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ABSTRACT 

Due to the continuous variation in temperature and solar irradiance, P–V 

characteristics curve of a photovoltaic (PV) system exhibit a non-linear, time-varying 

Maximum Power Point (MPP). Furthermore, the tracking becomes more complicated 

when the PV array is partially shaded due to the presence of multiple peaks. This work 

proposes a Maximum Power Point Tracking (MPPT) algorithm named Modified 

Adaptive Perturb and Observe (MA-P&O) to address two main limitations of the 

conventional Perturb and Observe (P&O), namely the steady state oscillation and the 

divergence from the MPP. At the same time, it locates the global peak during partial 

shading. The MA-P&O is equipped with an intelligent mechanism to detect the steady 

state oscillation, and then deploy an adaptive perturbation procedure to reduce it to the 

minimum. Furthermore, to avoid operating voltage from diverging from its locus, a 

dynamic boundary condition is imposed. For partial shading, an effective checking 

mechanism to precisely detect partial shading occurrence is suggested. In addition, an 

improved set of equation is developed to detect the exact position of local peaks under 

partial shading. To assess its feasibility, the proposed ideas are simulated using 

comprehensive PV simulator. For practical validation, the algorithm is implemented 

in hardware using a buck-boost converter in conjunction with dSPACE DS1104 DSP 

board. It is demonstrated that under the dynamic irradiance and partial shading test, 

the MA-P&O ensures the MPPT efficiency is 99.5%. Furthermore, when evaluated 

against the European Standard EN 50530 test, the MA-P&O records a 98.6% 

efficiency; this is up to 18% higher than the conventional and other adaptive P&O. 

Finally, MA-P&O is tested with a tropical daily irradiance and temperature profile. It 

is found that MA-P&O successfully ensures 99.2%, which is on average 3% higher 

than the other P&O based algorithms. 
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ABSTRAK 

Berdasarkan perubahan suhu dan sinaran solar yang berterusan, ciri-ciri 

lengkungan P–V sistem fotovolta (PV) mempunyai Titik Kuasa Maksimum (MPP) yang 

tidak linear dan berubah dengan masa. Tambahan pula, pengesanan MPP menjadi lebih 

rumit apabila PV mengalami fenomena bayangan separa, yang menyebabkan lengkungan 

P-V mengalami puncak yang berganda. Sebuah algoritma pengesan MPP (MPPT) yang 

digelar Modified Adaptive Perturb and Observe (MA-P&O) direka untuk memastikan 

kendalian voltan sentiasa berada di MPP. Skema yang diusulkan dapat menangani dua 

kekangan utama Perturb and Observe (P&O) konvensional, iaitu ayunan keadaan mantap 

dan kelencongan dari MPP, di samping keupayaan mengesan puncak global semasa 

bayangan separa. MA-P&O dilengkapi dengan mekanisme pintar mengesan ayunan 

keadaan mantap dan kemudian menggunakan satu prosedur adaptif untuk 

mengurangkannya kepada tahap minimum. Selain itu, bagi mengelakkan kelencongan 

kendalian voltan dari lokusnya, sempadan dinamik telah dikenakan, lantas memaksa titik 

operasi untuk tetap berada berhampiran MPP. Untuk masalah bayangan separa, 

pengawalan yang efektif disarankan bagi mengesan dengan tepat berlakunya kejadian 

litupan separa tersebut. Tambahan pula, satu set persamaan yang lebih mantap dibentuk 

untuk mengesan kedudukan sebenar puncak global. Bagi menilai kesesuaiannya, idea 

tersebut disimulasikan menggunakan simulator PV yang komprehensif. Untuk 

pengesahan praktikal, algoritma ini dilaksanakan dalam perkakasan dengan menggunakan 

penukar buck-boost bersama sistem dSPACE DS1104 DSP. Keputusan menunjukkan 

bahawa di bawah sinar dinamik dan ujian bayangan separa, MA-P&O memastikan 

kecekapan MPPT adalah 99.5%. Di samping itu, apabila diuji menggunakan ujian Piawai 

Eropah EN 50530, MA-P&O merekodkan kecekapan 98.6%; ini adalah sehingga 18% 

lebih tinggi daripada P&O konvensional dan adaptif lainya. Akhir sekali, MA-P&O diuji 

dengan profil tipikal sinaran dan suhu tropika. Didapati bahawa MA-P&O berjaya 

mencecah kecekapan sehingga 99.2% iaitu, secara purata, 3% lebih daripada algoritma 

P&O yang lain.
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INTRODUCTION 

1.1 Background of the Research  

With the continuous decline in the price of photovoltaic (PV) modules and the 

rising concern about the greenhouse gas emissions, solar energy is rapidly becoming 

an important power source in the global energy scenario. Technologically, PV system 

is relatively easy to install, very safe, almost maintenance free and environment 

friendly. Large PV power systems are being installed worldwide due to their medium 

and long term economic prospects [1]. Meanwhile, unused spaces–such as rooftops of 

homes, factories and large buildings can be effectively utilized to harvest solar energy. 

These are demonstrated by the success of the building integrated PV (BIPV) initiatives 

in various countries [2-4]. Notwithstanding these advantages, PV power systems in 

general, still could not attain the grid-parity due to the high initial investment cost. 

Despite the continuous efforts to improve the efficiency of PV cells, its manufacturing 

and fabrication processes, as well as the inverter electronics, one should not overlook 

the potential of enhancing the system throughput by improving its Maximum Power 

Point Tracking (MPPT) capability. The solution is cost effective because it does not 

require additional hardware circuitry. Only few line of codes are needed to enable the 

controller to operate the PV system in such a way that ensures the optimized extraction 

of power under any circumstances.  

 

Due to the continuous variation in the environmental condition (primarily the 

temperature and solar irradiance), the P–V characteristics curve exhibits a non-linear, 

time-varying maximum power point (MPP) problem. To ensure that the maximum 

  



2 

 

 

 

power from PV system is always achieved, the MPPT algorithm/controller is 

employed in conjunction with the power converter (dc-dc converter and/or inverter). 

To date, numerous MPPT algorithms have been reported in the literature; they are 

broadly classified into two categories, namely 1) the conventional and 2) soft 

computing methods. [5] and [6] have reviewed various techniques in both categories 

excellently. For conventional MPPT, the widely used methods include perturb and 

observe (P&O) [7], hill climbing (HC) [8] and incremental conductance (InCond) [9]. 

Besides these, there are other simpler methods such as the fractional short circuit 

current [10], fractional open circuit voltage [11], ripple correlation control [12], sliding 

control [13] and  mathematical-graphical approach [14]. Under normal conditions, i.e. 

uniform irradiance, they are capable of tracking the MPP quite efficiently and exhibit 

very good convergence speed. Despite these advantages, each of these methods exhibit 

some serious drawbacks. These methods fail to track the MPP under varying 

environmental conditions and partial shading (when some part of the PV array 

experiences different irradiance than the other parts). 

 

Among these conventional method, the P&O is the most popular and widely 

used for industrial and research purposes. The operation of P&O is simple. It provides 

a perturbation (duty cycle or voltage) in one direction and checks the change of power. 

If the change of power is positive then the algorithm provides perturbation in the same 

direction, otherwise it provides perturbation in the opposite direction. As a result, 

when the algorithm reaches near the MPP it keeps on moving back and forth around 

the MPP, resulting in steady state oscillation. If perturbation size is large, so does the 

oscillation and energy loss. On the other hand, if perturbation size is small, then the 

energy loss can be reduced. In that case, the tracking speed is compromised. To resolve 

this trade-off, an adaptive approach is required. Numerous works are carried out to 

minimize the oscillation, but it is achieved at the expense of reduced tracking speed 

[15].  

 

Apart from the steady state oscillation, P&O is prone to provide perturbation 

in one direction only when irradiance starts increasing gradually. The reason is, in 

every perturbation, the algorithm realizes that the power is increasing; thus it keeps on 

providing perturbation in the same direction. Consequently, the operating point will 

keep moving away from the actual MPP point. On the other hand, if adaptive P&O 
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with small perturbation is deployed instead of conventional P&O, then the operating 

point will not move much from its position. However, another problem will arise due 

to the change of location of the MPP because of increasing irradiance. So the adaptive 

P&O will remain in the wrong position while MPP keeps on moving away. To resolve 

this limitation of both conventional and adaptive P&O, an intelligent technique is 

required that will track MPP under gradual change of irradiance. Additionally, P&O 

is not capable of handling partial shading [16] in its original form. To make it capable 

of handling partial shading, an improved adaptive methodology is required. 

 

To alleviate some of these problems of conventional methods, the MPPT 

techniques based on soft computing (SC) are proposed. Among them are the artificial 

neural network (ANN) [17], fuzzy logic controller (FLC) [18], genetic algorithm (GA) 

[19], differential Evolution (DE) [20], particle swarm optimization (PSO) [21] and ant 

colony optimization (ACO) [22]. Despite their flexibility, SC algorithms are generally 

more complex and slower than the conventional methods. For example, ANN requires 

very specific and prolonged training period to produce accurate results. Furthermore, 

due to its computational intensive nature, ANN needs to be implemented using 

expensive microprocessor. On the other hand, FLC shows excellent convergence 

speed but its performance is subjected to the programmer’s experience and 

understanding of a specific PV module and the environmental conditions in which the 

system is being installed. Other algorithms such as GA and ACO are being used, but 

mainly as an optimizer for the conventional MPPT; this approach is popularly known 

as the hybrid MPPT. However, in spite of these successes, the limitations of the SC 

methods remain. Most of the SC methods like PSO, ACO, DE and CS etc. are highly 

dependent on the random searching methods inspired by natural distribution, such as 

the Gaussian distribution, Levy distribution, normal distribution, Cauchy distribution 

etc. Due to the evolutionary nature of these distributions, the converging time is 

usually higher than the conventional methods. Searching for the global peak under 

partial shading using random numbers in soft computing techniques results longer 

convergence time and sometimes the algorithms even fail to locate the global peak if 

the number of locals peaks are many. Besides, most of the SC methods suffer from the 

trade-off between convergence speed and the convergence efficiency. The 

convergence efficiency can be improved by using large step sizes in the iteration. 

However, increasing the step size may cause the algorithm to miss certain local 



4 

 

 

 

maxima points during the searching and force the MPPT to settle down at a local peak 

under partial shading.  

 

Due to these drawbacks of SC techniques, conventional methods–mainly P&O 

is still the most popular algorithm in the industry and research. Thus, although P&O 

algorithm was developed over 25 years ago, contemporary researchers are still 

working to remove its limitations from different angles. In [23-31], researchers 

proposed different adaptive versions of the P&O that attempts to reduce the steady 

state oscillation. However, the divergence problem under ascending irradiance has 

remained unsolved. Few other algorithms [32-34], dealt with the divergence issue 

along with the steady state oscillation. The proposed solutions are, nevertheless, 

highly case dependent and may fail under different environmental conditions. Apart 

from that, the simulation and experiments carried out in these works are very simple 

and does not properly reflect the adverse environmental situations. It is also important 

to note that, none of these adaptive approaches mentioned above provide solution for 

partial shading conditions.  

 

Other researches [35-39] enable P&O algorithm to cater partial shading, 

though these works completely ignore the steady state oscillation and divergence 

problem. Up to this date, no MPPT technique enables conventional P&O to handle all 

three limitations at the same time.  Besides, the scanning techniques under partial 

shading proposed by these methods are not flawless and often fail under partial 

shading [40].   

 

Another common problem for the adaptive P&O which cater partial shading 

is, almost all of the MPPT approaches ignore the precise detection of partial shading. 

Majority of the algorithms set a threshold value on the sudden power change to detect 

the partial shading. The problem of such approach is, sudden power change can 

happen due to the sudden change of irradiance (irradiance level falls from one to 

another level due to the movements of the clouds) as well. Throughout the day 

irradiance changes suddenly multiple times and more frequently than the occurrence 

of partial shading. If MPPT is unable to differentiate between the sudden change of 

irradiance and the occurrence of partial shading, then the MPPT is subjected to search 

for the global peak unnecessarily many times a day. Thus, an innovative approach is 
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required to detect the occurrence of partial shading precisely, which will remove many 

unnecessary searching initiations.  

 

Apart from that limitation, all the adaptive P&O which choose to control the 

voltage of the PV array (the configuration of PV modules) require temperature and 

irradiance sensors to update the open circuit voltage of the PV array continuously [25, 

32, 39]. Some researches ignored the use of irradiance sensors by approximation 

techniques but still could not get rid of the temperature sensors [36]. The implication 

of sensors in the MPPT makes the overall system very expensive and often requires 

extra circuitry to interface the sensors with the MPPT algorithm. 

 

Having these limitations in mind, this thesis aims to clarify all the limitations 

of conventional P&O and provide the solutions for the problems in a single MPPT 

named Modified Adaptive P&O (MA-P&O). Apart from solving the steady state 

oscillation, divergence problem and partial shading, the proposed scheme will be 

equipped with an intelligent mechanism that will precisely detect the occurrence of 

partial shading. Moreover, a smart technique will be proposed to update the open 

circuit voltage of the PV array without using any temperature and irradiance sensors. 

Besides, the proposed scheme will be tested against very stringent tests like standard 

EN 50530, various partial shading patterns and a realistic daily profile of irradiance 

and temperature. The outcome of the MA-P&O will be compared with both 

conventional and other adaptive P&O approaches to clarify the improvement. It is 

envisaged that, the MA-P&O will be capable of handling any environmental adversity 

and ensure the maximum extraction of the power from the PV array under any 

circumstances. 

.  
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1.2 Objective of the Research  

The objective of this research is to Design and implement the Modified 

Adaptive P&O (MA-P&O) to simultaneously resolve all the limitations of 

conventional P&O. These includes 

 The steady state oscillation problem. 

 Loss of tracking direction during ascending irradiance. 

 Tracking under partial shading.  

 In addition to that, MA-P&O is envisaged to be equipped with smart 

and dynamic techniques that can detect the occurrence of partial 

shading accurately.  

 Besides, algorithm should be capable of updating the open circuit 

voltage of the PV array without using any sensors.   

.   

1.3 Scope of the Research  

To achieve the objective of the research the following scope of the work is 

carried out: 

 

I. A critical and strategic review on the MPPT methods is performed. In this 

review, almost all the existing MPPT methods are covered. Besides, their 

advantages and limitations are also clarified. Particular focus is given on both 

conventional and adaptive P&O and the limitations of the existing approaches. 

Literary gaps found through the review have functioned as the basis for the 

work that had been carried out.  
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II. Behaviour of the PV systems under varying environmental conditions and 

partial shading is critically analysed. Based on the analysis, critical relations 

have been developed that work as the fundamental to design the intelligent 

technique for updating open circuit voltage of the PV array without any 

sensors. In addition to that, a novel prediction model is developed to accurately 

identify the position of the local peaks under partial shading. 

III. In the process of developing MA-P&O algorithm, an intelligent checking 

mechanism is proposed that is capable of detecting the steady state oscillation 

precisely. Thus, appropriate measures are taken to evade the power loss due to 

such oscillation. A dynamic boundary condition is imposed on the operating 

voltage that guides it to remain near to the MPP position all the time.  

IV. A smart scanning method is proposed that can precisely detect the occurrence 

of the partial shading. Under partial shading, the novel prediction model to 

locate the peaks is incorporated to ensure the detection of the global peak in a 

faster and flawless way. 

V. The proposed algorithm is implemented in MATLAB Simulink platform using 

two diode model of the solar cell. Besides, the algorithm is implemented in the 

hardware level using dSPACE DS1104 board and buck-boost dc-dc converter. 

To clarify the improved performance step irradiance test, sinusoidal irradiance 

test several partial shading tests are carried out. Along with that, MA-P&O is 

subjected to the EN 50530 profile to be scrutinized under fast changing 

irradiance profile.  Finally the algorithm is applied to a one-day irradiance and 

temperature profile to justify the behaviour under real environmental 

conditions.  
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1.4 Importance of the Research  

Due to the non-linear characteristics of I–V and P–V curve, the tracking of the 

maximum power point (MPP) at various environmental conditions is a challenging 

task. The issue becomes more complicated when the entire PV array is subjected to 

partial shading. In both circumstances (uniform and partial shading), conventional and 

SC techniques exhibit several limitations that results in dropping the efficiency by a 

significant margin. However, due to the simplicity in structure and implementation, 

conventional P&O based MPPT is most widely used in both research and commercial 

purposes. This research intends to mitigate all the limitations of the conventional P&O 

approach withstanding the similar simple structure. To achieve that, no additional 

sensors are used for the implementation. However, based on the critical analysis of the 

P–V curve under different environmental conditions several relations are utilized to 

measure irradiance and update open circuit voltage continuously. Besides, an 

improved scanning technique is developed to ensure the tracking of the global peak 

under partial shading. Thus, few additional lines in coding is sufficient to enable P&O 

to handle varying irradiance and temperature along with the partial shading. Therefore, 

the implementation of the proposed MA-P&O ensures the optimum power extraction 

from the PV system throughout the operation lifetime. 

1.5 Organization of the Thesis  

The thesis is organized into six chapters in total. This chapter describes the 

backgrounds, objectives and scopes of the research. The problem statements are also 

clearly mentioned and clarified. 

 

Chapter 2 is composed of extensive review on the MPPT methods reported in 

the literature. These are broadly classified into two groups, namely conventional 

method and soft computing approaches. All the MPPT methods are briefly described 

in their generalized structure along with their advantages and drawbacks.  
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In Chapter 3, behaviour of the PV system under different environmental 

conditions is presented. The analysis is divided into two major segments–uniform 

irradiance and partial shading.  In addition to the analysis under partial shading a new 

prediction model is proposed to predict the position of the local peaks during partial 

shading.  

 

In Chapter 4, MA-P&O is developed to mitigate the limitations of the 

conventional P&O. The working principal of the algorithm, design structures, 

flowcharts etc. are described in details. Besides, the working principles of the 

proposed schemes are explained step by step in conjunction with a tracking example. 

 

In chapter 5, the implementation in software and hardware is explained 

elaborately. Along with that, the proposed MA-P&O is tested with several tests, 

namely step irradiance change, sinusoidal irradiance test, EN 50530 standard test, 

several partial shading patterns and a daily profile. The performance of the proposed 

MPPT is compared with the conventional P&O and other adaptive P&O approaches 

side by side and the improved performance of the MA-P&O is clarified.  

   

Chapter 6 concludes and summarises the research and the contributions are 

highlighted again.  Besides, some probable direction towards the future works are also 

provided. 
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