitons in water wave problem to provide and
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simulate various properties of nonlinear waves.

Single bump or multiple bumps can be applied to reduce damages caused

by water surface waves. Although one or multiple bumps do not completely

control water surface waves, it is important to lower the risk of damage to seacoast

residences. When a bump or multiple bumps appear along the path of the fluid, it

can reduce the severity of the effects of the wave and the fluid’s velocity. Moreover,

multiple bumps can act as a barrier in order to reduce the depth of runup and

velocity of the onshore watermass flow. In other words, multiple bumps are

function like protective walls separating harbors from residences.

Sometimes, it is costly and difficult to build and maintain a monitoring lab,

especially in deep waters. Therefore, a mathematical model plays an important

role and it usually describes important relationships between the variables with a

system by a set of variables. Oceanographers, engineers and mathematicians can

use a mathematical equation to build a model of the internal soliton system and

also to estimate how an unforeseeable event could affect the system with virtual

simulation.

1.7 Methodology

Research on nonlinear evolution equation will begin with the study of

non-forced system governed by the KdV equation. To derive a forced nonlinear

evolution equation, the study of fluid flows induced by a moving pressure over a

flat bottom is needed. Later, the fKdV equation derived for flow over one bump

is established. The literature review on the fKdV equation is needed to obtain a

suitable model for the study of flow over single and multiple bumps.

Due to the forcing term in the nonlinear evolution equation, the
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translation-invariant type of group symmetry is broken. Therefore, the

traditional analytical method such as inverse scattering method and Bäcklund

transformations cannot be used to solve the equation with forcing terms.

Numerical solutions seem to be the method to solve the fKdV equation. The

forced nonlinear evolution equation will be solved using pseudo-spectral method,

which is based on the semi-implicit scheme (Chan and Kerhoven, 1985). By

integrating the fKdV equation in time in Fourier space and using the dispersive

term, Uxxx by Crank-Nicolson method and the nonlinear term, U Ux with leap-frog

method, a numerical solver will be developed. In order to carry out the Chan and

Kerhoven scheme effectively, an FFT and inverse FFT are set up in computer

program. FFT is an algorithm that effectively computes the discrete Fourier

Transform (DFT) and MATLAB SimBiology is a computer software used to

discover how the solitary wave solutions of various forces evolve.

1.8 Outline of Thesis

This thesis focuses on three major parts. Part 1 studies the shapes of

peaks during the full interaction of multi-soliton solutions of KdV equation. Part

2 discusses the phenomenon of forced nonlinear solitary waves in the presence of

a single bump with particular emphasis on the varying upstream velocity. Part 3

deals with on the problem of free surface flow over multiple bumps on the bottom

topography and the effects caused by the parameters of forcing term. Numerical

solutions of the fKdV equation using pseudo-spectral method will be solved and

various graphical outputs will be simulated.

In Chapter 2, literature review starts with the background of solitary

waves and the KdV equation. Later, the problem of fluid flow over one bump

and multiple bumps will be discussed.
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Chapter 3 discusses the peaks pattern of full interactions solitons of the

KdV equation. The Hirota’s bilinear method will be used to obtain the exact

solutions of KdV equation. After that, a computer program to obtain explicit

multi-soliton solutions of KdV equation is built. Besides that, the shapes of three

different types of peaks during full interaction of two solitons discovered by Ong

(1993), which are single, double and flat peak is discussed. Ong’s (1993) work is

extended and use Hirota’s bilinear method to obtain multi-soliton solutions.

Chapter 4 describes the numerical solutions of the fKdV equation using

the pseudo-spectral method. The initialization equation and forward scheme

equation will be used to develop a program to obtain numerical solutions for fKdV

equation. MATLAB SimBiology will be used to simulate the graphical output

based on the solutions obtained. Various numerical simulations were generated

easily by using MATLAB Simbiology with different types of forcing.

Chapter 5 focuses on a wave profile where time-dependent transcritical

velocity was discovered by changing the parameter λ with respect to time. Two

interesting phenomena can be obtained, which are soliton pair and soliton triad.

In this research, the less studied case is emphasized when the value of σt is small

for specific t0. Later, four regimes from wave profile of λ(t) will be identified.

Chapter 6 discusses about the problem of free surface flow over multiple

bumps on the bottom topography of the channel. The effects caused by the

parameters of forcing term, such as distances between obstacles, width of bumps

and height of bumps were discussed. Besides, the effects of the dip on the bottom

of channel are also investigated. The values of λ are then varied to generate

different flow of regimes.

Chapter 7 is the final chapter of the thesis. The chapter is introduced to

conclude the overall research. Some suggestions and recommendations for future
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research in forced system that models both generation and propagation of solitary

waves will be discussed.
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