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ABSTRACT 

 

 

 

 

 Ultraviolet absorption spectroscopy has been practised for ozone concentration 

measurement because the method of measurement is fast and reliable. Ratiometric 

method corrects intensity drift of light source for improvement of measurement 

stability. However, ozone absorption cross section may not be determined via 

ratiometric method because of limitation of existing Beer–Lambert law. Absorption 

cross section defines strength of absorption, which is an important parameter for 

calculation of ozone concentration. Firstly, optical path length of gas cell that suits 

dynamic range of ozone monitor in this work (less than 1000 ppm) is determined. 

Based on spectralcalc.com simulation, gas cells of optical path lengths of 5 cm, 10 cm 

and 20 cm are optimized for concentration measurement from 494.1 ppm to 988.1 

ppm, 247.0 ppm to 494.1 ppm and 123.5 ppm to 247.0 ppm respectively. Secondly, 

Beer–Lambert law deviation is observed when long gas cell of optical path length 10 

cm is used to measure high ozone concentration from 357 ppm to 971 ppm. Typically, 

ozone is sampled using strong absorption wavelength for high sensitivity measurement. 

When strong absorption wavelengths cause saturation, linearity of measurement is 

preserved by sampling ozone using weak absorption wavelength 279.95 nm. Thirdly, 

temperature and pressure stability of ozone absorption cross section are verified using 

spectralcalc.com simulation. Finally, a novel equation is established based on Beer–

Lambert law for measurement of ozone absorption cross section via ratiometric 

method. The equation is verified for ozone concentration measurement from 450 ppm 

to 989 ppm using short gas cell of optical path length 5 cm, sampling wavelength 

260.99 nm and reference wavelength 377.05 nm. The equation is attractive to 

researchers in areas of absorption spectroscopy and optical gas sensor because 

ratiometric method is gaining popularity for high stability ozone concentration 

measurement. 

  



vi 
 

 
 

 

ABSTRAK 

 

 

 

 

 Spektroskopi penyerapan ultraungu sering diguna untuk mengukur kepekatan 

ozon kerana cara pengukuran ini cepat dan boleh dipercayai. Kaedah metrik nisbah 

meningkatkan kestabilan pengukuran kerana keamatan cahaya yang kurang stabil 

dipertimbangkan. Keratan rentas penyerapan ozon tidak dapat dikira melalui kaedah 

metrik nisbah kerana kekurangan hukum Beer–Lambert yang sedia ada. Keratan rentas 

penyerapan ozon adalah parameter penting untuk pengiraan kepekatan ozon. Pertama, 

panjang sel gas yang bakal mengukur julat kepekatan ozon yang boleh diukur oleh alat 

pengukur ozon (kurang dari 1000 ppm) dikenal pasti. Hasil simulasi spectralcalc.com 

menunjukkan kepekatan ozon yang bakal diukur oleh sel gas 5 cm, 10 cm dan 20 cm, 

adalah 494.1 ppm ke 988.1 ppm, 247.0 ppm ke 494.1 ppm dan 123.5 ppm ke 247.0 

ppm. Kedua, pelencongan hukum Beer–Lambert diperhatikan apabila sel gas 10 cm 

digunakan untuk pengukuran kepekatan ozon dari 357 ppm ke 971 ppm. Biasanya, 

panjang gelombang yang kuat diserap oleh ozon digunakan untuk pengukuran yang 

peka. Apabila panjang gelombang yang kuat diserap oleh ozon menyebabkan ketepuan, 

hubungan linear pengukuran dikekalkan dengan menggunakan panjang gelombang 

yang lemah diserap oleh ozon 279.95 nm. Ketiga, kestabilan keratan rentas 

penyerapan ozon pada suhu dan tekanan berlainan disahkan melalui simulasi 

spectralcalc.com. Akhirnya, persamaan baru diperoleh dari hukum Beer–Lambert 

untuk mengira keratan rentas penyerapan ozon melalui kaedah metrik nisbah. 

Persamaan tersebut disahkan melalui pengukuran kepekatan ozon dari 450 ppm ke 989 

ppm menggunakan sel gas 5 cm, panjang gelombang sampel 260.99 nm dan panjang 

gelombang rujukan 377.05 nm. Persamaan tersebut menyumbang kepada bidang 

spektroskopi penyerapan dan pengukuran gas melalui kaedah optik kerana kaedah 

metrik nisbah semakin kerap digunakan untuk pengukuran kepekatan ozon yang stabil.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction to Ozone and Its Applications 

 

 

 Ozone (triatomic oxygen, O3) is described to be good up high, but bad nearby 

(United States Environment Protection Agency, 2003). Ozone at stratosphere protects 

the earth from harmful ultraviolet sun rays. On ground level, ozone pollutes the air. 

Ozone is generated from anthropogenic emissions such as organic volatile compound 

and oxides of nitrogen in presence of sunlight (Arif and Abdullah, 2011; Cooper et al., 

2010; Weschler, 2000; Yadav et al., 2014). At industrial and urban areas in Peninsular 

Malaysia, high concentration of ground level ozone is recorded from April to June 

because of dry weather (Rajab et al., 2011). In wet weather, rain cleanses nitrogen 

oxides in the air, which hinders formation of ozone (Rajab et al., 2010). Ozone has 

distinctive pungent smell. However, inhalation of ozone causes pulmonary disease 

(Jakpor, 2009). Based on OSHA standard, a worker should not expose to ozone more 

than 0.1 ppm in 8 hours (United States Department of Health and Human Services and 

United States Department of Labour, 1978). Based on Malaysian industry code of 

practice on indoor air quality, acceptable ozone exposure limit is 0.05 ppm in 8 hours 

(Department of Occupational Safety and Health, 2010). Nonetheless, ozone is 

generated purposely for benefit of humankind. Safe application of ozone in enclosed 

environment is strongly recommended. 

 

 

 Table 1.1 summarizes physical characteristics of ozone gas. Firstly, ozone has 

strong oxidizing property. This feature is often applied in disinfection technology. 

Secondly, the gas is invincible at low concentration, but is pale blue at high 
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concentration. The pale colour is a useful feature to measure ozone concentration 

using visible wavelength (O’Keeffe et al., 2007; O’Keeffe et al., 2005a; O’Keeffe et 

al., 2005b; O’Keeffe et al., 2005c; Teranishi et al., 2013). Thirdly, ozone is unstable in 

nature, as it will revert to oxygen. In a sealed container, ozone half life ranges from 39 

minutes to 25.4 hours, which is dependent on air flow rate, temperature and humidity 

(McClurkin et al., 2013). In ventilated indoor environment, ozone half life ranges 

between 7 minutes and 10 minutes, which is mainly dependent on outdoor air 

exchange and surface removal (Weschler, 2000). Ozone lifespan is long when air is 

still, cold and dry (McClurkin et al., 2013). Moving ozone molecules interact among 

themselves to dissociate to oxygen (McClurkin et al., 2013). The higher the 

temperature, the faster the ozone dissociation to oxygen (Yagi and Tanaka, 1978). 

Ozone reacts with water to form hydroxyl radical, which accelerates ozone destruction 

(Campbell, 1986; Chen et al., 2011; Mikoviny et al., 2007; Pekárek, 2008; Skalný et 

al., 2008). Ozone lifespan is greatly reduced when it is in contact with large surface 

area such as carpet and fleece (Weschler, 2000). Since ozone has limited lifespan, 

ozone cannot be transported and should be generated on site. 

 

 

Table 1.1: Physical Characteristics of Ozone Gas 

Details Description 

Name Ozone (triatomic oxygen) 

Atomic view (Tejerina, 

2009)  
 

Chemical symbol O3 

Description Toxic and strongly oxidizing 

Colour Colourless at low concentration. 

Pale blue at high concentration. 

Smell Pungent 

Stability Unstable. Quick breakdown to oxygen. 

Molecular weight,  48 g mol
-1

 (Department of Occupational Safety and 

Health, 2010) 

Density, P/(RT) 

(derivation in Appendix B) 

2141 g m
-3

 at pressure 1 atm and temperature 273.15 K. 

1962 g m
-3

 at pressure 1 atm and temperature 298.15 K. 

Boiling temperature 112 C at pressure 1 atm (Department of Occupational 
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Safety and Health, 2010) 

Explosive risk Concentration exceeds 10 % by volume (Koike et al., 

1999) 

 

 

 Ozone, ultraviolet and chlorine disinfection technologies have begun since 

early 20th century (Sonntag and Gunten, 2012). Usually, ozone and ultraviolet light 

are used simultaneously to treat wastewater (Rivas et al., 2009) and pack food (Naitou 

and Takahara, 2008). Ozone kills 99 % surface virus at 47 to 223 min mg m
-3

 doses 

(Tseng and Li, 2008). Ozone dose is product of ozone concentration and contact time 

(Tseng and Li, 2008). Similarly, UV-C rays damage genes of micro-organisms. For 

example, either 0.38 mg dm
-3

 ozone concentration, or 270 J dm
-3

 ultraviolet dose at 

wavelength 254 nm disinfects seawater completely (Penru et al., 2013). Unlike light 

travelling in straight line, ozone sanitizes hard to reach areas such as food. Exposure of 

0.7 L L
-1

 of gaseous ozone for 3 minutes preserves red bell peppers better than liquid 

chlorine (Horvitz and Cantalejo, 2012). This is because chlorine leaves behind toxic 

residues such as trihalomethanes (Gottschalk et al., 2010). In short, ozone is an 

environmentally friendly alternative for disinfection purpose. 

 

 

 Ozone has been approved by Food and Drug Administration (FDA) for food 

contact since 2001 (Lake, 2001). Today ozone is applied to reduce bacteria, pesticide 

residue and microbial spoilage for long term storage of fruits and vegetables (Tiwari 

and Muthukumarappan, 2012). This is effective if ozone is applied at high relative 

humidity environment above 80 % (Tiwari and Muthukumarappan, 2012). However, 

appropriate gaseous ozone concentration is required for this application. This is 

because extreme concentration of ozone degrades sensory quality of fruits, especially 

aroma (Tiwari and Muthukumarappan, 2012). Exposure of tomatoes to 0.025 g m
-3

 

gaseous ozone for 2 hours daily for 16 days extends lifetime of tomatoes (3 of 22 

damaged) compared to tomatoes without treatment (12 of 22 damaged) or treatment at 

0.045 g m
-3

 (6 of 22 damaged) (Venta et al., 2010). Likewise, 0.3 ppm ozone exposure 

for 420 minutes reduces Bacillus cereus count in processed rice by 1.63 log (Shah et 

al., 2011). Exposure of 8  0.2 ml s
-1

 ozone flow rate below 20 minutes enriches 

antioxidant contents (phenol and flavonoid) of honey pineapple and banana (pisang 

mas) (Alothman et al., 2010). However, vitamin C content diminishes. Pyrimethanil is 
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a fungicide used in vineyard (Gabriolotto et al., 2009). To remove pyrimethanil from 

grapes, exposure of grapes to 0.3 L L
-1

 ozone concentration for 36 days (51.6 % 

removal) is more effective than air (14.5 % removal) (Karaca et al., 2012). Similar 

trend is observed in aqueous ozone treatment. For example, 0.075 ppm and 0.15 ppm 

aqueous ozone concentrations preserve strawberry for 3 weeks, but 0.25 ppm aqueous 

ozone concentration deteriorates strawberry (Aday et al., 2014). Not much differences 

are observed for ozone exposure times between 2 minutes and 5 minutes (Aday et al., 

2014). In short, ozone sanitizes, preserves, improves nutrition and reduces fungicide of 

fruits and vegetables at appropriate concentration. 

 
 

 

 

1.2 Review of Ozone Sensors 

 

 

 Ozone has played an important role for disinfection applications; thus, ozone 

sensor is required to monitor ozone concentration. Ozone has been measured from 

different perspectives. All sensors have their own advantages and drawbacks; 

therefore, selecting suitable type of sensor for specific application is important. 

Examples of sensing method include the optical absorption spectroscopy (Aoyagi et 

al., 2012; Degner et al., 2009; Degner et al., 2010; O’Keeffe et al., 2005a; O’Keeffe et 

al., 2005b; O’Keeffe et al., 2005c; O’Keeffe et al., 2007; O’Keeffe et al., 2008; Maria 

and Bartalesi, 2012; Maria and Rizzi, 2009; Maria et al., 2008; Teranishi et al., 2013), 

cavity ringdown laser absorption spectroscopy (Washenfelder et al., 2011), Fabry–

Perot interferometry (Puschell et al., 2005), interferometric photoacoustic 

spectroscopy (Köhring et al., 2012), metal oxide semiconductor (Aguir et al., 2002; 

Arshak et al., 2007; Carotta et al., 2011; Chien et al., 2010; Ghaddab et al., 2012; 

Martins et al., 2004; Wagner et al., 2011; Wang et al., 2011), carbon (Park et al., 2009; 

Sano and Ohtsuki, 2007), dye (Maruo, 2007; Maruo et al., 2009; Maruo et al., 2010; 

Miwa et al., 2009), decomposition heat (Nakagawa et al., 2001) and soft sensor 

(Zhang et al., 2010). Summary to compare the measurement techniques is attached in 

Appendix A. 

 

 

 Optical absorption spectroscopy works based on the principle that every gas 

absorbs light at specific wavelength. In this study, optical absorption spectroscopy is 
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selected to measure ozone concentration. Advantages of optical absorption 

spectroscopy over other measurement techniques for ozone concentration 

measurement are discussed as follow: 

 

 

Firstly, strength of absorption based sensor is short response time. For example, 

response time between 0.7 s and 60 s is typically reported in absorption spectroscopy 

(Aoyagi et al., 2012; Degner et al., 2009; Degner et al., 2010; Maria and Bartalesi, 

2012; Maria and Rizzi, 2009; Maria et al., 2008; O’Keeffe et al., 2005a; O’Keeffe et 

al., 2007; Teranishi et al., 2013). Similarly, soft sensor has fast response time (0.58 s) 

(Zhang et al., 2010). Other sensors typically require longer time for ozone 

measurement. For example, carbon nanohorn sensor requires response time of 1400 s 

(Sano and Ohtsuki, 2007). Reported response times for metal oxide semiconductor 

sensors are 45 s (Chien  et al., 2010), 240 s (Arshak et al., 2007), few minutes (Carotta 

et al., 2011) and 40 minutes (Ghaddab et al., 2012). Early work of dye sensor in glass 

substrate requires a week to respond to presence of ozone (Maruo, 2007). After that, 

response time of dye sensor in paper substrate is improved to few hours (Maruo et al., 

2009; Maruo et al., 2010; Miwa et al., 2009). Thus, absorption based sensor is suitable 

for real time measurement. 

 

 

Secondly, absorption based sensor is reliable for long lasting operation. This is 

because light interacts with ozone without physical contact. Metal oxide 

semiconductor sensor requires oxidation of sensing material by ozone (Chien et al., 

2010). Dye sensor is disposable, as measurement is irreversible (Maruo, 2007; Maruo 

et al., 2009; Maruo et al., 2010; Miwa et al., 2009). Absorption based sensor can be 

used repeatedly. Deuterium lamp operates up to 1000 hours (Ocean Optics, 2009); 

whereas, LED operates beyond 10000 hours (Aoyagi et al., 2012). Absorption based 

sensor is often designed for operation in harsh environment (Degner et al., 2009; 

Degner et al., 2010; O’Keeffe et al., 2005a; O’Keeffe et al., 2005b; O’Keeffe et al., 

2005c; O’Keeffe et al., 2007; Maria and Bartalesi, 2012; Maria and Rizzi, 2009; Maria 

et al., 2008). Thus, absorption based sensor is robust because it can be used repeatedly 

at minimal maintenance. 

 

 



6 
 

 
 

Thirdly, absorption based sensor is capable to measure moderate to high ozone 

concentration. For example, concentration measurement from 25 g m
-3

 to 126 g m
-3

 

(12821.48 ppm to 64620.25 ppm at temperature 300 K and pressure 1 atm) has been 

reported in visible absorption spectroscopy (O’Keeffe et al., 2005a; O’Keeffe et al., 

2007). Not many sensors are able to measure such high concentrations. The closest 

sensor for comparison is decomposition heat sensor, which measures 0 g m
-3

 to 100 g 

m
-3

 (0 ppm to 51285.91 ppm at temperature 300 K and pressure 1 atm) (Nakagawa et 

al., 2001). Other sensors are designed for moderate to low concentration measurement. 

For example, concentration measurement from 0.03 g m
-3

 to 0.97 g m
-3

 (15.39 to 

497.47 ppm at temperature 300 K and pressure 1 atm) has been reported in ultraviolet 

absorption spectroscopy (O’Keeffe et al., 2005c; O’Keeffe et al., 2007). This dynamic 

range is higher than metal oxide semiconductor sensors, which dynamic ranges are 

reported to be from 0 to 500 ppb (Arshak et al., 2007), 20 ppb to 2.4 ppm (Wagner et 

al., 2011) and 10 ppb to 200 ppm (Wang et al., 2011). Small ozone concentration 

measurement from 26 ppt to 250 ppb is reported in cavity ringdown laser absorption 

spectroscopy (Washenfelder et al., 2011). 

 

 

Fourthly, absorption based sensor is immune to electromagnetic interference. 

This is an important safety feature for ozone monitoring in high voltage environment 

(Maria and Bartalesi, 2012; Maria and Rizzi, 2009; Maria et al., 2008). Light is 

transferred through fibre optics, which does not impose fire hazard. Risk of fire is 

reduced when absorption based ozone sensor is used to detect spark in switchboard 

(Maria and Bartalesi, 2012; Maria and Rizzi, 2009; Maria et al., 2008). Metal oxide 

semiconductor sensors rely on conductivity (Aguir et al., 2002; Carotta et al., 2011; 

Martins et al., 2004), resistivity (Chien  et al., 2010) or resistance (Arshak et al., 2007; 

Ghaddab et al., 2012; Wang et al., 2011; Wagner et al., 2011) for ozone concentration 

measurement. Similarly, carbon sensors rely on resistance (Park et al., 2009; Sano and 

Ohtsuki, 2007) to measure ozone concentration. Interference of electrical signal may 

avoided if absorption based sensor is used. 

 

 

Fifthly, absorption based sensor operates without the need of additional heating. 

Heating of sensor requires additional cost and energy. For example, sensor that 

measure decomposition heat of ozone works at high temperature 680 K (Nakagawa et 
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al., 2001). Early work of metal oxide semiconductor ozone sensor requires high 

working temperature from 470 K to 720 K (Aguir et al., 2002). Similarly, carbon 

nanotube sensors require annealing in furnace at 300 °C (Ghaddab et al., 2012) or 

350 °C (Park et al., 2009). Thus, absorption based sensor is favourable for ozone 

concentration measurement because it can be operated at ambient temperature. 

 

 

Disadvantage of absorption based ozone sensor is requirement of large amount 

of start up capital for purchase of optical instruments. Optical components that work in 

ultraviolet region are more expensive than visible region. For example, polymethyl 

methacrylate (PMMA) plastic optical fibre for visible light transmission is more cost 

effective than solarization resistant fibre for ultraviolet light transmission (O’Keeffe et 

al., 2007). The benefit of choosing ultraviolet wavelength over visible wavelength for 

ozone concentration measurement is the ability to differentiate small amount of 

concentration. Resolution of ultraviolet absorption based sensor at 0.05 g m
-3

 

(O’Keeffe et al., 2005c; O’Keeffe et al., 2007) is higher than visible absorption based 

sensor at 5 g m
-3

 (O’Keeffe et al., 2005b) and 10 g m
-3

 (O’Keeffe et al., 2005c). 

Optical instrument purchase may be regarded as worthwhile investment for new 

research opportunities. 

 

 

Based on the review, absorption based ozone sensor is found to be fast, reliable, 

safe to use and able to work at ambient temperature. Although absorption based ozone 

sensor may require high start up cost, it is a worthwhile investment for high ozone 

concentration measurement. 

 

 

 

 

1.3 Problem Formulation 

 

 

  From 2005 to 2012, researchers have adopted two methods to measure ozone 

concentration via ultraviolet absorption spectroscopy. Typically, researchers measure 

ozone concentration by non ratiometric method (O’Keeffe et al., 2008; Degner et al., 

2009; Degner et al., 2010; Aoyagi et al., 2012). In this method, researchers compare 

intensities of absorbing wavelength that passes through ozone and does not pass 



8 
 

 
 

through ozone. Absorption cross section may be calculated using existing Beer–

Lambert law when transmittance value is known. However, broadband light source 

typically experiences drift in output power of less than 0.01 % per hour (Ocean Optics, 

2009). The drift in intensity affects stability of measurement. Alternatively, ratiometric 

method has been gaining popularity for ozone concentration measurement (O’Keeffe 

et al., 2005a; O’Keeffe et al., 2005b; O’Keeffe et al. 2005c; O’Keeffe et al., 2007; 

Maria and Bartalesi, 2012; Maria and Rizzi, 2009; Maria et al., 2008). In this method, 

researchers measure ozone concentration by comparing intensities of absorbing 

wavelength and non absorbing wavelength that pass through ozone. Ratiometric 

method helps to improve stability of measurement (O’Keeffe et al., 2007), minimize 

system disturbances (O’Keeffe et al., 2005b; O’Keeffe et al., 2007), reduce particulate 

interference (O’Keeffe et al., 2005a; O’Keeffe et al. 2005c), correct reference 

intensity drift (Maria et al., 2008) and achieve linearity (Maria and Bartalesi, 2012). 

However, absorption cross section may not be calculated using existing Beer–Lambert 

law via ratiometric method, as transmittance value is not known. This is the reason 

absorption cross section is not explicitly reported in previous experiment via 

ratiometric method calculation (O’Keeffe et al., 2005a; O’Keeffe et al., 2005b; 

O’Keeffe et al. 2005c; O’Keeffe et al., 2007; Maria and Bartalesi, 2012; Maria and 

Rizzi, 2009; Maria et al., 2008). Based on literature review, measuring absorption 

cross section based on ratiometric method calculation may be considered as a novel 

technique. This is because a novel equation is to be established based on existing 

Beer–Lambert law for ratiometric method to calculate absorption cross section. The 

equation contributes to existing knowledge and benefits future researchers. 

 

 

 

 

1.4 Motivation of Research 

 

 

 Measurement of ozone absorption cross section has attracted attention of 

researchers because the parameter is important for calculation of ozone concentration. 

Ultraviolet and visible absorption cross sections serve as vital reference for measuring 

atmospheric ozone gas via remote sensing (Orphal and Chance, 2003). Although 

ozone absorption cross section may be simulated online from spectralcalc.com based 

on HITRAN 2008 database, the simulation results are correct for ideal case at specific 
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temperature and pressure only. Actual experimental condition may not be similar to 

simulation or previous experimental conditions; thus, determination of absorption 

cross section parameter for each experiment ensures high accuracy calculation of 

ozone concentration. Increasing trend of adopting ratiometric method calculation for 

ozone concentration calculation has accelerated the need to determine absorption cross 

section through this method. Proper selection of sampling wavelength and optical path 

length help to preserve linearity of ozone concentration measurement. Verification of 

temperature and pressure dependence on ozone absorption cross section is important 

to ensure these parameters have minimal effect to ozone absorption cross section 

measurement. 

 

 

 

 

1.5 Objectives of Research 

 

 

 Based on formulation of problem and motivation of research, the objectives of 

this research are stated as follow: 

 

 

1. To optimize range of ozone concentration measurement for specific optical 

path length of gas cell. 

 

 

2. To illustrate deviation of Beer–Lambert law and propose a solution to maintain 

linearity of measurement. 

 

 

3. To determine temperature and pressure stability of ozone absorption cross 

section. 

 

 

4. To determine maximum ozone absorption cross section through ratiometric 

method at specific temperature and pressure. 
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1.6 Scope of Research 

 

 

 To achieve the objectives of this study, scope of research is divided into 

several categories as follow: theoretical study, preliminary simulation and experiment. 

 

 

 Theoretical study: 

 

 

1. Mathematical relationships relevant to the study are derived and verified with 

literature. For example, a novel equation is established based on Beer–Lambert 

law for ozone absorption cross section measurement through ratiometric 

method. Relevant equations and relationship of conversion among units of 

concentration are derived in Appendix B. The concentration units are arranged 

to show variations of Beer–Lambert law and relations among important 

parameters. Mathematical relations established in this work are useful for 

future researchers to calculate desired parameters. 

 

 

 Simulations and experiments: 

 

 

2. Simulate maximum absorption wavelength, maximum absorption cross section 

and practical dynamic range of ozone concentration measurement at optical 

path length 5 cm, 10 cm and 20 cm using spectralcalc.com gas cell simulator. 

This is to select optical path length of gas cell that suits ozone concentration 

measurement range of equipments in this work. 

 

 

3. Perform experiment to determine linearity of Beer–Lambert law using gas cell 

of 10 cm optical path length. This is to illustrate deviation of Beer–Lambert 

law and propose a solution to prevent sensor saturation. 

 

 

4. Simulate maximum absorption wavelength and maximum absorption cross 

section at temperature from 200 K to 300 K via spectralcalc.com line list 

browser. This is to verify temperature stability of wavelength used to measure 

ozone concentration. 
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5. Simulate maximum absorption wavelength and maximum absorption cross 

section at pressure from 0.1 atm to 3 atm via spectralcalc.com gas cell 

simulator. This is to verify pressure stability of wavelength used to measure 

ozone concentration. 

 

 

6. Perform experiment to determine maximum absorption cross section via 

ratiometric method calculation. This is to improve stability of measurement, as 

ratiometric method corrects intensity drift of light source. 

 

 

 Further details are illustrated in Figure 1.1. 

 

 

 
Figure 1.1 Scope of research of this study 

 

 

 

 

1.7 Overview of Thesis 

 

 

 Ratiometric method has been used to improve stability of measurement of 

ozone concentration in ultraviolet absorption spectroscopy. The method compensates 
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intensity drift of light source. However, ozone absorption cross section may not be 

determined via ratiometric method based on existing Beer–Lambert law. Absorption 

cross section defines strength of absorption, which is important for calculation of 

ozone concentration in ultraviolet absorption spectroscopy. Thus, this thesis proposes 

a novel technique to determine maximum ozone absorption cross section via 

ratiometric method. To achieve the objectives of this study, theoretical study, three 

simulations and two experiments have been conducted. These activities are organized 

into six chapters in this thesis as described below: 

 

 

 In chapter 1, ozone is introduced by discussing its physical properties and 

applications to highlight to the need to measure ozone concentration. After that, ozone 

sensors are reviewed. Ultraviolet absorption spectroscopy is selected for ozone 

concentration measurement because the method is fast, reliable, safe to use, and able 

to measure high concentration at ambient temperature. Chapter 1 describes the need to 

conduct this study and highlights the approach that will be used for new knowledge 

creation. 

 

 

 Next, in chapter 2, theoretical background of absorption based ozone sensor is 

discussed. For example, equations are derived based on Beer–Lambert law for ozone 

concentration measurement in ppm by volume. In addition, Beer–Lambert law is 

modified so that a new equation may be applied for measurement of absorption cross 

section via ratiometric method. Conditions for Beer–Lambert law deviation is 

thoroughly discussed and supported by Twyman–Lothian equation. Hence, guidelines 

for adherence of Beer–Lambert law are discussed. In addition, characteristics of ozone 

absorption cross section are reviewed at different wavelengths and temperature. This is 

to justify the reason a particular wavelength is chosen for ozone concentration 

measurement. Performance specifications of absorption based ozone sensor are 

reviewed to obtain general relation among optical path length, dynamic range and 

response time. Chapter 2 describes fundamental measurement principles that are 

applicable at later part of this study. 

  

 

 Subsequently, in chapter 3, instrumentation for absorption based ozone sensor 

is reviewed. The review is important to decide equipments to be purchased and used in 
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this work. The review is categorized into optical components, gas components, and 

gas cell construction. Based on the review, gas cell is fabricated using ozone 

compatible materials. Details of fabrication will be discussed. 

 

 

 After that, in chapter 4, gas cell optical path length is optimized for high 

concentration measurement below 1000 ppm. This is because concentration up to 1000 

ppm can be verified using 2B Technologies ozone monitor 106-M in this work. 

Spectralcalc.com gas cell simulator is used to relate optical path length and ozone 

concentration based on the assumption that transmittance lies between 0.25 and 0.5. 

The assumption is to avoid deviation of Beer–Lambert law as discussed in chapter 2. 

Next, experiment is conducted to illustrate limitation of long gas cell of 10 cm optical 

path length for high concentration below 1000 ppm. Extent of Beer–Lambert law 

deviation is characterized. After that, a solution is proposed to maintain linearity of 

measurement. As a result, short gas cell of 5 cm optical path length is applied in the 

next chapter for high concentration measurement below 1000 ppm. 

 

 

 Next, chapter 5 contains two simulations and one experiment to characterize 

ozone absorption cross section. Spectralcalc.com simulations are applied to verify 

temperature and pressure dependence on maximum ozone absorption cross section. 

After that, experiment is conducted to verify equation derived in chapter 2 to 

determine maximum ozone absorption cross section via ratiometric method. 

Significance of ratiometric method to compensate light source intensity drift is 

illustrated. 

 

 

 Finally,  chapter 6 contains conclusions of study. Contributions of the study is 

discussed. Since research is a continuous effort, future work is suggested. Interested 

readers may refer to appendices for summary of ozone sensing techniques, conversion 

relations among concentration units and list of publications of this work.
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