AUTOMATED CONSTRUCTION NOISE PREDICTION BY CONSIDERING THE VARIABILITY OF NOISE SOURCES AND OUTDOOR SOUND PROPAGATION

ZANARIAH BINTI JAHYA

UNIVERSITI TEKNOLOGI MALAYSIA

AUTOMATED CONSTRUCTION NOISE PREDICTION BY CONSIDERING THE VARIABILITY OF NOISE SOURCES AND OUTDOOR SOUND PROPAGATION

ZANARIAH BINTI JAHYA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Construction)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2014

Especially for my beloved parents Jahya Bin Markom and Hamidah Bte Abd Kadir and my family....

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah Almighty for giving me the strength and ability to complete my thesis successfully. Then, my deep gratitude goes to Dr Zaiton Haron, who expertly guiding and encouraged me and also correcting various documents of mine with attention and care.

My deep senses of gratitude to Hisniaga SDN BHD support and guidance. Thanks and appreciation and Mah Sing Group to the helpful people at Mah Sing Group, for their support.

My appreciation also extends to my colleagues who have provided directly and indirectly assistance to this research. Last but not least, my sincere appreciation also extends to my beloved parents and all my family members for their support and encouragement.

ABSTRACT

Noise has become a serious concern due to increase of construction development. Continuous exposures to excessive noise result in physical, physiological and psychological effects. To reduce these effects, the prediction of noise from construction in the early planning stage is suggested. In Malaysia, the prediction is based on the BS5228: Part 1: 2009 procedure. However, the equivalent noise level (LAeq) prediction from BS5228 was claimed to be inaccurate, and previous research suggested that the primary solution is to predict noise using stochastic approach. Nonetheless, the predictions of noise using stochastic approach were not carried out in a detail manner and not all factors that may affect the noise were considered. Therefore, this study further investigates the accuracy of the noise prediction by using BS5228 procedure, followed by improving the method of noise prediction using stochastic approach and develops an automated model for noise prediction. Among considered factors include the variability of position and height of the sources, as well as receiver and variability of outdoor sound propagation. The automated model was designed using MATLAB's Graphical User Interface (GUI) and produced equivalent continuous sound level, LAeq, standard deviation and other parameters of noise levels such as L_{10} , L_{90} and L_{max} . The accuracy between measured and predicted noise levels was measured using statistical tests in SPSS (Statistical Package for Social Science) software and also using MAPE (Mean Absolute Percentage Error) method. The result of t-test showed significant difference between LAeq obtained from measurement and BS 5228 procedure. Meanwhile, the comparison of L_{Aeq} between measurement and simulation was insignificant throughout t-test and overall, the results from MAPE method were also in the acceptable range. As a conclusion, noise prediction using Monte Carlo approach can be used as the alternative way in predicting noise from construction.

ABSTRAK

Bunyi menjadi perhatian serius berikutan peningkatan pembangunan pembinaan. Pendedahan yang berterusan kepada bunyi bising yang berlebihan mengakibatkan kesan fizikal, fisiologi dan psikologi. Untuk mengurangkan kesan-kesan ini, ramalan bunyi bising di peringkat perancangan awal pembinaan adalah disyorkan. Di Malaysia, ramalan bunyi bising adalah berdasarkan kaedah BS5228: Part 1:2008. Walau bagaimanapun, tahap bunyi setara (LAeq) ramalan dari BS5228 didakwa tidak tepat, dan penyelidikan terdahulu mencadangkan bahawa penyelesaian utama adalah dengan meramalkan bunyi menggunakan pendekatan stokastik. Walau bagaimanapun, ramalan bunyi menggunakan pendekatan stokastik tidak dijalankan secara terperinci dan tidak semua faktor-faktor yang boleh memberi kesan bunyi yang dipertimbangkan. Oleh itu, kajian ini mengkaji ketepatan ramalan bunyi dengan menggunakan kaedah BS5228, diikuti dengan menambahbaik kaedah ramalan bunyi menggunakan pendekatan stokastik, dan membangunkan model automatik ramalan bunyi. Antara faktor-faktor yang dipertimbangkan termasuk kepelbagaian kedudukan dan ketinggian sumber bunyi serta penerima dan kepelbagaian penyerapan bunyi luaran Model automatik direka menggunakan Graphical User Interface (GUI) dan menghasilkan aras bunyi setara, L_{Aeq}, sisihan piawai dan parameter lain tahap bunyi seperti L_{10} , L_{90} dan L_{max} . Ketepatan diantara aras bunyi setara yang dicerap dan diramalkan telah diuji dengan menggunakan ujian statistik dalam perisian SPSS (Statistical Package for Social Science) dan juga menggunakan kaedah MAPE (Mean Absolute Percentage Error). Hasil ujian-t menunjukkan terdapat perbezaan yang signifikan antara L_{Aeq} diperolehi dari cerapan dan prosedur BS 5228 . Manakala, perbandingan antara LAeq cerapan dan simulasi adalah tidak signifikan melalui ujian-t dan keseluruhannya keputusan daripada kaedah MAPE juga dalam julat yang boleh diterima. Sebagai kesimpulanya, ia menunjukkan bahawa ramalan bunyi menggunakan pendekatan Monte Carlo boleh digunakan sebagai kaedah alternatif dalam meramalkan bunyi bising dari pembinaan.

TABLE OF CONTENTS

TOPIC

PAGE

1

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOL	xviii
LIST OF ABBREVIATION	xix

1 INTRODUCTION

1.1 Introduction 1 1.2 Background of Study 2 1.3 Problem Statement 3 Aim and Objectives 1.4 4 Research Scope 1.5 5 Significance of Research 1.6 6

2 LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Overv	riew of Sound and Noise	7
	2.2.1	Noise Descriptors for Environmental Noise	9
2.3	Effect	of Noise towards Communities and Workers	11
2.4	Chara	cteristic of Construction Noise	13
	2.4.1	Source of Noise from Construction Site	14
	2.4.2	Measurement of Noise Emission from	
		Construction Site	18
		2.4.2.1 Noise Emission Limit	19
2.5	Outdo	oor Sound Propagation	22
	2.5.1	Geometric Spreading of Sound	23
	2.5.2	Meteorological	23
	2.5.3	Atmospheric	24
	2.5.4	Ground Effect	25
	2.5.5	Obstruction and Barrier	28
2.6	Noise	Prediction Approach	29
	2.6.1	Deterministic Prediction Method	29
	2.6.2	Stochastic Prediction Approach	32
		2.6.2.1 Monte Carlo Method	33
2.7	Discu	ssion	40
2.8	Concl	usion	41

3 METHODOLOGY

3.1 Introduction
3.2 On-site Measurements
3.2.1 Methods for Measuring of Noise Emission
3.2.2 Methods for Measuring Length
3.2.3 Methods for Measuring Temperature
and Wind Speed from Construction Site
3.2.4 Methods for Measuring Noise Emission Level

7

43

		from Individual Machinery	52
3.3	Noise	Prediction Method using Deterministic Approach,	
	BS522	28: Part1: 2009	53
3.4	Devel	opment of Stochastic Modelling System	55
	3.4.1	Generation of Random Variables	57
	3.4.2	Deterministic System	58
	3.4.3	Automated Noise Prediction Model using	
		MATLAB	59
3.5	Comp	arison using Statistical Analysis and MAPE Method	s 62
	3.5.1	T-test	62
		3.5.1.1 One-Sample T-test	63
		3.5.1.2 Paired-Samples T-test	64
		3.5.1.3 Independent Samples T-test	65
	3.5.2	Mean Absolute Percentage Error	67

4 ON-SITE NOISE MEASUREMENT AND IT PREDICTION 68 USING BS5228

4.1	Introduction	68
4.2	Noise Emission Level from Construction Site	69
	4.2.1 Site 1	69
	4.2.2 Site 2	76
4.3	Data of Noise Emission Levels for Individual Machineries	86
4.4	Noise Prediction using Deterministic Approach (BS5228)	88
	4.4.1 Site 1	88
	4.4.1 Site 2	92
4.5	Comparison between On-site Measurement and	
	BS5228:Part1:2009	94
4.6	Discussion of Noise Measurements and Predictions	
	Using BS5228	96

5

RESULTS OF NOISE SIMULATION IN STOCHASTIC MODELLING BASED ON MONTE CARLO APPROACH

5.1	Introdu	action	98
5.2	Monte Carlo Approach for Construction		
		se Simulation	98
5.3	Constr	uction of Interface for Noise Prediction Tool	99
5.4	Overvi	iew of Simulation Results from Local Model and	
	Global	Model through Interface	107
	5.4.1	Random Position of Equipment during Simulations	
		from Local Model	107
	5.4.2	Distribution of Sound Pressure Levels from Local	108
		Model	
	5.4.3	Histogram of Distributed Sound from Local Model	108
	5.4.4	Cumulative Distribution Function (CDF) from	108
		Local Model	
	5.4.5	Combination of Sound Pressure Level in Global	111
		Model	
	5.4.6	Histogram of Distributed Sound in Global Model	112
	5.4.7	Cumulative Distribution Function (CDF) from	112
		Global Model	
5.5	Model	Validation with the Real On-site Measurement	114
	5.5.1	Validation of Simple Model	114
	5.5.2	Validation of Complex Model	121
5.6	Discus	sion on Results of Simulations	129

6 COMPARISON AND VALIDATION BETWEEN NOISE OBTAINED FROM MEASUREMENT, SIMULATIONS AND BS5228 METHOD

6.1	Introduction	130
6.2	Comparison between On-site Measurement	

98

130

and Simulation		130	
	6.2.1	Multiple Comparison	131
		6.2.1.1 Comparison of LAeq using Independent-same	ple
		t-test	137
		6.2.1.2 Comparison of CDF using Paired-samples	
		t-test and MAPE	141
6.4	Comp	arison in Terms of L _{Aeq}	145
6.5	Comp	arison of L_{Aeq} in relation to Ground Effect	
	and A	tmospheric Absorption	146
6.6	Discu	ssion	147

7 CONCLUSIONS AND RECOMMENDATIONS 151

7.1	Introduction	151.
7.2	Conclusion Based on Objectives	151
7.3	Recommendations	154

REFERENCES 157

LIST OF TABLES

TABLE NO.TITLE

PAGE

2.1	Fluctuation characteristics of construction machinery	
	noise	15
2.2	Sound pressure levels data on the construction activities	17
2.3	Maximum permissible sound level (L_{Aeq}) by receiving	
	land use for planning and new development	21
2.4	Maximum permissible sound level	
	(percentile, L_N and L_{max}) of construction, maintenance	
	and demolition work byreceiving land use	21
2.5	Attenuation due to atmospheric absorption	24
2.6	History of stochastic approach in prediction of noise	35
2.7	Probability distribution machines work in idle,	
	operating (full power) and inactive	37
4.1	Noise measurement for Site 1 records	75
4.2	Noise measurement for Site records	77
4.3	Sound power levels of machineries obtained from site	
	measurement	87
4.4	Computation of equivalent noise level for Site 1 based	
	on BS5228: Part 1: 2009	90
4.5	Computation of equivalent noise levels for Site 2 based	
	on BS5228: Part 1: 2009	93
4.6	Test of significant difference in mean equivalent	
	noise levels for Site 1	94
4.7	Test of significant difference in mean equivalent	

	noise level for Site 2	95
5.1	Input data acquired from measurement for the site	
	with simple topography	120
5.2	Input for complex topography acquired from	
	measurement	128
6.1	Summary of the results obtained from on-site	
	measurement and using simulation for Site 1	132
6.2	Summary of the results obtained from on-site	
	measurement and using simulation for Site 2	135
6.3	Comparison of L_{Aeq} from measurement and	
	simulation using independent-samples t-test	139
6.4	Comparison of CDF using paired-samples t-test	143
6.5	MAPE of CDF between simulation and measurement	
	for Site 1 and Site 2	144
6.6	Comparison between equivalent continuous sound	
	level, LAeq with and without consider ground effect	
	and atmospheric absorption	147

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
2.1	Sound pressure level of common sound sources	9
2.1	-	10
	L _{Aeq} of sound pressure level	
2.3	L_{10} , L_{50} and L_{90} of sound pressure level	11
2.4	Source of complaints made to City of London	
	2009-2011	14
2.5	Noise sources noticed most often by populations	15
2.6	Average spectrums of the analysed stages	18
2.7	Factors influencing outdoor sound propagation	22
2.8	Atmospheric absorption in early morning and	
	mid-day for a representative day in March 2004	25
2.9	Sound reflected by the ground interferes with the	
	directly propagated sound	25
2.10	Influence of ground surface at 100 m distance	
	between source and receiver	26
2.11	Geometry of sound propagation path over or around	
	a barrier	28
2.12	Flow chart for the prediction of site noise	31
2.13	Sampling of stochastic variables $(x_1, x_2 \text{ and } x_3)$ into	
	deterministic equation (f(x))	36
2.14	Location of stochastic source on site for Monte	
	Carlo method	39
2.15	PDF and CDF obtained for single equipment operating	

at full power

40

3.1	Framework of the research methodology	44	
3.2	Real on-site measurement of Site 1	46	
3.3	Real on-site measurement of Site 2		
3.4	Steps regarding real site measurement	47	
3.5	Sound level meter	49	
3.6	Placement of sound level meter		
3.7	Toolbars of sound level meter	49	
3.8	Distometer	50	
3.9	Anemometer		
3.10	Positions of sound level meter for noise emission		
	level measurement	52	
3.11	Calculation steps using BS5228: Part 1: 2009 method	55	
3.12	Framework of stochastic modelling system	57	
3.13	Local modelling system	58	
3.14	Coding for generating random number in M	60	
3.15	Flowchart for modelling of noise prediction from		
	construction site	61	
4.1	Location of the measurement points for Site 1	70	
4.2	Sound pressure levels from on-site measurement		
	at Point A	72	
4.3	Sound pressure levels from on-site measurement		
	at Point B	73	
4.4	Sound pressure levels from on-site measurement		
	at Point C	74	
4.5	Site layout and location of the point noise measurement	76	
4.6	Side view for point noise measurement	79	
4.7	Sound pressure levels from on-site measurement		
	at Point 1	80	
4.8	Sound pressure level from on-site measurement		
	at Point 2	81	
4.9	Sound pressure level from on-site measurement		
	at Point 3	82	
4.10	Sound pressure levels from on-site measurement		
	at Point 4	84	

4.11	Sound pressure levels from on-site measurement at Point 5	85
4.12	Machineries involved in noise emission level from	85
4.12		07
4 1 2	construction Site 1	87
4.13	Machineries involved in noise emission level from	07
4 1 4	construction Site 2	87
4.14	Schematic diagram of construction site 1 with the	00
4.1.5	distance from the receiver	89
4.15	Schematic diagram of construction site 2 with the	
	distance from the receiver	91
5.1	Flowchart of noise prediction model	100
5.2	First interface of noise prediction model	100
5.3	Second interface of noise prediction model	102
5.4	Third interface of noise prediction model	103
5.5	Selecting number of local model	103
5.6	Input data required	104
5.7	Warning box	105
5.8	Output results	106
5.9	Forth interface of noise prediction model	106
5.10	Random position in local model 10	
5.11	Distribution of sound pressure levels in local model	
5.12	Histogram of sound pressure levels generated in	
	local model	110
5.13	CDF and PDF graphs for local model	110
5.14	Distribution of sound pressure levels for global model	111
5.15	Histogram of sound pressure levels in global model	113
5.16	CDF and PDF graphs for global model	113
5.17	Simulation of noise levels at Point A	117
5.18	Simulation of noise levels at Point B	118
5.19	Simulation of noise levels at Point C	119
5.20	Point 1	122
5.21	Point 2	123
5.22	Point 3	124
5.23	Point 4	126

5.24	Point 5	127
6.1	Measurement vs. simulation: CDF and PDF graphs	
	for Site 1	133
6.2	Measurement vs. simulation: CDF and PDF graphs	
	for Site 2	136
6.3	L_{Aeq} from on site measurement, simulations and	
	BS2558 for Site 1	145
6.4	L_{Aeq} from on site measurement, simulations and	
	BS2558 for Site 2	146

LIST OF SYMBOLS

L _p	=	Sound pressure level
L_{w}	=	Sound power level
L _{Aeq}	=	Equivalent continuous sound level
L _{Aeq5min}	=	Sound level equivalent for 5 minutes
L _{Aeq30s}	=	Sound level equivalent for 30 seconds
L _{max}	=	Maximum sound level
L_N	=	Percentile Levels
L ₁₀	=	Percentile levels with values exceeding 10% of elapsed time
L ₅₀	=	Percentile levels with values exceeding 50% of elapsed time
L ₉₀	=	Percentile levels with values exceeding 90% of elapsed time

LIST OF ABBREVIATION

DOE	=	Department of Environment
dB(A)	=	Decibel
SPL	=	Sound pressure level
CDF	=	Cumulative Distribution Function
PDF	=	Probability Distribution Function
MAPE	=	Mean Absolute Percentage Error
GUI	=	Graphical Interface User

CHAPTER 1

INTRODUCTION

1.1 Introduction

Malaysia has been a successful developing country which has undergone rapid infrastructural development. There are many new construction and reconstruction of the building such as residential, commercial building and others. A significant and adverse effect on this continuing development is the increase in the level of the noise pollution, particularly in the vicinity of construction sites. According to Zolfagharian *et al.* (2012), it was determined that noise pollution was the most risky environmental impact on construction sites in Malaysia. Excessive noise from the construction site can give adverse effect to the workers and the surrounding community, such as hazard to physical health, communication and social life activities. Generally, noise produced from construction site is mainly from plants, heavy equipments and machinery.

Noise from construction activities is the common problem everywhere and the most important fact that cannot be eliminated. However, it can be reduced by a good management of noise especially in the early planning. The first step to reduce the noise level is the prediction of noise in the early planning. The prediction indicates the probability of noise level generated from construction sites during working hours. Thus, consultant, contractor, workers and authorities can get early information about the possibility of noise generated from the construction sites, and then the investigation of noise elimination can be done before construction activities are carried out. The prediction in the early planning is very important to avoid serious effect of noise to the workers and the surrounding community during the construction. Therefore, the appropriate method to predict noise level generated from construction sites is required to give the accurate prediction of noise emission.

1.2 Background of Study

Continuous exposure to excessive noise may result in physical, physiological and psychological effects including hearing loss, cardiovascular problem, mental illness and annoyance. In order to reduce these effects, the prediction of construction noise in the early planning stage is suggested. In Malaysia, the prediction of noise proposed by Department of Environment is based on the BS5228: Part 1 (Noise Control on Construction and Open Sites). The prediction should be made at an early planning by planner, developers, architects, engineers and environmental health officers to avoid excessive noise level. The method of noise prediction by using BS5228 only calculates the equivalent continuous A-weighted sound level L_{Aeq} and considered as the deterministic approach which results in only a single output. This method also assumes certain factors that may influence the noise level at the receiver such as meteorological factors, ground surface attenuation, screening and reflection as a gross simplification. Thus, the prediction by using BS5228: Part 1 is claimed as inaccurate. Haron et al. (2008) stated that Carpenter (1997) claimed the LAeq prediction from the BS5228: Part 1: 1997 was inaccurate due to the fluctuation of noise in reality. Noise generated from the construction sites is not constant and fluctuates. The fluctuating of noise during the construction is due to the nature of activities, the type of equipments used, the nature of environment such as the terrain where the construction activity takes place, and the condition of the equipments (Gannoruwa and Ruwanpura, 2007; Gilchrist *et al.*, 2002).

Therefore, to overcome these problems, Carpenter (1997) proposed the use of stochastic approach, also known as non-deterministic system in which the output of the prediction consists of random elements. The primary advantage of using the stochastic approach is the respective state variable may result in a cumulative behaviour suitable for predicting the environment condition changes (Cabecinha et al., 2003). Moreover, stochastic approach is considered as a powerful tool for assessing the environmental impacts of noise (Hamoda, 2008). Previously, noise prediction by using a stochastic approach has been introduced by Carpenter (1997). Then, Waddington and Lewis (2000) further developed the new model of noise prediction by using stochastic approach based on Monte Carlo method and continued by Haron and Olham (2004, 2005), Haron and Yahya (2009), Haron et al. (2011), and Idris and Haron (2011). The basic idea of noise prediction by using a stochastic approach is due to behaviour of noise in reality that fluctuates or changes randomly. The stochastic variables depend on the variability of noise source. Then, the model generates random numbers in order to sample the stochastic variables randomly. After that, the stochastic variables become the input to the deterministic equations and the noise level can be predicted. As a result, the cumulative distribution function (CDF) can be produced and from that, the noise equivalent noise level, LAeq and the time history of noise level arising from construction sites can be obtained. In addition, the methods also provide the statistical information.

1.3 Problem Statement

Recently, there are many researches and development of noise prediction using stochastic approach (Waddington and Lewis, 2000; Gilchrist *et al.*, 2003; Haron and Oldham, 2004; Gannoruwa and Ruwanpura, 2007; Haron and Yahya, 2009; Haron *et*

al., 2009 and Idris and Haron, 2012), and the overall results are in good agreement with the field measurement and standard method. Most of the developed models for noise prediction used Monte Carlo method and only considered random location and random acoustic power as stochastic variables in their prediction. However, the predictions of noise using stochastic approach require improvement to apply to a particular construction site. Current model of the predictions of noise using stochastic approach was not carried out in a detailed manner with absence of factors that may affect the noise, such as attenuation due to ground surface and atmospheric absorption. The types of ground surfaces at construction sites differ from each site, such as hard ground, mixed ground and porous ground. The behaviour and characteristics of the ground surface change over a wide area and this effect depends on the height of the source and receiver on the ground. Moreover, the noise levels at the receiver also vary depending on the atmospheric absorption, which increases linearly with distance. Therefore, the improvement of the method for noise prediction using Monte Carlo approach is required to apply to a particular construction site, considering the variability position and height of the sources, as well as receiver and variability of outdoor sound propagation, such as the attenuation of ground surface condition, atmospheric absorption and meteorological condition, that may affect noise level from the construction site. This information is needed to acquire more accurate result on noise prediction. In addition, the automated method for modelling of noise prediction needs to be developed.

1.4 Aim and Objectives

The aim of this research is to develop an automated computation that can predict the noise from the construction site which can be used at the planning stage by using stochastic approach. The following objectives are identified as the steps towards this goal:

- a) To investigate the accuracy of noise prediction by using BS5228: Part
 1: 2009 by comparing the predicted results with the measurement of real data from construction sites.
- b) To improve the method of noise prediction using stochastic approach by considering ground surface condition and atmospheric absorption factors that contribute to noise level uncertainties.
- c) To develop an automated model for noise prediction.
- d) To verify the results obtained from automated prediction tool with the on-site measurement and those calculated using deterministic approach of BS5228: Part 1: 2009.

1.5 Research Scope

The scopes of the study are as follow:

- This study focused on stages of earthwork activities at the construction site in Johor Bahru. The on-site noise measurements were conducted at two construction sites located at Pulai and Setia Tropika.
- ii. The simulation of the noise emission focused more on L_{Aeq} .
- iii. The development of stochastic modelling system in noise prediction was based on the Monte Carlo approach and was implemented in MATLAB 7.10.

iv. The interface of the stochastic modelling was designed in Graphical User Interface (GUI) and was limited to maximum of 10 machineries.

1.6 Significance of Research

Stochastic modelling is the most popular method in many areas in science and engineering such as for infrastructure deterioration prediction. Therefore, by using stochastic modelling in the prediction of noise, the result is more accurate and stable compared to deterministic approach. Modelling of noise prediction enables the determination of any indices required in evaluating the environmental quality and can facilitate the decision making process where noise is a potential problem. The modelling tool can also be used in determining the risk of quality of sound. In addition, the noise prediction modelling is developed using by Graphical User Interface (GUI) in MATLAB software, which is user-friendly.

REFERENCES

- Ballesteros, M. J., Fernández, M. D., Quintana, S., Ballesteros, J. A. and González, (2010). Noise Emission Evolution on Construction Sites: Measurements for Controlling and Assessing Its Impact on the People and on the Environment. *Building and Environment*. 45, 711-717.
- Bodén, H. (2013). *Propagation of Sound and Vibration*. Royal Institute of Technology.
- British Standards Institution (2009). B.S. 5228: Part 1 (Noise Control on Construction and Open Sites). London: British Standards Institution.
- Brüel & Kjær, (2000), *Environmental Noise*, Copyright © 2000, 2001 Sound & Vibration Measurement A/S.
- Cabecinha, E., Cortes, R. and Cabral, J. A. (2004). Performance of a Stochastic-Dynamic Modeling Methodology for Running Waters Ecological Asseeement. *Ecological Modelling*. 175, 303–317.
- Chan, C. M., Tang, S. K. and Wong, H. (2009). A Statistical Model for Detecting Jumps and Decaying Pulses In The Presence of a Background Noise. *Applied Acoustics*.70, 498-506.
- Chen, Z. (2004). Atmospheric Sound Propagation Considerations for the Birdstrike Project. Montana State University Proprietary.
- Construction Noise Threshold Criteria and Control Plan in Advanced Engineering Acoustics, (2005). *Advanced Engineering Acoustics*. Country of Ventura.

- Department for Environment Food and Rural Affairs, DEFRA (2005). Update of Noise Database for Prediction of Noise on Construction and Open Sites. Norwich.
- Department of Environment (2004). The Planning Guidelines for Environmental noise Limits and Controls Noise. Malaysia.
- Department of Markets and Consumers (2011). *Report City of London Noise Strategy 2012-2016*. London.
- Edworthy, J. (1997). Noise and Its Effects on People: An overview. *International Journal of Environmental Studies*. 51(4), 335-34.
- Environmental Protection Department (2013). Noise Descriptors for Environmental Noise. Hong Kong.
- Fernándz, M.D., Quintana, S., Chavarra, N. and Ballesteros, J. A. (2009). Noise Exposure of Workers of the Construction Sector. *Applied Acoustics*. 70, 753-760.
- Gannoruwa, A. and Ruwanpura, J.Y. (2007). Construction Noise Prediction and Barrier Optimization Using Special Purpose Simulation. *Simulation Conference*, 2007 Winter. 9-12 December. Washington, DC, 2073-2081.

Garcia, A. (2011). Environmental Urban Noise. Boston: Wit Press, 2001.

- Gen, M., Liu, B. and Ida, K. (1996). Evolution Program for Deterministic and Stochastic Optimization. *European Journal of Operational Research* .94, 618-625.
- Gilchrist, A., Cowan, D., and Allouche, E. N. (2002), Modelling The Impact of Construction Projects on Urban Environments. Annual Conference of the Canadian Society for Civil Engineering. 5-8 June. Canada.
- Grant, R. K. (2005). A Study of The Ground and Vegetation Effects on the Propagation of Road Traffic Noise in South East Queensland. Degree, University of Southern Queensland.

- Guasch, O., Margans, F.X., and Rodriguez, P. V. (2002). An Inversion Modelling Method to Obtain the Acoustic Power of the Noise Sources in a Large Factory. *Applied Acoustics*. 63, 401-417.
- Guski, R. (2004). How to Forecast Community Annoyance in Planning Noisy Facilities. *Noise Health*. 6(22), 59-64.
- Hamoda, M. F. (2008). Modelling Of Construction Noise for Environmental Impacts Assessment. *Journal of Construction in Developing Countries*. 13(1), 79-89.
- Haron, Z. and Yahya, K. (2009). Monte Carlo for Predicting Of Noise from a Construction Site. *Journal of Construction in Developing Countries*. 14 (1).
- Haron, Z., Idris, N. A., Jahya. Z., Yahya, K. and Mustaffar, M. (2012). Automated Prediction of Noise from Construction Sites. *The Asia Pacific Structural Engineering & Construction Conference (APSEC) and International Conference on Civil Engineering Conference (APSEC-ICCER 2012).* 2-4 October.Surabaya, Indonesia.
- Haron, Z., Yahya, K. and Jahya, Z. (2012).Predictions of Noise Pollution from Construction Sites at the Planning Stage Using Simple Prediction Charts. *Energy Education Science and Technology, Part A: Energy Science and Research*. 29(2), 989-1002.
- Haron,Z., Oldham, D., Yahya, K. and Zakaria, R. (2008). A Probabilistic Approach for Modeling of Noise from Construction Site for Sustainable Environment. *Malaysian Journal of Civil Engineering*. 20(1), 58-72.
- Hasofer, A. M. and Odigie, D. O. (2001). Stochastic Modelling for Occupant Safety In A Building Fire. *Fire Safety Journal*. 36, 269-289
- International Organization for Standardization (1996). *ISO* 9613-2:1996 Acoustics Attenuation of sound during propagation outdoors, Part 2: General method of calculation. Switzerland. International Organization for Standardization.
- Job, R. F. S (1996). The Influence of Subjective Reactions to Noise on Health Effects of the Noise. *Environment International*. 22(1), 93-104.

- Karacan, C.Ö. and Lubacher, K. (2010). Stochastic Modelling Of Gob Gas Venthole Production Performance In Active And Completed Longwall Panels Of Coal Mine. *International Journal of Coal Geology*. 84, 125-140.
- Lamancusa, J. S. (2009). Outdoor sound Propagation. Penn State.
- Larsson, C. (2005). Weather Effects on Outdoor Sound Propagation. *International Journal of Acoustics and Vibration*. 5(1), 33-36.
- Leech, J. F. and Squires, M. (1999). Noise. Taylor & Francis Group LLC.
- Li, J., Huang, G. H., Zeng, G., Maqsood, I. and Huang, Y. (2007). An Integrated Fuzzy-Stochastic Modelling Approach for Risk Assessment of Groundwater Contamination. *Journal of Environment Management*. 82, 173-188.
- Li, J., Yan, Q. and Chen, J. B. (2011). Stochastic Modelling of Engineering Dynamic Excitations for Stochastic Dynamics of Structures. *Probabilistic Engineering Mechanics*. 27(1), 19-28.
- Makarewicz, R. (1998). Attenuation of Outdoor Noise Due To Air Absorption and Ground Effect. *Applied Acoustics*. 53(1-3), 133-151.
- Manatakis, E. K. (2000). A New Methodological Trial on Statistical Analysis of Construction Equipment Noise. *Applied Acoustics*. 59, 67-76.
- Nakada, K., Imamura, K. and Yabe, M. (2005). Research and Development of Low-Noise Bucket for Construction Machinery. *Komatsu Technical Report*. 51(156).
- National Instruments (2013). What is Laeq Sound Level? .National Instruments, Malaysia.
- Nitrin, A. and Aluru, N. R. (2009). A Domain Adaptive Stochastic Collocation Approach for Analysis of MEMS under Uncertainties. *Journal of Computational Physics*. 228, 7662-7688.
- Noh, H. M., Haron, Z. and Yahya, K. (2009). Development of Noise Emission Database from Construction Site Equipment for Construction Noise Prediction.

Asia Pacific Structural and Construction Conference, APSEC 2009. August. Langkawi, Malaysia.

- Sandmann, W. (2008). Discrete-Time Stochastic Modelling and Simulation of Biochemical Networks. *Computational Biology and Chemistry*. 32, 292-297
- Sinclaire, J. And Hafildson, W.C. (1995). Construction Noise in Ontario. *Journal of Applied Occupational Environmental Hyg.* 10 (5), 457-460.
- Stansfeld, S. A. And Matheson, M. P. (2003). Noise Pollution: Non-auditory Effects on Health. *British Medical Bulletin*. 68, 243-257.
- Subramanyaan, K., Diwekar, U. and Zitney, S. E. (2011). Stochastic Modelling and Multi-Objective Optimization for the APECS System. *Computer and Chemical Engineering*. 35(12), 2667-2679.
- Tokmechi, Z. (2011). Noise Pollution due to Site Mobilization. *World Applied Sciences Journal*. 12 (4), 531-535.
- Twycross, J., Band, L. R., Bennett, M. J., King, J. R. and Krasnogor, N. (2010). Stochastic and Deterministic Multiscale Models For Systems Biology: An Auxin-Transport Case Study. *BioMed Central (BMC) Systems Biology*. 4(34).
- Wachasunder, S. (2004). Assessment of Refinery Noise Impact on Workers-A case Study. *International Journal of Environmental studies*. 61(4), 459-470.
- Wang, X. (2011). Deterministic- Statistical Analysis of A Structural-Acoustic System. *Journal of Sound and Vibration*. 330, 4827-450.
- Wang, Y., Au, S. K. and Kulhawy, F. H. (2011). Expanded Reliability-Based Design Approach for Drilled Shafts. *Journal of Geotechnical and Geoenvironmental Engineering*.137 (2), 140-149.
- Wiener and Keast (2007). *Experimental Study of the Propagation of Sound Over Ground*. Journal of the Acoustical Society of Amerika. 31, 724.
- Xie, G. and Li, J. (1999). New Parallel Stochastic Global Integral and Local Differential Equation Modelling and Inversion. *Physica D*. 133,477–487.

- Yoshinaga, H., Yoshida, T. and Hayashi, A. (2004). Analysis of Individual Machine Noise in Construction. *International Congress and Exposition on Noise Control Engineering*. 22-25 August. Japan.
- Zannin, P. H. and Sant'Ana, D. Q. D. (2011). Noise Mapping at Different Stages of a Freeway Redevelopment Project- A Case Study in Brazil. *Applied Acoustics*. 72, 479-486.
- Zolfagharian, S., Nourbakhsh, M., Irizarry, J., Ressang, A., and Gheisari, M. (2012). Environmental Impacts Assessment on Construction Sites. *Construction Research Congress 2012.*