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ABSTRACT 

 
 

 

 The focus of this research is in the area of spatial estimation. Such a study is 

very important in order to improve the spatial prediction performance. Many 

techniques of prediction that are based on the regionalized variables, and the surface 

trend change from linear to quadratic or cubic that produces inaccurate results in the 

prediction process. In this thesis, Bayesian and fuzzy kriging methods are suggested 

to solve the problem of uncertainty, which requires obtaining a minimum error in the 

prediction process. This study aims to improve the mixed approaches among 

methods of spatial prediction that are used for evaluation of prediction. The study 

also finds the performance of variation interpolation methods of minerals needed to 

develop the relationship between Bayesian techniques and fuzzy kriging and apply 

the results for further modeling a spatial relationship. This spatial prediction assumes 

stationary property. The findings of this study are mathematical models of 

covariance functions. The variogram and cross variogram functions are computed for 

all compass directions for the phenomena under the study and its parameters are 

estimated. Another aspect is to obtain Bayesian predictor, kriging predictor, and 

Bayesian kriging variance which represent the minimum variance of prediction. In 

addition, the constraints weights of linear prediction were computed. The practical 

side of this study includes the applications of the Bayesian and fuzzy kriging 

techniques on real spatial data with their locations in the mining fields of Australia, 

Canada, and Colombia. All the computations were carried out by using Matlab 

software. In conclusion, this study uses two different methods (Bayesian and fuzzy 

kriging techniques) for incorporating the spatial autocorrelation in order to improve 

the accuracy of uncertainty and estimation with minimum error. The approach 

combines more than one prediction methods to determine a model which is based on 

a cross validation that satisfies the best optimal prediction. 
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ABSTRAK 

 

 
 

Tumpuan kajian ini adalah dalam bidang penganggaran ruang. Kajian ini 

sangat penting untuk mempertingkatkan prestasi ramalan ruang. Pelbagai teknik 

ramalan berdasarkan pembolehubah regionalisasi dan perubahan jalan permukaan 

daripada linear kepada kuadratik atau kubik menghasilkan keputusan yang tidak tepat 

dalam proses ramalan. Kaedah Bayesian dan kriging kabur dicadangkan untuk 

menyelesaikan masalah ketidaktentuan yang memerlukan supaya ralat minimum 

dalam proses ramalan dapat diperoleh matlamat kajian ini adalah untuk meningkatkan 

pendekatan gabungan antara kaedah bagi ramalan ruang yang digunakan dalam 

penilaian ramalan. Prestasi bagi kaedah interpolasi variasi juga ditemukan bagi 

mineral yang diperlukan untuk membangunkan hubungan antara teknik Bayesian dan 

kriging kabur dan melanjutkan dapatan bagi pemodelan atau hubungan ruang. 

Ramalan ruang ini mengandaikan ciri pegun. Dapatan kajian ini adalah model 

bermatematik bagi fungsi kovarians. Fungsi variogram dan variogram bersilang dikira 

untuk semua arah kompas bagi fenomena dalam kajian dan parameternya dianggarkan. 

Aspek lain adalah untuk mendapatkan peramal Bayesian, peramal kriging dan varian 

kriging Bayesian yang mewakili varians minimum bagi ramalan. Tambahan lagi, 

kekangan pemberat bagi ramalan linear dikira. Bahagian praktikal kajian ini termasuk 

penggunaan teknik Bayesian dan kriging kabur bagi data ruang sebenar dengan lokasi 

di kawasan perlombongan di Australia, Canada dan Colombia. Semua pengiraan 

dilakukan menggunakan perisian Matlab. Kesimpulannya, kajian ini menggunakan 

dua kaedah yang berbeza (Teknik Bayesian dan kriging kabur) untuk menggabungkan 

auto korelasi ruang bagi meningkatkan ketepatan bagi ketidaktentuan dan 

mendapatkan penganggaran dengan ralat yang minimum. Pendekatan yang digunakan 

menggabungkan lebih daripada satu kaedah ramalan untuk menentukan suatu model 

berasaskan pengesahan bersilang bertujuan memenuhi ramalan optima terbaik. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

1.1 Overview  
 

 

Geostatistics is centrally focused areas of applied statistics. This branch of 

statistics is concerned with the spatial or temporal outlook of the data studied and the 

corresponding contour distribution of that data.  Using geology, which is at the root 

of geostatistics, was pioneered by two researchers Krige (1951) and Matheron 

(1963). It was originally meant to project changes in the quality of ore from 

particular mines.  

 

 

In the mid-nineties, Krige, a seasoned engineer working in South African 

mines, developed a model for interpolating true random spatial variables of a sample 

space. Krige’s spatial statistic model was later modified by Matheron, a French 

mathematician create the best kriging. The trend of kriging was evident in the 

research conducted by Journel and Huijbregts (1978), Ripley (1981), Lam (1983), 

Davis (1986), and Cressie (1990) in their geostatistical investigation of various data 

sets. 
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1.2 Research Background 
 

The spatial statistics theory has its roots from the theory of regionalized 

random spatial variables. This spatial statistics theory is concerned with spatial data 

such as deposits of mineral ore, oil reserves and data on rainfall distribution, 

epidemics, or data on various types of pollution. These spatial variables may be 

generated from geographic locations on the earth’s surface, underground or from the 

atmosphere. 

 

Spatial interpolation has close connections to geology and it entails a series of 

mathematical computational methods. It is also; concerned with the spatial 

phenomena. It uses methods that emphasis regionalized random variables so as to 

generate spatial distribution. Studies of spatial statistics based on regionalized 

variables theory have successfully formulated mathematical models for determining 

the nature of the spatial distribution through use of functions such as a variogram.    

A variogram is one of the most commonly employed functions used for modeling in 

spatial statistics. 

  

A variogram functions is employed to determine existing variations in 

observed phenomenon. The function was employed in studies by Journel (1992), 

Cressie (1993), and Chiles and Defflar (1999). The variogram function uses spatial 

prediction. Spatial prediction uses the kriging method to estimate the Best Linear 

Unbiased Estimator (BLUE) for a set of spatial real data. 
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There are various types of kriging including simple kriging, ordinary kriging 

(which is the most commonly used), anisotropic kriging (uses accounting geometric 

variance), universal kriging (uses local accounting trends), cokriging (where there is 

more than one variables). Each of these kriging techniques types employs either        

a semivariogram or a variogram function. 

 

The kriging school of thought uses geostastistical interpolation to estimate the 

value of unknown parameters using available location data (Cressie, 1985; Burrough, 

1986). Some of the key studies that employed spatial interpolation models are 

Burrough and Mcdonnel (2000), and Cressie (2003). Other works that employed 

universal kriging, include Martinez and Zinck (2004) and Gooavaerts (1997a) who 

estimated parameters using approaches such as maximum likelihood estimation, least 

squares quadratic method, and Bayesian. Bayesian kriging is; where model 

parameters are generated with the aid of regionalized random variables.  

 

 

1.3 Significance of the study 
 

The significance of the current study lies in the fact that it will further 

enhance understanding of contour maps using regionalized random variables; and 

outline situations where the kriging technique for estimating the parameters of 

experimental functions and knowledge properties can be used. 
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1.4 Research Questions 

 

     The spatial estimation of interpolation methods was based on the following 

research questions: 
 

i. Does mineral ore data satisfy the stationary assumptions? 

ii. Are isotropic variations accounted for? 

iii. Is the robust estimator trend required?  

iv. In which method do different variogram estimation techniques, contribute to 

variations in the estimated covariance parameters?  

v. How can a reasonable estimate of the nugget variance be achieved? 

vi. How can we obtain a mathematical model that fits with covariance 

functions?  

vii. Which model provides the best spatial estimation performance? 

 

 

 

1.5 Problem Statement  

 

Spatial interpolation techniques are an essential input for the development of 

spatial prediction models that use a stochastic process. In practice, location 

estimation using geostatistics or spatial statistics is associated with some level of 

precision error and uncertainty. This can be attributed to the fact that the surface 

trend changes from linear to quadratic or cubic thereby resulting in the inaccuracy. 

As such, the current research seeks to solve this problem by developing prediction 

models for enhancing the spatial prediction performance with minimal prediction 

error. Therefore, Bayesian kriging with fuzzy is proposed as a mixed approach to 

solve this prediction problem. The main motivation is to jointly handle different 

types of uncertain information such as uncertainty in the variogram parameters and 

uncertainty property in the variogram model. Kriging possesses advantages over the 

interpolation method as it has the ability to determine an uncertainty estimate for the 

value of the regionalized variable.  
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1.6 Objectives of the research   

 

The objectives of the current research are as follows: 

 

i. To analyze the spatial data using regionalized variables in the mining 

industry.  

ii. To make a comparison between various types of kriging models (ordinary, 

universal, universal cokriging, Bayesian) to know the best performance. 

iii. To establish the ability and accuracy of fuzzy method for enhancing the 

spatial prediction. 

iv. To combine kriging techniques with the Bayesian fuzzy kriging so as to 

observe their output. 

v. To identify the uncertainty features present in the mining industry and to 

analyze the effect of these features on the prediction process. 

vi. To establish a mathematical model and to compare it with the covariance 

functions; and study the performance of the variation interpolation model. 

vii. To enhance the performance of the spatial prediction models and to ascertain 

the environment effect of mineral ores in the study area. 

 
 

 
 
1.7 Scope of the study 

 

The current study was concerned with the analysis of data generated from 

metal ore mines and how the contour maps of the data are distributed in the study 

area. The idea was to allow for predictions that use spatial data and the theory of 

random spatial process to explore for minerals such as gold, silver, nickel, lead, zinc 

and copper. 
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1.8 Thesis Organization 

The thesis is organized into five chapters. Chapter 1 includes an introduction 

of spatial statistics and gives an idea of research background, significance of the 

study problem statement, objectives of the research and the scope of the study. 

Chapter 2 provides a review of the literature on kriging which includes the origins of 

kriging, applications of the kriging, universal kriging, and cokriging techniques, 

applications of the Bayesian and fuzzy approach, and other applications of 

interpolation methods. Chapter 3 contains the research methodology that starts with 

introduction of geostatistics and goes on defining regionalized variables, the 

experimental variogram function, and spatial predictions. Chapter 4 illustrates the 

data analysis and the results based on the real spatial data in different areas of 

Colombia, Australia, and Britain, by using interpolation methods for predictions. 

Finally, Chapter 5 is reserved for conclusions and recommendations for future work. 
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