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ABSTRACT 

The optimal planning and operation of a reservoir system is getting more 
crucial particularly in view of the recent awareness of potential climate change. In 
particular, the incorporation of hydrologic uncertainties due to climate change into 
reservoir operation system requires comprehensive and long-term hydrological 
database which rarely available in most of the conventional reservoir design. The 
prime objective of the study is to formulate a multiple approach on the long-term 
reservoir operation optimization under the scarcity of observed hydrological data and 
with the influence of climate change. A combined research method using IHACRES 
for hydrological simulation, HadCM3 for emission scenario and Statistical 
Downscaling Model were developed along with a Mixed Integer Linear 
Programming (MILP) for reservoir operation optimization. These approaches were 
applied to a single purpose Sg Layang Resevoir, that is one of the most prominent 
water supply reservoir located in Johor State, Malaysia. The climatic variables 
obtained from general circulation model (GCM) were downscaled corresponding to 
HadCM3 emission scenario and used in climate change impact analysis. The SDSM 
was used to produce 100 synthetic climate time-series for 90 years of the 
participating station, representing the climate change projection and baseline period. 
With respect to the baseline data, an apparent increase in temperature (1.2 degree 
Celsius between time periods) and rainfall was observed. The deterministic 
optimization exercise is performed repetitively for a number of case scenarios based 
on weekly reservoir’s inflows derived from the projected climate change in a way to 
determine the optimal operation rule and policy which are based on total pumping 
volume and pumping cost. Corresponded to the future inflows, the pumping volume 
has shown an increase trend particularly during southwest monsoon, transition 
between seasons and autumn. Judged from the decreasing rate of the streamflows, a 
34 to 40% increase in the projected monthly pumping volume is anticipated. An 
opposite scenario is observed during northeast monsoon season which shows a 
decreasing trend of 28% to 46%. At various degree of statistical reliability, the 
optimal operational pumping curves of the reservoir were established. These curves 
provide some basic information on the monthly pumping requirement from various 
sources of inflow to sustain the reservoir storage and demand. These operation 
curves are of very useful guidelines for reservoir operators in making decision to 
follow an optimal pumping operations schedule onsite. Such research findings were 
expected to generate a general awareness to the public water authorities on the 
potential long term effect of climate change to the reliability of reservoir operating 
system. 
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ABSTRAK 

Kepentingan pengoptimuman operasi dan perancangan pengurusan sistem 
takungan telah meningkat terutamanya dengan kesedaran terhadap kesan potensi 
perubahan iklim.  Khususnya, gabungan faktor ketidakpastian hidrologi disebabkan 
oleh perubahan iklim terhadap operasi sistem takungan memerlukan pengkalan data 
hidrologi yang komprehensif yang jarang terdapat dalam kebanyakan takungan 
konvensional.  Objektif utama kajian ini ialah untuk merumuskan satu pendekatan 
pelbagai bagi pengoptimuman operasi takungan jangka panjang pada keadaan 
kekurangan data cerapan hidrologi dibawah pengaruh perubahan iklim.  Gabungan 
kaedah kajian menggunakan IHACRES sebagai model simulasi hidrologi, senario 
pemancaran dari HadCM3 bagi model penurunan skala statistik (SDSM) telah 
dibangunkan bersama Program Integer Linear Bercampur (MILP) untuk 
menghasilkan operasi reservoir yang optimal.  Pendekatan kajian ini diaplikasikan 
keatas takungan bertujuan tunggal Reservoir Sg Layang, iaitu satu takungan bekalan 
sumber air penting di Negeri Johor, Malaysia.  Pemboleh-ubah iklim dari model 
peredaran umum (GCM) diturunkan skalanya selaras dengan senario HadCM3 bagi 
kegunaan didalam analisis impak perubahan iklim. SDSM dipilih untuk 
menghasilkan 100 siri data iklim sintetik bertempoh 90 tahun untuk setiap stesen 
pilihan yang mewakili ramalan perubahan iklim dan tempoh iklim dasar.  Daripada 
rujukan terhadap data dasar, satu peningkatan jelas dalam suhu bagi semua musim 
(1.2 darjah Celsius antara sela masa) dan hujan telah ditunjukkan. Proses 
pengoptimuman dijalankan secara berulang bagi pelbagai kes senario dengan 
menggunakan siri data kadaralir mingguan yang dijanakan bagi memperolehi polisi 
operasi reservoir yang optimal berasaskan isipadu dan kos pengepaman.  Hasil 
daripada aliran masuk masa depan yang dijanakan, jumlah isipadu pengepaman 
menunjukkan corak menaik terutama semasa monsun baratdaya, peralihan antara 
musim-musim dan musim luruh. Dinilai dari penyusutan kadar aliran sungai, satu  
unjuran peningkatan jumlah isipadu pengepaman bulanan diantara 34% hingga 40% 
telah dijangkakan.  Sebaliknya pada musim timurlaut anggaran kadar pengepaman 
bulanan menurun diantara 28% hingga 46%. Dari berbagai tahap keboleh-harapan 
statistik, lengkung operasi optimal pengepaman ke takungan diterbitkan.  Lengkung 
operasi ini menyediakan panduan operasi berkenaan keperluan pengepaman bulanan 
dari berbagai sumber aliran masuk bagi mengekalkan simpanan reservoir dan 
memenuhi permintaan semasa.  Lengkung operasi ini juga boleh dijadikan sebagai 
garis panduan yang berguna kepada pengendali takungan untuk menentukan 
penjadualan operasi pengepaman yang optima ditapak.  Hasil kajian ini dijangka 
mampu menjana kesedaran umum kepada pihak berkuasa bekalan air diatas potensi 
kesan jangka panjang dari perubahan iklim terhadap kebolehpercayaan sistem 
pengendalian takungan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Urbanization processes is a continuing phenomenon not only in developing 

countries but also in developed countries.  There has been increasing interest and 

concern on the use of our natural resources specifically water, that has been accorded 

as the highest priority in the global development agenda.  Forests, plantations, 

grasslands and others are being continually converted into residential areas, 

commercial and industrial complexes, shopping centers and other facilities.  One of 

the consequences of urbanization with which engineers, planners and decision 

makers should deal with is the increase demand of water supply for domestic and 

industrial usage that requires a greater emphasis in managing the water resources and 

water supply in an integrated manner. 

The demand for a proper and appropriate water resources development and 

water supply services has increased steadily as a result of the rapid socio-economic 

development and environmental consciousness.  As the population expands, rapid 

urbanization, industrial expansion and climate change, besides contributing to rising 

water pollution, the strains places on the earth’s natural resources also increase.   

There is a strong agreement among the scientific community that the climate 

change is taking place with evidence from the increase in earth’s surface temperature 

due to greenhouse gas emissions.  The Intergovernmental Panel on Climate Change 

(IPCC) for instance has reported that the average global temperature increases of 
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about 0.2°C per decade is anticipated over the next twenty years from the previous 

assessment of 0.6°C to 0.74°C (IPCC 2007).  Changes in global climate would have 

significant impact on regional and local hydrological regimes in terms of key 

climatic variables, which in turn will affect the future water supply sources in the 

region.  The Malaysia’s Initial National Communication (INC) to the United Nations 

Framework Convention on Climate Change (UNFCCC) describes the quantitative 

impact of climate change to surface runoff.  For instance, with 10% less rainfall and 

a 1°C increase in temperature the runoff would reduce between 13% to 35% and 

14% to 43% during the wet and dry months, respectively.  Similarly, when 

temperature rises by 3°C, the reduction in runoff ranges between 13% to 48% and 

17% to 53% during the wet and dry periods, respectively (MOSTE, 2000).  In the 

Second National Communication (NC2) report (NRE, 2010), emphasis is given to 

the water resources sector as a result of climate change projections that states the 

disruption of water supply is expected to occur in urban areas during extreme 

drought events.   

With such climatic variation trend, it would be a great challenge for water 

resources managers to develop a comprehensive understanding of the expected 

impacts on climatic variability and change and its consequences to the water supply 

system.  Subsequently, an optimal reservoir operation and management systems shall 

be planned in order to improve the management strategies for reliable water supply 

particularly during the long dry spells.  The factors of future land used pattern and 

the predicted climatic conditions could be considered to accommodate the ever 

growing demand of freshwater supply as well as to avoid water shortages that may 

disrupt overall economic activities.  

1.2 Statement of the Problem 

As the total quantity of available water is finite with increasing demand at 

geometrical rates, Malaysia, a tropical country relatively rich in water resources, is 

not exempted from facing numerous water related problems, such as water shortages, 
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water pollution, and floods.  It is reported that 98% of the total national water 

resources originates from surface water which easily be affected by long dry spells.  

A few incidents in the past where drought caused serious water rationing and 

hardship to 1.8 million residents of Kuala Lumpur and other townships in Klang 

Valley in 1998.  In similar case, Malacca state also experienced water rationing in 

most part of the state when the level at Durian Tunggal Dam recedes to a critical 

level, i.e. the main water supply reservoir of the state, reached 50% of its capacity in 

1991. 

Recent local studies also suggest that due to climate change there is a 

likelihood of a uniform annual increase in temperature and caused the regional 

precipitation patterns vary considerably (Zakaria and Shaaban, 2007; Shaaban et al., 

2011) for most of the watersheds of the country.  Regarding the annual rainfall, the 

east coast region is expected to experience 10% increase while the west coast and 

southern areas may drop by 5% (Zakaria and Shaaban, 2007).  Similarly, the 

projected increase of annual surface temperature in between 1.0°C to 1.5°C for a 

future period of 25 years (Salmah and Liew, 2008; Tangang et al., 2007) over all 

regions may have directly influenced the potential evapotranspiration and 

subsequently the quantity of the runoff component.  Consequently, the availability of 

water resources in the region would be affected whereby in the past, many 

operational decisions depend explicitly on the assumptions about future climatic 

conditions.  A few studies have been carried out to incorporate the variation of 

climate change factor in reservoir planning and operation (Eum and Simonovic, 

2010; Karamouz et al., 2012).  Therefore there is a need to develop an integrated 

approach to consider these factors on climate change impact on streamflow and 

derive adaptive policies for possible optimal reservoir operation. 

 Considering the continual growth of urbanization and industrialization and 

the effect of climate change, an optimal operation of a water supply reservoir 

demands an immediate attention to ensure a long term availability and sustainability 

of water supply, including the conservation of water in future. 
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The reliability of a water supply reservoirs system depends on the appropriate 

rule for optimal operation.  It is presumably a function of multiple and complex 

factors which basically governed by hydrologic uncertainties due to both supply-

demand and climatic variability and change.  Such generic understanding become the 

impetus of the present study with primary aim is to provide detail understanding 

through a case study of Sg Layang Reservoir. 

1.3 Objectives of the Study 

The principal objective of this study is to derive more realistic and reliable 

operational rules for a water supply reservoir system with multi-source dependent in 

a way to reduce the gap between theoretical assumptions and practical 

implementations.  The specific objectives of this study that lead to a logical 

progression through the thesis have been identified and are summarized as follows: 

1. To generate a long-term streamflow data of the study area for climate change 

scenario using conceptual model 

2. To generate rainfall and temperature at catchment scale for climate change 

scenario using statistical downscaling model by employing climate variables of 

Global Circulation Model (GCM). 

3. To evaluate the probable reservoir inflows in a way to investigate the possible 

changes in water availability under the framework of future climate variability 

and variation in pumping operation of multi-source reservoir system. 

4. To develop a reservoir optimization model based on mixed integer linear 

programming algorithm to produce an optimal reservoir operation rules. 

 



5 

 
1.4 Research Approach and Scope of Work 

The scope of the study is focused on the development of optimization 

model to derive a general monthly reservoir operating policy using historical 

data and to account the impacts of climate change and the uncertainties of inputs 

arise from the random nature of the inflows to the system in addition to other 

various sources.  

The specific aims that lead to the model development and analysis of the 

proposed work can be summarized as follows: 

♦ To assess the actual performance of the current reservoir operating policy. 

♦ To evaluate the historical trends in precipitation as the basis of selecting the local 

representative station 

♦ To develop a rainfall-runoff model and model selection to simulate historical and 

future streamflows under current and future climate scenarios. 

♦ To evaluate the performance of downscaling models for their ability to convert 

large-scale GCM outputs into finer resolution daily time series of local 

precipitation and temperature at local meteorological stations. 

♦ To simulate the daily inflows to Sg Layang Reservoir for both current climatic 

conditions and future climate scenarios using daily rainfall and temperature time 

series generated from the calibrated downscaling model and the corresponding 

GCM predictors and analyze the inflow variation due to climate change.   

♦ To develop a deterministic optimization model formulated based on mixed 

integer linear programming algorithm in order to produce an optimal reservoir 

operation policy of the Sg Layang Reservoir system with the overall objective is 

to minimize the operational pumping costs from different sources considering the 

peak and off-peak power prices.  

♦ To derive an optimal reservoir operation policy based on the above optimization 

model that takes an account of population increase and climate change. 

♦ To compare the operational results obtained from the simulation models with the 
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actual operational curve produced from historical operation of the reservoir for 

the evaluation of the usefulness of optimal operation policies based on 

performance criteria. 

♦ To analyze the operating policy to take into account of the system maximum 

capacity and future increase in water demands. 

♦ To develop reservoir pumping operating curve involving different confidence 

intervals and change in future demands which are more appropriate for practical 

applications. 

1.5 Significance of the Study 

Optimal operation of reservoir has been an active area of water research over 

the years. Various techniques have been developed and adopted for reservoir 

operation by incorporating the aspect of uncertainties due to stochastic nature of 

inflows and demands. 

For a reservoir that depends not only upon catchment runoff but other sources 

of hydrologic inflow, the available and effective volume is subjected to numerous 

constraints including reservoir inflow conditions, increasing water demands, 

pumping, and reservoir storage.  These constraints vary and may change 

considerably during the project life which calls for a modified operational policy.  

Most of reservoirs found in Malaysia are single purpose reservoirs managed 

by separate authorities mainly either for the purposes of hydropower generation, 

water supply, flood control or irrigation.  They are operated based on the skill and 

experience of the reservoir managers that generally provides operation strategies in 

the form of general operating curve for reservoir releases and pumping according to 

the current reservoir level, hydrological conditions and water demands.  Such 

operating practices, however, were found not adapted well to changing in hydrologic 

and climatic conditions.  In addition, due to the lack of information on inflows into 
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the reservoir various hydrologic variables, a more systematic and acceptable 

approach is crucial to establish for optimization of the operation.   

One of the most prominent water supply reservoirs found in the southern 

region of the country is Sg Layang Reservoir.  The general annual water supply-

demand analysis of the Sg Layang reservoir system characteristics has shown that in 

general, the current supply exceeds the demand, which could be due to an excessive 

pumping during the unsuitable period.  If we were based on the current supply trend 

the future demand could be increased by 40%.  As such, the current practice must be 

enhanced by considering the followings: 

 

♦ optimizing pumping operation with respect to the demand 

♦ developing a specific reservoir operation technique by incorporating the 

factor of uncertainties due to stochastic nature of inflows and demands 

♦ developing an optimal operation rule of the reservoir in response to both 

nonclimatic and climatic changes 

Considering the need of future reservoir system expansion, analysis based on 

annual averages with the upper bound supply level, the current demand can probably 

be extended by 1.56 times of the present system characteristics.  However, monthly 

variations due to pumping restrictions, river depth, lower reservoir uncertainties, and 

inflow from watershed, the pumping cost could reduce significantly.  Therefore, 

there is an opportunity to investigate and optimize the water supply reservoir 

operation in the framework of climate variability and change to establish a more 

reliable reservoir operating policies for utilizing water of desired quantity over the 

operational period. 
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1.6 Thesis Outline 

The thesis is organized in six chapters (including the introduction as Chapter 

1) as follows; 

Chapter 2 presents a summary of the available literatures which are relevant 

to the development of the optimal operation of reservoir system in the framework of 

climate variability and change.  It briefly introduces a review of rainfall-runoff 

models, downscaling methods and model selection for assessing climate change 

impacts on reservoir systems, and mathematical programming related to the 

optimization of reservoir systems.  Emphasized is given to climate change and 

downscaling methods, describing advantages and limitation of each method and 

highlighting several comparative studies and models applications that are related to 

the current study.  

Chapter 3 provides a description of study area and availability of data.  A 

comprehensive data collection includes the historical hydrometeorological data for 

the hydrological and climate downscaling models calibration and analysis, and 

climate scenario predictor variables consisting of re-analysis data and large-scale 

atmospheric variables used for statistical downscaling model input. 

Chapter 4 describes the methodology used to select the hydrological 

modeling approach to simulate inflows to the study reservoir, evaluate the 

downscaling models, develop future climate change scenarios, and derive an optimal 

operation policy for the reservoir. 

Chapter 5 provides the results of a comprehensive assessment of uncertainty 

for the selection of the best downscaling model to generate the possible future 

scenarios of local meteorological variables of precipitation and rainfall at 

representative local station.  The results of climate downscaling become the inputs to 

the calibrated hydrologic model to generate daily streamflow for the investigation on 
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how changes in water availability under future climate scenarios will effect the 

optimal operation of pumping of multi-source reservoir system. 

Chapter 6 concludes the major findings of the work described in the thesis 

and recommendations for future study. 
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