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ABSTRACT 
 

 

 

 

High-performance AC drives require accurate speed, flux, and torque 

estimations to provide a proper system operation. Thus, this thesis proposes a robust 

observer, i.e. Extended Kalman Filter (EKF), to offer optimal estimations of these 

components in order to improve the dynamic performance of Direct Torque Control 

(DTC) of induction motor drives. The selection and quality of EKF covariance 

elements have a considerable bearing on the effectiveness of motor drives. Many 

EKF-based optimization techniques involve only a single objective for the optimal 

estimation of speed without giving concern to the other variables. In addition, the 

optimization is performed on a complicated EKF structure. Nevertheless, in this 

study, both speed and torque are concurrently estimated. The work presents a new 

method to investigate the selection of EKF filters by using a Non-Dominated Sorting 

Genetic Algorithm-II (NSGA-II) developed for resolving problems with multi-

objectives. Filter element selection is the process of improving the concurrent 

estimation of speed and torque in order to increase EKF accuracy and allow higher 

drive efficiency. The proposed multi-optimal EKF-based estimation observer is used 

in combination with the sensorless direct torque control of induction motor. The 

investigated results for the multi-objective optimization indicate that the speed 

optimization gives superior performance when compared to the optimal torque. 

Owing to the large computation time of EKF algorithm, it increases the sampling 

time of DTC which leads to an increase in the motor torque ripples. The thesis 

proposes a Constant Frequency Torque Controller (CFTC) to replace the hysteresis 

torque controller that offers constant switching frequency and reduces torque ripples. 

Moreover, the CFTC has the capability of continuous switching regardless of speed 

variation; hence, leading to a consistent rotation of flux. Consequently, improvement 

on speed estimation, particularly at low and zero speed regions is accomplished and 

enhancement on the dynamic performance of torque is achieved when the reference 

speed change is applied from 0 rad/s, on the condition that the EKF observer is 

accurately optimized. To verify the improvements of the proposed methods, 

simulation and experimentation as well as comparison with the EKF-based DTC with 

the hysteresis controller are carried out. 
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ABSTRAK 
 

 

 

 

Pemacu AC berprestasi tinggi memerlukan kelajuan yang tepat,  fluks dan 

jangkaan tork bagi menyediakan suatu operasi sistem yang baik. Maka,  tesis ini 

mencadangkan satu pemerhati yang teguh seperti Penapis Lanjutan Kalman (EKF), 

untuk menawarkan jangkaan optima komponen ini untuk memperbaiki prestasi 

dinamik sesuatu Kawalan Tork Langsung (DTC) pemacu motor aruhan. Pemilihan 

dan kualiti elemen-elemen kovarian EKF mempunyai pengaruh yang besar ke atas 

keberkesanan pemacu motor. Banyak teknik pengoptimasi berasaskan EKF 

melibatkan hanya satu objektif tunggal bagi jangkaan optima kelajuan tanpa 

mengambil kira pembolehubah lain. Tambahan pula, optimasi dijalankan ke atas 

struktur EKF yang rumit. Tetapi, dalam kajian ini kelajuan dan tork kedua-duanya 

dianggarkan secara serentak. Kajian membentangkan satu kaedah baru untuk 

menyelidik pemilihan penapis-penapis EKF dengan menggunakan Algoritma-II 

Genetik Pengisihan Bukan Dominan (NSGA-II) yang dibangunkan bagi 

menyelesaikan masalah berkaitan pelbagai objektif. Pemilihan elemen penapis ialah 

proses memperbaiki jangkaan serentak kelajuan dan tork untuk meningkatkan 

ketepatan dan meninggikan lagi keberkesanan. Pemerhati jangkaan pelbagai optima 

berdasarkan EKF diguna bersama dengan pengawalan tork langsung motor aruhan 

tanpa sensor. Keputusan kajian bagi optimasi pelbagai objektif menunjukkan 

optimasi kelajuan memberi prestasi lebih baik dibandingkan dengan tork optima. 

Disebabkan tempoh pengiraan yang lama bagi algoritma EKF, ia meningkatkan masa 

sampel DTC yang membawa kepada peningkatan dalam riak tork motor. Tesis ini 

mencadangkan satu Pengawal Frekuensi Tork Tetap (CFTC) untuk menggantikan 

pengawal tork histerisis yang menawarkan frekuensi pertukaran tetap dan 

mengurangkan riak tork motor. Disamping itu, CFTC berupaya membuat pertukaran 

berterusan tanpa menghiraukan perbezaan kelajuan; maka, ini membawa kepada satu 

putaran fluks yang konsisten. Oleh itu, peningkatan dalam jangkaan kelajuan, 

khasnya pada bahagian kelajuan rendah dan sifar dicapai dan kemajuan prestasi 

dinamik tork diperolehi apabila perubahan kelajuan rujukan dihasilkan bila 

perubahan kelajuan rujukan diaplikasikan daripada 0 rad/s, dengan syarat pemerhati 

EKF dioptimakan secara tepat. Bagi mengesahkan penambahbaikan kaedah-kaedah 

yang disyorkan, simulasi dan eksperimen serta perbandingan dengan DTC 

berdasarkan EKF dengan pengawal histerisis telah dijalankan. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview of Induction Motor Drives 

 

 

Induction motors (IMs) dominate the world market (more than 85% of 

electrical motors)[1] with broad applications in industries, public services and 

household electrical appliances [2-3]. The popularity of IMs is mainly due to their 

low cost, ruggedness, high reliability, and minimum maintenance [4]. The induction 

machines began to gradually replace DC machines in many industrial applications as 

the Field Oriented Control (FOC) introduced by F. Blachke in 1970’s can produce 

comparable performance to that obtained in DC machines [5]. Moreover, their 

popularity is also assisted by the rapid development in power semiconductor devices 

and the emergence of high-speed microprocessor and digital signal processors [6]. 

 

 

Much of the previous research has been devoted to improving the drive 

systems of the IM, especially the control methodology. The advent of power 

semiconductor switches and digital control technology has led to remarkable 

improvements in the variable frequency drives (VFDs) i.e. providing smoother speed 

tuning, greater motor control, and fewer energy losses. Based on the torque and 

speed control techniques, the IM-VFDs can be classified into two main categories 

namely the scalar and vector control methods, as illustrated in Figure 1.1. A brief 

discussion on these control methods are given as follows. 
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Figure 1.1 Classification of variable frequency drives for IM control [7] 

 

 

 

 

1.1.1 Scalar Control 
 

 

Scalar control is a simple control technique used to control the speed of 

complex and nonlinear behavior of the IMs based only on magnitude and frequency 

of the applied voltages. The control is developed based on a per phase steady-state 

equivalent circuit of the IM with an objective of maintaining the magnetizing current 

constant by changing the magnitude of applied voltage proportional to the applied 

frequency. The magnitude and frequency needed to maintain this constant 

magnetizing current is then synthesized using a voltage source inverter. An example 

of a scalar control of IM which is based on a constant ratio of applied voltage to the 

frequency, widely known as the constant volts per hertz (or constant V/f), is shown 

in Figure 1.2. For this particular example of control scheme, the speed is controlled 

in a closed loop manner by measuring the actual speed using a speed sensor. As 

shown in the figure, the difference between the reference rotor speed value, ωr
r
, and 

the actual rotor speed, ωr , which is speed error, is tuned via the conventional 
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proportional-integral (PI) controller, and a limiter to obtain the slip-speed reference 

ωsl
r
. Then, the slip-speed reference and electrical rotor speed are added together to 

generate the fundamental stator frequency reference. Thereafter, the fundamental 

stator frequency reference determines the amplitude of the fundamental stator 

voltage reference, Vs
r
. Without the speed feedback (i.e. open loop constant V/f), the 

speed regulation will be poor and heavily depends on the mechanical load; 

nonetheless, for some non-critical applications this is good enough. The inclusion of 

the speed sensor will increase overall cost of the drive system, but yet the system is 

still not suitable to be used for applications where precise torque control is 

mandatory; scalar control is incapable of controlling the most essential variables in 

IMs, i.e. torque and flux [8]. The main drawbacks of this technique are the 

unsatisfactory speed accuracy, especially at the low speed regions, and poor torque 

response. The reaction of the motor to the applied frequency and voltage governs 

motor flux and torque indirectly based on the steady-state model of the IM [7] which 

is not valid in transient state. Therefore, for applications requiring precise torque 

control, vector control schemes are normally adopted as discussed in the next 

section. 

 

 

 
Figure 1.2 Closed loop IM with constant V / Hz variable frequency drive 
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1.1.2 Field Oriented Control (FOC) 
 

 

Field oriented control (FOC) or vector control (VC) was introduced by Hasse 

and Blaschke from Germany, in 1969 and 1971 respectively [7]. On the contrary to 

the scalar control, the development of FOC control scheme is based on dynamic 

model of the IM where the voltages, currents and fluxes are expressed in space 

vector forms. The representation of the motor’s quantities using space vectors valid 

under both steady state and transient conditions hence with FOC, excellent transient 

response can be achieved. The rotor flux FOC scheme is based on the frame 

transformation of all quantities to a rotating frame fixed to the rotor flux. In this 

rotating rotor flux frame, all quantities rotating at synchronous speed will appear as 

DC quantities. If the flux is aligned to the d axis of this reference frame, it can be 

shown that the d and q components of the stator current represent the flux and torque 

component respectively. This means that utilizing FOC, the control of IM is 

transformed to a simple control scheme similar to the DC motor control where the 

torque and flux components are decoupled. The way the rotor flux position is 

obtained determines the type of FOC as either direct FOC or indirect FOC. In 

indirect FOC, the flux position is obtained by adding the slip position to the 

measured rotor position, whereas in direct FOC it is calculated (or can also be 

measured) based on the terminal variables and rotor speed. Figure 1.3 shows the 

block diagram of a direct rotor flux FOC with speed loop. The rotor speed, which is 

obtained from the encoder, is used as the speed feedback and also more importantly 

is used by the observer to calculate the rotor flux position.  Alternatively, instead of 

rotor flux orientation, it is also possible to perform the orientation to the stator flux – 

which is known as stator flux FOC. It can be seen that in FOC scheme, the 

knowledge of rotor position need to be acquired accurately in order to perform the 

frame transformation. Inaccurate rotor flux position causes the torque and flux not to 

be completely decoupled and consequently resulted in deterioration in the torque 

dynamics [9].  
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Figure 1.3 Fundamental direct FOC technique with an observer used for rotor flux 

estimation 

 

 

 

 

1.1.3 Direct Torque Control (DTC) 
 

 

DTC has become significantly popular and can be considered as an 

alternative controller to the well-known FOC scheme due to its excellent torque 

response and its simple control algorithm [10],[11]. The basic structure of DTC of 

IM scheme is shown in Figure 1.4. The DTC scheme, as initially proposed in [10], 

consists of a pair of hysteresis comparators, torque and flux calculator, a lookup 

table, and a voltage-source inverter. The control structure of DTC is much simpler 

than the FOC system due to the absence of frame transformer, pulse width 

modulator, and a position encoder. The decouple control of torque and flux is 

established by selecting appropriate voltage vectors to maintain the torque and flux 

errors within their hysteresis bands[10].  In DTC, the accuracy of the estimated stator 

flux is important to ensure correct voltage vector is selected for a decoupled torque 

and flux control. In its basic configuration, DTC scheme does not require rotor speed 

information since the estimation of stator flux is performed using voltage-model 

based observer. However, in order to improve the stator flux estimation at low speed, 

current-model based observer is normally used, which inevitably require the rotor 

 



 

 

6

speed information. Even if stator flux estimation is performed totally based on 

voltage-model, the rotor speed is still needed for a speed control system. In other 

words, rotor speed is one of the important parameters that need to be either measured 

or estimated to ensure proper DTC scheme implementation. Two of the major issues 

which are normally addressed in DTC drives are the variation of the switching 

frequency of the inverter used in the DTC drives with operating conditions and the 

high torque ripple. It is well known that the source or root to the variable switching 

frequency problem is the use of hysteresis comparators, in particular, the torque 

hysteresis comparator [11]. To solve these problems, various implementation 

schemes are proposed. These include the use of predictive control scheme [12],[13], 

space vector modulation (SVM) technique [14], artificial intelligence (AI) [15] and 

constant switching controller [11].  

 

 
Figure 1.4 Basic DTC scheme with an observer used for stator flux estimation 

 

 

 

 

1.2 Sensorless Control Strategies 

 

 

Based on the above discussions, regardless of the control strategies used, 

speed measurement is something essential for control algorithm and/or speed control 

in the IM drive. The motor speed can be measured using tachometer or optical 

encoder. However, mechanical speed sensors are associated with several 
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disadvantages: The increased in the size and cost of the drive system, reduced 

reliability and robustness, and regular maintenance of the speed sensor itself. 

Furthermore, in some applications, it is inappropriate to install the mechanical speed 

encoder at the motor shaft due to the physical and environment constraints. 

Accordingly, increasing attempts have been made to eliminate the encoder mounted 

at the motor shaft without affecting the performance of the VFD system. Hence, 

research interests on sensorless techniques applied to IMs have grown dramatically 

in the last few decades. Generally, the speed estimation techniques can be classified 

into two broad categories: Estimation based on mathematical machine model and 

estimation through signal injection to exploit the anisotropy of the machine as will be 

discussed in Chapter 2.  

 

 

 

 

1.3 Thesis Objectives and Contributions 

 

 

The objective of this thesis is to develop a robust estimation method and 

improve the performance of the speed sensorless DTC of induction motors for a wide 

speed region, particularly persistent operation at and around zero speed. Despite the 

improvements, the proposed techniques also aim to retain the simple control 

structure of DTC drive. The thesis utilizes the simplicity of DTC to propose and 

implement a powerful estimation technique of extended Kalaman filter (EKF) to 

achieve a proper induction machine control employed in the DTC with a hysteresis 

controller (for convenience, it is recognized as EKF-based DTC-HC) and DTC with 

a constant frequency torque controller (for convenience, it is identified as EKF-based 

DTC-CSFC) of induction machine i.e. to achieve a speed sensorless drive system, to 

improve torque dynamic control, and to enhance speed estimation capability for a 

wide speed operation. While doing the research, the thesis makes the following 

contributions.  

 

 

1) It offers an alternative method in tuning the EKF for the estimation 

application of the squirrel cage IM. The main motivation is to reduce the 

EKF structure complexity by eliminating unnecessary covariance matrices 



 

 

8

as well as widening the time scale for the optimization process. Application 

of the non-dominated sorting genetic algorithm II (NSGA II) method will be 

carried out to investigate the optimization performance of estimated torque 

besides the speed estimation. Indeed, this gives a systematic approach in 

selecting filter solutions with known minimum squared errors (MSEs) for 

the comparison purpose. 

 

 

2) It analyses the effect of low and zero speed operation on the performance of 

speed and torque in EKF-based DTC-HC and EKF-based DTC-CSFC 

drives. Although the DTC is well established to give a high performance 

torque control, there is still room to further improve the performance based 

on the observation of the analysis. 

 

 

 

 

1.4 Scope of Research 

 

 

In order to achieve the objective of the research, the following scope of work 

has been carried out:  

 

 

A critical and comprehensive review of speed estimation methods. In this 

review, the previous works on speed estimation methods used for induction machine 

drives are addressed. Their strengths and drawbacks based on several evaluation 

factors are highlighted. Besides giving the overview on the existing estimation 

methods, the objective of the review is to look for a gap in the literature, particularly 

on the issue of estimation at low speed region.   

Modeling and simulation of the sensorless EKF-based DTC drive. In order to 

accurately study the sensorless EKF-based DTC of IM, a good model of the 

induction machine along with the proposed sensorless drive system is required. Thus, 

the parameters of equivalent circuit of IM are extracted by testing motor under no-

load and locked rotor tests. A simple, fast and accurate modeling of overall system is 

then developed with the usage of MATLAB/SIMULINK software package.   
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Development of a simple and fast platform to optimize EKF parameters. The 

EKF was coded in MATLAB instead of using SIMULINK blocks where more time 

needs to be consumed. Thus, larger time scale has been used to improve on the 

optimization process. 

 

 

The proposed speed estimation scheme utilizing a DTC drive have been 

verified and evaluated for its feasibility and effectiveness through simulation and 

hardware implementation. A processor and field programmable gate array devices 

(DS1104 and Xilinx FPGA (Baysis2)) were used to implement the DTC drive 

including the speed estimation strategy. A standard induction machine with suitable 

loads and IGBT-based VSI had been used for this purpose.  

 

 

 

 

1.5 Organization of the Thesis 

 

 

This thesis is organized into seven chapters. Their contents are outlined as 

follows: 

 

 

Chapter 2 describes the mathematical modeling of induction machine. 

Moreover, it provides an extensive review of speed and parameter adaptation 

techniques. In this review, the recent development of estimation strategies are 

reviewed based on two categories; mathematical machine model method and 

estimation via signal injection strategy.  

 

 

In Chapter 3, the basic principle of DTC of induction machines and the state 

estimator using EKF observer are introduced. It first describes the main components 

that make the structure of DTC followed with the conventional method (low pass 

filter) for estimation flux and torque. For the sensorless IM drive, the speed of the 

motor must be estimated and not measured. Therefore, the EKF algorithm is 

introduced and discussed.  
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Chapter 4 presents the optimization process of the EKF based-DTC-CSFC. 

At the beginning of the chapter, some background materials on the NSGA II and its 

application on EKF optimization are addressed. Simulation and experimental results 

on the proposed method are then presented. 

 

 

Chapter 5 will look at the effect of implementation of EKF on the 

performance of the DTC-HC and DTC-CSFC for speed estimation at wide speed, 

including a zero speed region. A quick procedure to design a proper controller of 

CFTC is presented. Based on the observation, EKF-based DTC-CFTC is able to 

produce a persistent and stable zero speed operation. Simulation and experimental 

results are presented to show the effectiveness of the proposed method. 

 

 

Chapter 6 describes the laboratory experimental set-up to implement the 

EKF-based DTC. The implementation of the tasks using DS1104 and Xilinx  FPGA 

(Baysis2) are given. Detailed descriptions of each hardware components are 

provided. 

 

 

Chapter 7 gives the conclusion of the thesis. Several suggestions are given 

for possible directions of future work. 
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the proposed EKF-based DTC-CSFC can give superior dynamic performance when 

there is a step change from a zero speed zone to higher speed regions. Furthermore, 

the proposed speed sensorless DTC drive was capable of reducing torque ripple and 

producing constant switching frequency. The effectiveness of the proposed EKF-

based DTC-CSFC in providing wider speed estimation and higher torque capability 

was verified by simulations and experiments as well as the comparison with the 

EKF-based DTC with the hysteresis torque controller. 

 

 

The challenge for EKF experimental implementation is the derivation of the 

Jacobian matrices which require sufficiently small time intervals for linearization.  In 

order to achieve small step intervals, some of the main tasks of the DTC (i.e. look-up 

table and blanking time) are implemented utilizing a Xilinx FPGA (Baysis2), this 

way; the DSP (DSPACE 1104) is able to execute the EKF-based DTC algorithm 

including the CSFC at the minimum sampling period of 120 µs. 

 

 

 

 

7.2 Future Work 

 

In this thesis, several contributions are presented. However, there remain 

potentially new findings in the area of EKF optimization and EKF-based DTC 

control that can still be explored. These can be summarized in the following section.  

 

a)  Incorporating the parameter compensation. In spite of the 

robustness of the EKF filter against parameter variations, the 

robustness comes to an end at a certain value. Therefore, it is 

suggested to incorporate parameter adaptation to compensate for the 

parameter variation which leads to more stability of the proposed 

drive system. 

 

b) Performing the CFSC and flux hysteresis calculation in the 

FPGA. The triangular waveforms for the proposed CSFC are 

generated by the DSPACE 1104 with a sampling period of 120 µs. 
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Since the triangular waveform is generated by software, its frequency 

and the torque loop bandwidth are restricted by the sampling time of 

the DSP controller. Enlargement of the triangular frequency can be 

achieved if the CFSC is performed in the FPGA with higher 

frequency leading to great reduction of torque ripple. In addition, this 

can enhance the linearization of Jacobian matrices of EKF by 

achieving smaller step intervals; hence, enhancing the stability of 

EKF and improving the estimation of flux, torque, and speed.  

 

c) Replacing the hysteresis based flux controller with a fixed 

switching frequency controller. In this thesis, the proposed method 

only utilizes the CSFC for the torque loop. In order for the stator flux 

error switching to be independent of the speed variation, it is 

suggested to replace the flux hysteresis comparator of DTC with 

CSFC.  

 

d) Applying other multi-objective swarm and evolutionary 

optimization techniques for EKF filter tuning. In the current work, 

non-dominated sorting genetic algorithm II (NSGA II) was used to 

optimize the EKF filter parameters for speed and torque estimations. 

However, there are still other multi-objective techniques that have 

not been exploited for EKF tuning purpose. It would be exciting to 

explore the optimization capabilities of other techniques and then to 

be compared with NSGA II. Additionally, multi-objective can be 

applied not only for speed and torque, but can be used for speed and 

stator and rotor resistor optimization.  
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