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ABSTRACT 

 

 

 

 

This thesis presents a number of investigations leading to introduction of novel 

applications of intelligent algorithms in the fields of informatics and analytics. This 

research aims to develop novel methodologies to reduce dimensions and clustering of 

highly non-linear multidimensional data. Improving the performance of existing 

methodologies has been based on two fundamental approaches. The first is to look 

into making novel structural re-arrangements by hybridisation of conventional 

intelligent algorithms which are Auto-Associative Neural Networks (AANN) and 

Self Organizing Maps (SOM) for data clustering improvement. The second is to 

enhance data clustering and classification performance by introducing novel 

fundamental algorithmic changes known as M3-SOM in the data processing and 

training procedure of conventional SOM. Both approaches are tested, benchmarked 

and analysed using three datasets which are Iris Flowers, Italian Olive Oils and Wine 

through case studies for dimension reduction, clustering and classification of 

complex and non-linear data. The study on AANN alone shows that this non-linear 

algorithm is able to efficiently reduce dimensions of the three datasets. This paves 

the way towards structurally hybridising AANN as dimension reduction method with 

SOM as clustering method (AANNSOM) for data clustering enhancement. This 

hybrid AANNSOM is then introduced and applied to cluster Iris Flowers, Italian 

Olive Oils and Wine datasets. The hybrid methodology proves to be able to improve 

data clustering accuracy, reduce quantisation errors and decrease computational time 

when compared to SOM in all case studies. However, the topographic errors showed 

inconsistency throughout the studies and it is still difficult for both AANNSOM and 

SOM to provide additional inherent information of the datasets such as the exact 

position of a data in a cluster. Therefore, M3-SOM, a novel methodology based on 

SOM training algorithm is proposed, developed and studied on the same datasets. 

M3-SOM was able to improve data clustering and classification accuracy for all 

three case studies when compared to conventional SOM. It is also able to obtain 

inherent information about the position of one data or "sub-cluster" towards other 

data or sub-cluster within the same class in Iris Flowers and Wine datasets. 

Nevertheless, it faces difficulties in achieving the same level of performance when 

clustering Italian Olive Oils data due to high number of data classes. However, it can 

be concluded that both methodologies have been able to improve data clustering and 

classification performance as well as to discover inherent information inside 

multidimensional data. 
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ABSTRAK 

 

 

 

 

Tesis ini membentangkan beberapa rangkaian penyelidikan yang membawa 

kepada pengenalan aplikasi baharu untuk algoritma pintar dalam bidang informatik 

dan analisis. Kajian ini bertujuan untuk membangunkan kaedah-kaedah baharu untuk 

mengurangkan dimensi dan pengugusan data berbilang dimensi dan bukan linear. 

Peningkatan prestasi kaedah sedia ada dibuat berdasarkan kepada dua pendekatan 

asas. Yang pertama ialah dengan memberi penekanan kepada kaedah baharu 

penyusunan semula struktur-struktur algoritma melalui penghibridan algoritma pintar 

konvensional iaitu Rangkaian Neural Automatik Bersekutu (Auto-Associative Neural 

Networks (AANN)) dan Peta Swaorganisasi (Self Organizing Maps (SOM)) bagi 

tujuan peningkatan prestasi pengugusan data. Yang kedua ialah bagi tujuan 

peningkatan prestasi pengugusan dan penkelasan data dengan memperkenalkan 

perubahan baharu terhadap kerangka pemprosesan data dan prosedur latihan di 

dalam algoritma konvensional SOM. Kedua-dua pendekatan ini diuji, ditanda aras 

dan dianalisis dengan menggunakan tiga set data bunga Iris, minyak zaitun Itali dan 

Wain melalui beberapa kes-kes kajian untuk mengurangkan dimensi, pengugusan 

dan klasifikasi data yang kompleks dan bukan linear. Kajian terhadap AANN sahaja 

menunjukkan algoritma bukan linear ini mempunyai keupayaan pada tahap ketepatan 

yang tinggi untuk mengurangkan dimensi ketiga-tiga set data tersebut. Ini membuka 

jalan ke arah penggabungan struktur AANN sebagai kaedah pengurangan dimensi 

dengan SOM sebagai kaedah pengugusan data (AANNSOM) bagi tujuan 

peningkatan pengelompokan data. Penghibridan algoritma AANN dan SOM 

(AANNSOM) diperkenalkan dan digunakan dalam kes-kes kajian pengelompokan 

data set-set data bunga Iris, minyak zaitun Itali dan Wain. Metodologi hibrid terbukti 

dapat meningkatkan ketepatan pengelompokan data, mengurangkan kesilapan 

pengkuantuman dan mengurangkan kerumitan pengiraan berbanding SOM dalam 

semua kajian kes. Walaubagaimanapun, kesilapan topografi didapati tidak konsisten 

disepanjang kajian dan ianya masih sukar bagi kedua-dua AANNSOM dan SOM 

untuk memberikan maklumat tambahan yang wujud di dalam set-set data seperti 

kedudukan sebenar sesuatu data di dalam kelompok. Oleh itu, metodologi M3-SOM 

yang berdasarkan algoritma latihan SOM adalah dicadangkan, dibangunkan dan 

dikaji pada set data bunga Iris, minyak zaitun Itali dan Wain. M3-SOM mampu 

meningkatkan prestasi ketepatan pengelompokan dan klasifikasi data untuk ketiga-

tiga kajian kes berbanding konvensional SOM. Ia juga mampu untuk mendapatkan 

maklumat yang wujud mengenai kedudukan salah satu data atau "sub-kelompok" ke 

arah data lain atau sub-kelompok dalam kelas yang sama untuk set-set data bunga 

Iris dan Wain. Walau bagaimanapun, ia menghadapi kesukaran untuk mencapai 

tahap prestasi yang sama untuk kelompok data minyak zaitun Itali kerana bilangan 

kelas data yang tinggi. Walaubagaimanapun, boleh disimpulkan bahawa kedua-dua 

kaedah telah dapat meningkatkan prestasi pengugusan dan klasifikasi data serta 

menemui maklumat yang wujud di dalam data berbilang dimensi.  
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several output neurons 
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5.3 Different characteristics of neighbourhood functions 

(Bubble (a), Gaussian (b), Cut-Gauss (c) and 

Epanechnikov (d) as described in [75]) on 8x8 SOM 

map. The higher the curves indicate that the changes or 

updates are large while low curves indicate small 

changes or updates 
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5.4 Comparison between the characteristics of M3 equation 

with four other neighbourhood functions (Bubble, 

Gaussian, Cut-Gauss, Epanechnikov [75]). The higher 

the curves indicate that the changes or updates are large 

while low curves indicate small changes or updates. All 

functions depend on the value of neighbourhood radius 

((a)=7;(b)=4;(c)=1) with respect to time except for M3 

function 
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5.5 The ordinary SOM’s data clusters (left). The clustering 

of data using Stage-1 (right) 
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5.6 3D representation of data in M3-SOM. The data are 

arranged according to their computed distances in 

matrix of distances D from smaller (lower positions) to 

higher (upper positions) 

 

 

 

 

127 

5.7 Iris Flowers clustering using SOM (left) and Stage-1 

(right). M3-SOM has been able to group most of the 

data into three different classes 
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5.8 Iris Flowers clustering using SOM. Class: Setosa (label 

0-49); Versicolor (50-99);Virginica (100-149) 
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5.9 Vertical representation of the three classes of Iris 

Flowers data using M3-SOM. The positions of the data 

in M3-SOM are ordered according to the their 

minimum computational distances in matrix of 

distances (D). The lower the values the lower the 

positions of the data while higher values represent data 

at higher positions 
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5.10 Vertical representation of the three classes of Iris 

Flowers data using M3-SOM. The positions of the data 

in M3-SOM are ordered and positioned based on the 

exact computational distances in matrix of distances 

(D) 
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5.11 

 

M3-SOM’s representation (lower part) of the positions 

of the data of three classes of Iris Flowers compared to 

their respective locations in SOM map. When 

compared to SOM, these data are situated at the centre 

of clusters for the three classes of Setosa, Versicolor 

and Virginica 
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5.12 M3-SOM’s representation of the positions of the data 

(farthest ones) for the three classes of Iris flowers data 

compared to their respective locations in SOM map. 

When compared to SOM, these data are mostly situated 

at the boundaries of the clusters for the three classes of 

Setosa, Versicolor and Virginica 
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5.13 Data clustering accuracy of Iris Flowers using M3-

SOM and SOM with different neighbourhood functions 

(Bubble, Cut-Gauss, Gaussian and Epanechnikov). The 

accuracies are reduced when the number of training 

data decreases 
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5.14 Italian Olive oils clustering using SOM 
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5.15 Italian Olive oils clustering using Stage-1 
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5.16 The lower part (left) and upper part (right) of M3-SOM 

represents the clustering of Italian Olive oils 
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5.17 Data clustering accuracy of Italian Olive oils data using 

M3-SOM and SOM with different neighbourhood 

functions (Bubble, Cut-Gauss, Gaussian and 

Epanechnikov). The accuracies are reduced when the 

number of training data decreases 
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5.18 Wine clustering using SOM (left) and Stage-1 (right). 

M3-SOM has been able to group most of the data into 

three different classes 

 

 

 

147 

5.19 Wine clustering using SOM. Class: Class-1 (label 0 - 

58); Class-2 (label 59 - 129); Class-3 (label 130-177) 
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5.20 Vertical representation of the three classes of Wine 

data using M3-SOM. The positions of the data in M3-

SOM are ordered according to the their minimum 

distances in matrix of distances (D). The lower the 

values the lower the positions of the data while higher 

values represent data at higher positions 
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5.21 The lower part of M3-SOM represents the data that are 

mostly situated at the cluster centres in SOM 
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5.22 The upper part of M3-SOM that represent the data that 

are mostly situated at the cluster boundaries in SOM 
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5.23 Data clustering accuracy of Wine data using M3-SOM 

and SOM with different neighbourhood functions 

(Bubble, Cut-Gauss, Gaussian and Epanechnikov). The 

accuracies are reduced when the number of training 

data decreases 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction: Background and Motivation 

 

 

Since the dawn of modern time, humans have usually been attracted in how 

nature functions, including themselves. This understanding has allowed mankind to 

reproduce certain forms of nature functions and to extend human limitation. An 

inspiring example is escaping gravitation; (in other words: flying), and the human 

race is currently increasingly fascinated in reproducing one of the most important 

features of nature: intelligence. Human has shown the ability to copy or learn from 

nature. Many existing inventions today are originated from the certain forms of 

nature or biological system. The flying ability of bird creates idea and path for 

human to invent aeroplane, robotic arm is replicated from human arm as well as 

barcode is devised from the uniqueness of finger thumb print and other inventions 

originated from features of nature. Intelligence however is one the features of nature 

that is not physically exist but can be studied and modelled. This unique feature 

inspires human to study about it, understand it and create machines or systems that 

could imitate it. This would become the artificial features of nature or artificial 

learning mechanisms for these machines or systems and is commonly known as 

Artificial Intelligence (AI). The learning ability of natural intelligence in clustering,  

classifying and recognizing objects or patterns that could reveal any form of inherent 

information motivates the author to initiate this research in intelligent machine 

learning algorithm in the field of informatics and analytics aiming to develop novel 

methodologies for reducing dimensions and clustering of highly non-linear 

multidimensional data. 
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Knowledge discovery has become one of the most challenging fields of study 

nowadays. Over the years, many work have started with the purpose of learning the 

machine to explore, discover and understand knowledge and information that could 

be beneficial for us. The need to extract information and knowledge from a huge 

pool of abundant and complicated data structures is enormous. It can be considered 

as one of the most important characteristic of the information age. The incredible 

development and advancement in Information Technology (IT), in particular the 

Internet, have led us into a technological situation that can be called "data 

explosion”. The aspect of data availability has been increased much more than 

assimilation capacity of any normal human being. According to a study conducted at 

Digital Universe Study [1], the amount of generated data in particular digital data 

have grown exponentially in the last decade and will continue to grow by 50-fold by 

the year 2020. This massive increase in both the volume and the variety of data 

demands for advances in methodology to understand, process, interpret and 

summarize the data. According to [2], we are overloaded by many types of data such 

as scientific data, medical data, financial data etc. These data require huge amount of 

time and demand vast attention. As a result, efforts must be taken by us to find ways 

to automatically: analyse the data, cluster or classify them, summarize them, discover 

and characterize trends or patterns in them, and identify abnormalities. Researches in 

statistics, visualization, artificial intelligence and machine learning are contributing 

to this one of the most active area of database research community. 

 

 

From a more technical point of view, understanding the structure of 

multidimensional datasets arising from the data explosion is very important in data 

mining, data clustering, pattern recognition, and machine learning. This would 

enable us to obtain additional inherent information about the datasets. However, it 

would be difficult, costly and time consuming to acquire new knowledge from 

databases that are larger and complicated if it is done manually. It may even be not 

viable when the data exceed certain limits of size and complexity. Therefore, the 

automated analysis and visualisation of multidimensional datasets has become the 

focus of many scientific research with the objective is to find uniformities and 

relationships in the data. This could gain access to useful knowledge or inherent 

information that could be hidden inside the data. AI technique of Artificial Neural 
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Networks (ANN) can be considered as one of the promising tools in this field. 

Inspired by advances in biomedical research, ANN forms a class of algorithms 

aiming to simulate the biological neural networks. One of the well-known ANN 

algorithm, the Self-Organizing Maps (SOM) has become one of the most popular 

unsupervised learning algorithms. Created in the early 1980s by Finnish Professor 

Teuvo Kohonen, the work or research related to the algorithm, visualization and 

application of SOM has been published in more than 5000 research articles 

according to [3]. The algorithm comprehensively visualise natural groupings and 

relationships in the data and has been successfully applied in a wide variety of 

research areas such as image processing, speech recognition, life sciences, bio-

informatics to financial analysis to name few. 

 

 

SOM algorithm performs a non-linear projection of multidimensional data onto 

a two dimensional display. The mapping is topology-preserving which means that 

the more identical or similar two data are in the input space, the closer they will 

appear together on the final map. This allows the user to identify clusters such as 

large groupings of a certain type of input pattern. What features the members of a 

cluster have in common could also be revealed through additional examination. It is 

an efficient tool in information visualisation. The basic implementation of SOM is 

simple and the map representation is easy to understand. Furthermore, the results are 

reliable and the algorithm scales exceptionally well. In many studies and 

applications, SOM has proved to be excellent in helping in visualising and 

understanding the data. 

 

 

Regardless of its popularity and ability to cluster multidimensional data, SOM 

has shown some issues and limitations with regards to its structure and visualization 

performances. The inherent information about one particular data with respect to 

other data, a sub-cluster, or an unknown data, have been often difficult to be 

interpreted and understood. Sever shortcomings in interpreting data clusters and the 

difficulties to distinguish different data classes using SOM particularly when the data 

are unknown, complex or non-linear have stirred the motivation for this research. 
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1.2 Aim and Objectives of the Research 

 

 

The aim of this research is to devise a new paradigm of analytics using hybrid 

and complementary algorithmic methodologies for clustering data with complex, 

non-linear and unknown inherent structures.  

 

 

The objectives of the research are as follows: 

 

 

1. To review the strengths and weaknesses of various techniques for 

dimension reduction and clustering data with complex and non-linear 

characteristics. 

 

 

2. To identify suitable datasets with non-linear characteristics for 

dimension reduction and clustering as Case-studies for implementation 

of proposed methodologies. 

 

 

3. To improve the ability of the existing methodologies for dimension 

reduction techniques. 

 

 

4. To develop new training methodologies for clustering, classifying and 

visualizing data with complex, non-linear and unknown structures. 

 

 

 

 

1.3 Scope of the Research 

 

 

The scope of the research is limited to the review of literature, study, 

development and analysis related to data mining, dimension reduction techniques, 

clustering algorithms and multidimensional datasets. 
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1.4 Research Framework and Contributions 

 

 

1.4.1 Introduction 

 

 

This research focuses on the studies, developments and enhancements of 

dimension reduction, clustering and classification of data with complex, non-linear 

and unknown structures. This research is carried out throughout the incremental steps 

which begin from the review of various dimension reduction and clustering 

techniques to the re-development and analysis of these techniques, and to the 

development and analysis of the proposed enhanced techniques for data clustering 

and classification.     

 

 

 

 

1.4.2 Research Framework 

 

 

The framework of the research is described as the following steps (Figure 1.1) 

and organized according to Chapter 2, Chapter 3, Chapter 4 and Chapter 5 of the 

thesis. The steps are: 

 

 

1. The review of dimension reduction and clustering techniques is described in 

Chapter 2. 

2. The re-development of AANN and the study and analysis on it's ability to 

reduce dimension of multidimensional data is described in Chapter 3. 

3. The development of hybrid AANN and SOM and the study and analysis on it's 

clustering performances is presented in Chapter 4. 

4. The development of M3-SOM and the study and analysis on it's clustering and 

classification performances is presented in Chapter 5. 

 

  



 

 

 

 

 

 

 

1.4.3 Research Contributions

 

 

The contributions of the research are

 

 

1. The development and study of a new computational methodology based on 

SOM training algorithm

algorithm specifically on it's neighbourhood functions, weights updates 

process and matrix of distances, 

in SOM data 

methodology provides more inherent informat

data such as it's ability to identify the closest data, the farthest data or the 

group of data that may form a group of sub

 

 

 

Figure 1.1 The framework of the research 

Contributions 

contributions of the research are as follows: 

development and study of a new computational methodology based on 

SOM training algorithm. The detail investigations 

algorithm specifically on it's neighbourhood functions, weights updates 

process and matrix of distances, lead to the creation of a new

data clustering, classification and visualization

thodology provides more inherent information about multidimensional 

data such as it's ability to identify the closest data, the farthest data or the 

group of data that may form a group of sub-clusters in the same class.

6 

development and study of a new computational methodology based on 

investigations on SOM training 

algorithm specifically on it's neighbourhood functions, weights updates 

lead to the creation of a new methodology 

and visualization. This new 

ion about multidimensional 

data such as it's ability to identify the closest data, the farthest data or the 

clusters in the same class. 
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2. The development of hybrid AANNSOM algorithm for multidimensional 

data clustering. This algorithm is a combination of supervised learning and 

dimension reduction method of AANN with unsupervised learning and 

clustering method of SOM. The AANNSOM achieves higher clustering 

performance in clustering multidimensional datasets when compared to 

conventional SOM. 

 

 

3. The development and study of AANN algorithm as dimension reduction 

method. The study focuses on the dimension reduction ability of this 

algorithm when dealing with datasets of different sizes, dimensions and 

clusters. AANN has demonstrated its ability to non linearly reduce the 

dimension of the datasets, but did not remove inherent characteristics of 

each dataset allowing them to be classified with high levels of accuracy. 

This algorithm has also demonstrated its ability to embed test data according 

to its class. 

 

 

 

 

1.5 Thesis Structure 

 

 

This thesis is divided into six chapters and is organized as follows. Chapter 1 

provides an introduction to the research, aim, objectives and scope of the research, 

research contributions and also thesis outline. Chapter 2 covers the review of 

literature on the concepts of multidimensional data, data mining, dimension 

reduction, data clustering, clustering analysis and processes. Different methods of 

data clustering from K-means, hierarchical clustering, Principal Component Analysis 

(PCA) to AANN and SOM are presented in this chapter. The non-linear 

characteristics of multidimensional datasets used in this research are investigated, 

presented and discussed as well in Chapter 2. Chapter 3 is dedicated to the 

investigation of AANN's ability reducing dimensions and clustering of 

multidimensional data. Chapter 4 introduces combination of AANN and SOM 

algorithms as hybrid method for dimension reduction and data clustering. Chapter 5 
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presents a new methodology based on SOM training algorithm for data clustering, 

classification and visualization. Finally, the last chapter of the thesis (Chapter 6) 

presents overall conclusions of the thesis and recommendations for further work. 
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