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ABSTRACT 

The main goal of this research is to determine temperature variation of 

stimulated emission cross section of laser crystal through alternative method. 

Neodymium-doped yttrium vanadate (Nd:YVO4) laser crystal has been utilized as 

the gain medium. A 808 nm laser diode was employed as the pumping source. A 

laser system was designed and then a prototype was created.  Performance of the 

laser system was quantified with 97 % reflective at 1064 nm output coupler. It was 

found that slope efficiency and threshold power of the system were 46.9 % and 0.109 

W respectively. The focal power of the laser crystal was varied with absorbed pump 

power at a rate of 0.228 D/W. From output fluorescence spectrums recorded at 

various crystal temperatures, variation of linewidth, wavelength and intensity of 

1064 nm emission were determined. The rate of change of linewidth, wavelength and 

intensity with temperature were 5.4 pm/
o
C, 3.7 pm/

o
C and 0.075 arb. unit/

o
C 

respectively. Through spectroscopic method, stimulated emission cross section 

variation with temperature was found to be -0.462 %/
o
C with respect to stimulated 

emission cross section at 20 
o
C. For stimulated emission cross section determination 

through performance method, larger pump beam radius and 70 % reflectivity at 1064 

nm output coupler were used. To obtain linear graph, a graph of Pout/f1 against Pabs 

was drawn. At 30 
o
C, gradient of the graph, threshold power and cavity loss were 

found to be 46.6 %, 0.760 W and 6.6 % respectively. Through performance method, 

stimulated emission cross section variation with temperature was found to be -0.447 

%/
o
C with respect to stimulated emission cross section at 20 

o
C. The change of 

stimulated emission cross section with temperature obtained through performance 

method is in good agreement with spectroscopic method. 
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ABSTRAK 

Matlamat utama kajian ini adalah untuk menentukan perubahan keratan 

rentas pemancaran terangsang terhadap suhu kristal laser melalui kaedah alternatif. 

Kristal Itrium vanadat didop neodimium (Nd:YVO4) telah digunakan sebagai 

medium aktif. Diod laser dengan panjang gelombang 808 nm telah digunakan 

sebagai sumber mengepam. Satu sistem laser telah direka dan kemudian prototaip 

telah dicipta. Prestasi sistem laser itu diukur dengan penganding keluaran 97% 

reflektif pada panjang gelombang 1064 nm. Hasil kajian telah mendapati bahawa 

kecekapan cerun dan kuasa ambang sistem masing-masing ialah 46.9 % dan 0.109 

W. Kuasa fokus kristal laser didapati berubah dengan kuasa pam diserap pada kadar 

0.228 D / W. Variasi lebar garis, panjang gelombang dan keamatan cahaya laser 

1064 nm dengan suhu telah ditentukan dari spektrum keluaran pendarfluor 

direkodkan pada pelbagai suhu kristal. Kadar perubahan lebar garis, panjang 

gelombang dan keamatan cahaya dengan suhu masing-masing ialah 5.4 pm/
o
C, 3.7 

pm/
o
C and 0.075 unit arbitrari/

o
C. Melalui kaedah spektroskopi, variasi keratan 

rentas pemancaran terangsang dengan suhu didapati -0.462 %/
o
C terhadap keratan 

rentas pada 20 
o
C. Bagi penentuan keratan rentas pemancaran terangsang melalui 

kaedah prestasi, sumber pam dengan jejari lebih besar dan penganding keluaran 70 % 

reflektif pada panjang gelombang 1064 nm digunakan. Untuk mendapatkan graf 

linear, graf Pout / f1 terhadap Pabs telah dilukis. Pada suhu 30 
o
C, kecerunan graf, 

kuasa ambang dan peratusan kehilangan kuasa dalam resonator masing-masing ialah 

46.6 %, 0.760 W dan 6.6 %. Melalui kaedah prestasi, variasi keratan rentas 

pemancaran terangsang dengan suhu didapati -0.447 %/
o
C terhadap keratan rentas 

pada 20 
o
C. Perubahan keratan rentas pemancaran terangsang dengan suhu yang 

diperoleh melalui kaedah prestasi setuju dengan kaedah spektroskopi. 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Overview 

LASER is the acronym for Light Amplification by Stimulated Emission 

Radiation. In present of electromagnetic field, active ions in a gain medium absorb 

the radiation and leap into excited state. This process known as stimulated absorption 

process. Ions in the excited state naturally fall back to ground state through 

spontaneous emission process. However, in the presence of the stimulating radiation, 

the ions in excited state induced by the radiation to fall back to ground state rapidly. 

Consequently, excessive energy of the transition releases in form of a photon which 

has the same characteristics as the inducing radiation field. This effect is known as 

stimulated emission process and it was predicted by Einstein in 1916. 

Basic building blocks of a solid-state laser system are pumping source, active 

medium and optical cavity as shown in Figure 1.1. In this research, the pumping 

source is a laser diode. On the other hand, another type of pumping source for solid-

state laser is flashlamp. However, laser diodes have many advantages over 

flashlamps in a laser system including higher energy efficiency and compact size. 

Furthermore, the gain medium of this research is Neodymium Orthovanadate 

(Nd:YVO4) laser crystal. In this crystal, the Neodymium ions are the active ions and 

YVO4(Yttrium Orthovanadate) is the host material. The other famous host material 

for Neodymium ions is YAG (yttrium aluminium garnet).  Nd:YVO4 laser crystal is 

ideal gain medium for a low power diode-pumped solid-state system due to its high 

stimulated emission cross section at 1064 nm and high absorption cross section at
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808 nm pump wavelength. Finally, the optical resonator of this study is a plane 

parallel resonator which falls on stability curve of resonator stability diagram. During 

laser operation, the optical resonator effectively becomes more stable plano-concave 

configuration due to thermal lensing effect of the gain medium.  

In this research, a flexible diode end-pumped Nd:YVO4 laser system will be 

designed and constructed. Initially, spectroscopy properties of the gain medium will 

be studied which will lead to estimation of stimulated emission cross section. A 

linear resonator will be configured followed by optimizing and calibrating the 

performance of the laser system.  Finally the laser system will be packaged and 

demonstrated as a plug and play device. 

This thesis has six chapters. In chapter 1, the importance and objectives of 

this research will be stated. In chapter 2, literature and theories used in this study will 

be provided. The research methodology will be presented in chapter 3. Results will 

be shown and discussed in chapter 4 and chapter 5. Finally, conclusions and future 

works related to this study will be presented in chapter 6. 
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Figure 1.1: Schematic diagram of an end-pumped laser system 

1.2 Problem Statement 

Recently diode pumped solid state (DPSS) laser has a higher demand 

compared to flashlamp pumped laser in the market because of its simplicity and 

economical price. However, most of the commercial DPSS laser system is a rigid 

system this means it does not provide flexibility in the laser cavity. Usage of such 

laser system is limited or only applicable for specific applications.  No chance to 

study the spectroscopy properties of the laser crystal and far from modifying the laser 

operation. They are designed more like a disposable system, no solutions for 

component upgrades or for user maintenance in case the laser system is out of order. 

Hence a novel diode pumped solid state laser system is designed and constructed. 

The flexibilities of the optical resonator allow discovery and exploration of laser 

system characteristics and its variations with temperature and pump power. 
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medium) 
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mirror 
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1.3 Research Objective 

The main objective of this research is to design and construct a flexible and 

compact diode pumped solid state laser system. This is accomplished by completing 

following tasks: 

1. To design a flexible diode pumped solid state laser system 

2. To construct and evaluate a laser system including the power supply laser head 

and cooling system 

3. To characterize the spectroscopy properties of the gain medium Nd:YVO4 

crystal using the developed laser system 

4. To estimate the stimulated cross section upon the change on crystal temperature 

5. To compare the stimulated cross section of the gain medium obtained from 

spectroscopic method and performance method 

1.4 Scope of Study 

In designing and construction of a novel diode pumped solid state laser, 

several aspects are considered to limit the scope of the study. These include the 

selection of gain medium, the pumping source technique and the cooling system to 

stabilize the output of laser.  In this manner, Nd:YVO4 was chosen as the gain 

medium in this construction. This selection is based on its physical properties 

including its high gain and strong absorption to selected pumping source. However, 

it has limitation because of its low thermal conductivity. The excitation of the active 

ions was done through end pumping technique by using 808 nm diode laser. In order 

to maintain the stability of the output laser, a Thermoelectric cooler (TEC) was 

installed in the laser cavity. The temperature of the TEC was controlled within the 

range of 5- 60°C. A variable DC power supply was provided to verify the input 

power of diode laser within 0- 3 W. Subsequently, this allows manipulating the laser 

output power of the solid state laser within 0 – 500 mW. In order to produce the 

flexible cavity, precise and replaceable optical component holders were designed.  

Spectrum analyzer was employed to analyse the laser transition line induced after 
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excitation. Beam profiler was used to measure the beam quality, and Power meter 

used to calibrate the input power and measurement of the laser performance. The 

laser performance is studied based on temperature and pump power variation. 

1.5 Significance of Study 

 The design and construction of flexible diode pumped solid state have a high 

potential to be commercialized as a laser kits system or as a source of light for 

scientific research. Moreover, determination of stimulated emission cross section 

variation with temperature by performance method studied in this thesis can be used 

as an alternative method to spectroscopic technique. 
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properties of the laser crystals can be studied including, the changing percentage of 

ion neodymium doping level in the host, vary the thickness as well as the surface size 

of the crystal, changing the type of rare earth doping ions. The pumped power may 

be can verify by changing the input power by utilizing more powerful fiber laser, 

changing the wavelength to increase the quantum efficiency and also to consider the 

pumping technique by deploying  side pumping through different emitter size and 

number.  

This experimental work which investigated on alternative method to measure 

stimulated emission cross section had open up varieties of future works also. Since 

not much works were done on this subject, there are some in depth works had to be 

done to enhance this research. This study can be done on any other laser crystal and 

determine its stimulated emission cross section at various temperatures during laser 

operation. Secondly, the range of temperature also can be extended to check the 

validity of this study with wider temperature range. Thirdly, the theoretical part can 

be refined to suit this study with fewer assumptions made. 

Beside the laser system itself, many other works need to be done, including 

modified the laser output. Currently the designed laser is operating in continuous 

mode. May be in the future, the diode pumped solid state laser can be operated in 

pulse mode either applying saturation absorber for Q-switching mode or fiber Bragg 

grating for femtosecond operation. There is also possibility to generate tunability of 

operation system. 
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