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ABSTRACT 

 

 

 

The biotechnological route to manufacturing geraniol propionate may present 

a feasible solution to drawbacks associated with the production of such ester by the 

chemical synthesis or extraction from plants. The use of such technique can be 

advantageous considering the ever increasing demands for such products while 

reducing waste production and simplifying the manufacturing process. The 

properties and morphology of the developed Rhizomucor miehei lipase (RML) 

immobilized onto activated chitosan-graphene oxide (CS/GO) support were 

characterized using field emission scanning electron microscopy (FESEM), 

transmission electron microscopy (TEM), Fourier transform infrared spectroscopy 

(FTIR) and thermogravimetric analysis (TGA). The morphological evaluations 

strongly indicated successful covalent attachment of the RML on the support. It was 

evident from the thermogram of TGA that 13.5% of RML was successfully 

immobilized onto the CS/GO matrix. The approach of response surface methodology 

(RSM) employing the Box-Behnken design (BBD) based on four parameters 

(incubation time, temperature, substrate molar ratio, and enzyme loading) were used 

to seek the optimized experimental conditions for the RML-CS/GO catalyzed 

synthesis of geraniol propionate. The study illustrated that the predicted and actual 

responses were well correlated, suggesting adequacy of the generated model for 

predicting the yield of the ester, as well as the factor of reaction time being most 

impacting in the RML-CS/GO catalyzed synthesis of geraniol propionate. Under 

optimized conditions, the highest yield of geraniol propionate (49.46%) was obtained 

at 17.98 h, 37.67 °C, 100.70 rpm, and molar ratio of acid:alcohol of 1:3.28 in the 

solvent free esterification of propionic acid and geraniol. The investigation 

demonstrated that the developed RML-CS/GO was a promising alternative to 

overcome drawbacks associated with solvent assisted enzymatic reactions. 

Therefore, the RML-CS/GO biocatalysts developed here appear to be a promising 

substitute and yet environmentally practical biocatalyst for the production of geraniol 

propionate.  
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ABSTRAK 

 

 

Laluan bioteknologi untuk penghasilan geraniol propionat mungkin 

merupakan penyelesaian kepada kelemahan yang dikaitkan dengan penghasilan ester 

tersebut dengan menggunakan sintesis kimia atau pengekstrakan daripada tumbuh-

tumbuhan. Penggunaan teknik sedemikian adalah berfaedah memandangkan 

peningkatan permintaan yang berterusan terhadap produk tersebut di samping 

mengurangkan penghasilan bahan buangan dan memudahkan proses pembuatan. 

Sifat dan morfologi Rhizomucor miehei lipase (RML) terpegun pada penyokong 

kitosan teraktif-grafin oksida (RML-CS/GO) yang dibangunkan telah dicirikan 

menggunakan mikroskopi pengimbasan elektron pancaran medan (FESEM), 

spektroskopi inframerah transformasi Fourier (FTIR) dan analisis  termogravimetri 

(TGA). Penilaian morfologi menunjukkan secara jelas kejayaan pengikatan RML 

secara kovalen dengan penyokong. Ini terbukti daripada termogram TGA bahawa 

13.5%  daripada RML telah berjaya dipegunkan ke atas matriks CS/GO. Pendekatan 

kaedah permukaan respons (RSM) menggunakan reka bentuk Box-Behnken (BBD) 

berasaskan empat pembolehubah (masa pengeraman, suhu, kadar pengacauan, dan 

nisbah molar substrat) telah digunakan untuk mendapatkan keadaan eksperimen yang 

optimum dalam sintesis geraniol propionat bermangkinkan RML-CS/GO. Kajian ini 

menjelaskan bahawa respons yang diramal dan sebenar berhubungkait dengan baik, 

mencadangkan model yang dihasilkan adalah memuaskan untuk meramalkan 

penghasilan ester, di samping juga faktor masa tindak balas yang paling memberi 

impak kepada sintesis geraniol propionat bermangkinkan RML/CS/GO. Pada 

keadaan optimum, penghasilan tertinggi geraniol propionat (49.46 %) telah diperoleh 

pada 17.98 h, 37.67 °C, 100.70 rpm, dan nisbah molar asid:alkohol 1:3.28 dalam 

pengesteran bebas pelarut bagi asid propionik dan geraniol. Kajian ini menunjukkan 

bahawa biomangkin RML-CS/GO yang dibangunkan adalah alternatif yang 

berpotensi untuk mengatasi kelemahan yang dikaitkan dengan tindak balas enzim 

berbantukan pelarut. Oleh itu, biomangkin RML-CS/GO yang dibangunkan ini 

merupakan pengganti dan biopemangkin yang praktikal alam sekitar untuk 

penghasilan geraniol propionat. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study  

 

 

Terpene esters of alcohol are economically important fragrance and flavor 

compounds used in food, pharmaceutical, beverage and cosmetic industries; geraniol, 

citronellol and linalool being the principal components in essential oils. These esters 

are traditionally obtained by chemical synthesis, physical extraction from plants and 

by fermentation of natural precursors (You et al., 2011). However, natural flavor 

esters extracted from plant sources are too expensive or scarce for commercial 

purposes, while the production of terpene esters using chemical synthesis incurs 

undesirable use of strong acids. The drawbacks of such method are formation of by-

products which have an effect on the odor of terpene esters. Also, the products 

produced by the method are considered as not natural, therefore, are marketed with 

less value than esters obtained from natural sources (Stamatis et al., 1998; You et al., 

2011). Hence, the biotechnological route to producing fragrances and flavors using 

natural raw materials may prove useful for industrial processes in view of the ever 

increasing demands for such products (Paroul et al., 2010). 

 

 

Biotechnology as an emerging science promotes the development of better 

industrial processes such as manufacturing of new aromas and production of high 

purity compounds for use in food industries. Presently, biocatalysis is a feasible 

alternative to chemical synthesis method, especially when regioselectivity or 

stereoselectivity of the resulting end product is pertinent. Among the important 

widely used industrial enzymes are carbohydrases, proteases and lipases. The major 

benefits of using these biocatalysts in synthetic reactions such as esterification and 
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transesterification reactions refers to their high activity of enzymes in organic 

solvents and water and also, their ability to convert large amounts of substrate with 

high stereospecificity (Ferraz et al., 2015). In this context, lipases (triacylglycerol 

hydrolase E.C 3.1.1.3) can catalyze esterification reactions under ambient conditions 

with good activity and selectivity. The mesophilic Rhizomucor miehei lipase (RML) 

is the frequent biocatalyst of choice due to its specificity, versatility, and its 

suitability for ester synthesis under different conditions of temperature, pressure, 

water content, and substrates (Skoronsi et al., 2014). The lipase is commercially 

obtainable both in soluble and immobilized form (Rodrigues and Fernandez-

Lafuente, 2010). 

 

 

Utilization of RML to catalyze esterification reactions in anhydrous media is 

advantageous as compared to other lipases that preferred transesterification reactions 

(Rodrigues and Fernandez-Lafuente, 2010). However, use of the free form RML has 

drawbacks of being unstable and prematurely denatured under extensive reaction 

time, susceptible to high temperature, extreme pH and organic solvents. In addition, 

the homogeneity of RML with the reaction mixture results in difficult recovery of the 

enzyme in reactive mixtures. Considering the numerous shortcomings associated 

with the free RML, immobilization of the lipase onto appropriate solid support may 

prove feasible to improve the catalytic characteristics of RML, facilitate enzyme 

recovery (Zou et al., 2010) and allow reusability of the enzyme (Mohamad et al., 

2015a). According to review of literature (Palla and Carrin, 2014), the R. miehei 

lipase immobilized onto modified chitosan microspheres can stabilize the open 

conformation of the lipase and promote their hyperactivation after immobilization. 

 

 

To date, many techniques such as biological, physical and chemical methods 

have been used by biochemists to improve the performance of the lipase in order to 

meet the target goal (Zhang et al., 2008). Enzyme immobilization offers a multitude 

of benefits in terms of improved structural stability and enzyme activity, ease of 

recovery of the biocatalyst (Masakapalli et al., 2014; Palla et al., 2011; Park et al., 

2015; Sharma et al., 2001), longer life of enzymes, specificity and selectivity as well 

as minimizing product contamination (Palla et al., 2011; Tang et al., 2014; 
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Worzakowska, 2014). Among the challenges in this field is the well known slight 

loss in catalytic activity of the enzyme upon immobilization (Palla et al., 2011). 

 

 

The structure (shape and size) of the support material has an influence on the 

immobilized enzyme (Palla et al., 2011). Among the various supports available for 

enzyme immobilization, chitosan (CS), graphene oxide (GO) and multi-walled 

carbon nanotubes (MWCNTs) are gaining considerable popularity as the support of 

choice. CS is chosen due to its ability to exhibit many properties such as availability 

of reactive functional groups for chemical modification, biocompatibility, 

regenerability, mechanical stability, and easy to prepare in different geometrical 

configurations suitable for a particular biotransformation. Furthermore, chitosan is a 

cheap material making it possible to prepare cheap carriers for large scale 

applications (Popiskova et al., 2013). Chitosan beads embedded with graphene oxide 

has an open cell foam structure, ultrafine pores and a cell size that results to a large 

surface area. Graphene oxide can enhance the physical strength of chitosan due to its 

low thermal conductivity and superior mechanical integrity. In addition, the epoxy 

and hydroxyl functional groups of GO can provide additional active sites for the 

immobilization of lipase (Lau et al., 2014). 

 

 

Apart from enhancing the robustness of enzymes for use in synthetic 

reactions, the conditions employed in the reactions may also affect the yield of the 

product. This is due to the fact that enzymes are biological entities whose catalytic 

activity is sensitive to conditions of the surroundings (Mohamad et al., 2015a) such 

as temperature, duration of catalysis, stirring rate, molar ratio of reaction substrates 

and etc. Considering the multiple complexities associated with enzyme assisted 

reaction, predictions of the optimum conditions to improve efficiency of its 

bioprocesses is almost infeasible. This is attributable to the nonlinearity and 

complicated structure of many biotechnological practices. To expedite prediction of 

best reaction conditions of processes or products, utilization of response surface 

methodology may prove valuable (Wahab et al., 2014). The method facilitates rapid 

and less expensive empirical investigation to establish the optimum conditions of 
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reactions as compared to that of the conventional one-variable-at-a-time or full 

factorial experiment (Wahab et al., 2014; Mohamad et al., 2015b). 

 

 

 

 

1.2 Problem Statement 

 

 

Considering that geraniol propionate obtained from plants or by chemical 

synthesis faces drawbacks such as production in low yield and produced at high cost 

which may not meet the high commercial demand for the ester. Therefore, 

development of an alternative green method to produce high yield of the ester, 

preferably at a low cost would be of considerable advantage. Furthermore, the use of 

of green nanobioconjugates of RML-CS-GO for the preparation of geraniol 

propionate is yet to be explored and the the feasibility of such biocatalysts for such 

purpose remains unknown. 

 

 

 

 

1.3 Objectives 

 

 

The objectives of the research are as follows: 

 

 

1. To prepare the chitosan beads reinforced with graphene oxide (CS-GO) and 

immobilize the R. miehei lipase onto the CS-GO (RML-CS/GO) beads. 

2. To characterize the CS, CS/GO and RML-CS/GO beads. 

3. To optimize the RML-CS/GO catalyzed solventless synthesis of geraniol 

propionate from geraniol and propionic acid.  

 

 

 

 

1.4 Scope of Study 

 

 

1. To covalently immobilize the prepared CS-GO beads with free RML in order 

to obtain the RML-CS/GO beads.  
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2. To characterize the CS, CS/GO and RML-CS/GO beads by using Fourier 

transform infrared spectroscopy (FT-IR), Field emission scanning electron 

microscope (FESEM), Transmission electron spectroscopy (TEM), and 

thermal gravimetric analysis (TGA).  

3. To perform RML-CS/GO assisted esterification of geraniol and propionic 

acid to afford geraniol propionate by response surface methodology (RSM) 

according to the proposed conditions of the Design Expert 7.1.6 software 

utilizing the Box- Behnken design (BBD) method. 

 

 

 

 

1.5 Hypothesis 

 

 

Covalent immobilization of RML onto CS-GO beads may increase rigidity of 

the RML protein structure through additional covalent bonds between the matrix and 

RML, and subsequently improve stability of RML to catalyze prolong esterification 

reactions. To improve the yield of enzyme assisted esterification of geraniol 

propionate, the statistical multivariate guided experiments can be used to establish 

the optimal parameters i.e temperature, time, molar ratio and stirring rate to attain 

high yield of the ester. 

 

 

 

 

1.6 Significance of Study 

 

 

Herein, immobilizing the free RML onto a modified matrix promotes 

solventless bioproduction of geraniol propionate which adheres to the philosophy of 

green chemistry, hence a step towards green and sustainable means of producing 

important commercial esters. The employment of green chemistry in synthetic 

reactions may bring long term benefits as such include being environmentally 

friendly, production of less wastes as well as economically desirable. In this context, 

covalently immobilizing RML onto CS-GO beads may possibly bring about three 

benefits: i) improve activity of RML, ii) potentially cost saving due to utilization of 

small amount of the enzyme, and iii) increase the yield of geraniol propionate due to 
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the well-known enzyme enhancing properties of CS and GO. In addition, 

immobilizing RML onto the CS-GO matrix effectively insolubilizes the RML and 

supports cost saving practices as it permits easy recovery, reusability of the enzyme 

and prolong the reaction life of RML for use in subsequent reactions. 
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