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ABSTRACT

In injection moulding process, warpage is one of the main quality aspects 
measured for moulded parts while cycle time to produce a part indicates the 
efficiency of the process. Efficient cooling is a huge challenge to many mould 
designers for achieving a uniform thermal distribution in an injection mould where it 
affects both quality and productivity. The use of conformal cooling design has been 
reported as very effective to distribute thermal uniformly, thus able to improve part 
quality as well as reducing moulding cycle time. However, most of previous 
researchers only focused on simulation studies and they hardly performed 
experimental works to verify the simulation results. In this study, a Milled Groove 
Square Shape (MGSS) conformal cooling channel has been designed, simulated, 
fabricated and tested using a front panel housing as the case study. Performance 
evaluations on the MGSS conformal cooling channel and straight cooling channel 
were conducted using simulation and experimental works in terms of quality 
(warpage) and productivity (cycle time) of the moulded part. Mould and coolant 
input temperatures were varied in both evaluations, i.e. mould temperature (40 oC to 
80 oC) and coolant temperature (25 oC to 65 oC). Results showed that the MGSS 
conformal cooling was superior with improved cycle time from 37.57% to 48.66% 
(simulation) and confirmed by experimental trials (27.89% to 36.15%). Simulated 
results showed that there is no warpage on the front panel housing in x direction for 
both types of cooling channels. However, experimental results indicated that warpage 
occurs in x direction in both cooling channel designs, but MGSS conformal cooling 
type demonstrates more reduction from 36.36% to 76%. Similarly, warpage in y 
direction recorded a remarkable improvement within the range of 34.3% to 41.5% 
and 16.7% to 35.48% respectively from the simulated and experimental results when 
employing the MGSS conformal cooling channel. The fabrication cost of the MGSS 
conformal cooling channel is approximately 3 % to 5 % higher which depends on the 
complexity of part shape as compared to the straight cooling channel. The finding 
shows that the MGSS conformal cooling channel design offers very encouraging 
results which is able to improve part quality as well as productivity at an acceptable 
manufacturing cost.
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ABSTRAK

Dalam proses pengacuan suntikan, ledingan adalah salah satu aspek utama 
kualiti yang diukur pada bahagian yang dibentuk manakala kitaran masa untuk 
menghasilkannya menunjukkan kecekapan proses. Penyejukan yang cekap adalah 
satu cabaran yang besar kepada kebanyakan pereka bentuk acuan untuk mencapai 
agihan haba yang seragam dalam acuan suntikan di mana ia memberi kesan kepada 
kualiti dan produktiviti. Penggunaan reka bentuk penyejukan konformal telah 
dilaporkan sangat berkesan untuk mengagihkan haba secara seragam, dengan itu 
dapat meningkatkan kualiti bahagian dan juga mengurangkan masa kitaran 
pembentukan. Walau bagaimanapun, kebanyakan penyelidik terdahulu hanya 
memberi tumpuan kepada kajian simulasi dan mereka jarang melakukan kerja-kerja 
eksperimen untuk mengesahkan keputusan simulasi. Dalam kajian ini, saluran 
penyejukan konformal berbentuk segiempat alur terkisar (MGSS) telah direkabentuk, 
disimulasi, difabrikasi dan diuji menggunakan panel perumah hadapan sebagai kajian 
kes. Penilaian prestasi saluran penyejukan konformal MGSS dan saluran penyejukan 
lurus telah dibuat menggunakan simulasi dan kerja-kerja eksperimen dari segi kualiti 
(ledingan) dan produktiviti (masa kitaran) bahagian yang dibentuk. Suhu masukan 
acuan dan penyejuk telah diubah dalam kedua-dua penilaian, iaitu suhu acuan (40 oC 
hingga 80 oC) dan suhu penyejuk (25 oC hingga 65 oC). Keputusan menunjukkan 
bahawa penyejukan konformal MGSS adalah lebih baik dengan penurunan masa 
kitaran daripada 37.57% hingga 48.66% (simulasi) dan disahkan oleh ujian 
percubaan (27.89% hingga 36.15%). Keputusan simulasi menunjukkan tidak ada 
ledingan pada panel perumah hadapan dalam arah x untuk kedua-dua jenis saluran 
penyejukan. Walau bagaimanapun, keputusan dari eksperimen menunjukkan 
ledingan berlaku dalam arah x bagi kedua-kedua reka bentuk saluran penyejukan, 
tetapi penyejukan jenis konformal MGSS menunjukkan lebih pengurangan daripada 
36.36% sehingga 76%. Begitu juga, ledingan dalam arah y telah merekodkan 
penambahbaikan yang memberangsangkan dalam julat 34.3% hingga 41.5% dan 
16.7% hingga 35.48% masing-masing daripada keputusan simulasi dan eksperimen 
apabila menggunakan saluran penyejukan konformal MGSS. Kos anggaran fabrikasi 
saluran penyejukan konformal MGSS adalah diantara 3% sehingga 5% lebih tinggi, 
bergantung kepada kerumitan bentuk bahagian berbanding dengan saluran 
penyejukan lurus. Dapatan kajian menunjukkan bahawa reka bentuk saluran 
penyejukan konformal MGSS menawarkan hasil yang sangat memberangsangkan 
yang mampu untuk meningkatkan kualiti bahagian dan juga produktiviti dengan kos 
pembuatan yang boleh diterima.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Injection moulding process has been widely used in the manufacturing of 

plastic products with various types of shapes due to its high productivity and low 

cost for high volume production (Cho et al., 2009; Lin, 2002; Spina, 2004). The 

important stages in injection moulding process are injection (filling), packing, 

cooling and ejection (Lin, 2002; Saifullah et al., 2009; Tang et al., 2006). During the 

injection stage, molten plastics are injected into the cavities. In the packing stage the 

molten plastics are continuously injected into the cavities until the gate freezes to fill 

in the leaving space due to plastic shrinkage during solidification. After the molten 

plastics solidify and are rigid enough at the cooling stage, the mould opens allowing 

the moulded parts to be ejected out of the mould. The mould then closes and the 

process continues for the next cycle (B ozdana an d Eyerci oglu, 2002). Among all the 

stages, cooling is the most significant phase that affects the productivity and the 

quality of the moulded parts (Hassan et al., 2010b; Tang et al., 2006). It contributes 

approximately 70% to 80% of the cycle time in injection moulding process (Saifullah 

and Masood, 2007b; Subramanian et al., 2005).

As such, in order to improve the cycle time in the injection moulding process, 

it is essential that the cooling time is reduced (Hassan et al., 2010b).



1.2 Background of Study

The cost-effectiveness of the injection moulding process mainly depends on 

the moulding cycle time whereby the cooling stage is the primary stage influencing 

the cycle time and the production rate of the moulded parts (Hassan et al., 2010b; 

Saifullah et al., 2009). In addition, the design of cooling channels in the injection 

moulds affects the quality of moulded plastic part (Dimla et al., 2005; Hassan et al., 

2010b; Li, 2007). The undesirable defects that commonly affect the quality of the 

moulded parts include hot spots, sink marks, differential shrinkage, thermal residual 

stress and warpage. All these defects can be minimized with an efficient cooling 

channel system which results in a uniform temperature distribution in the inserts of 

the injection mould (Chen et al., 2000; Wang and Young, 2005).

Traditionally, simple cooling channels are designed with straight holes in the 

core and cavity inserts of the mould. It is simple to design and easy to fabricate using 

a conventional machining process such as drilling. Nowadays, many researchers and 

mould designers are trying to improve the efficiency of cooling channels by focusing 

on how to optimize the layout of the cooling channels system in terms of shape, size 

and location (Dang and Park, 2011; Hassan et al., 2010a; Lam et al., 2004; 

Shoemaker, 2006; Zhou et al., 2009). On the other hand, some researchers studied on 

how to design and fabricate conformal cooling channels in order to ensure uniform 

thermal distribution and to increase the cooling efficiency (Ahn et al., 2010; Altaf et 

al., 2011; Dimla et al., 2005; Park and Pham, 2009; Park and Dang, 2010; Saifullah 

et al., 2009). Over the years, conformal cooling channels have proven more efficient 

as compared to conventional cooling channels in terms of production rate and parts 

quality (Saifullah and Masood, 2007b; Xu et al., 2001). Several investigations on 

conformal cooling channels have been conducted which involved fabricating the 

channels as close as possible to the surface of the mould cavities in order to increase 

the efficiency of heat absorption from molten plastic thus ensuring the moulded parts 

to be cooled uniformly (Saifullah and Masood, 2007a; Saifullah et al., 2009). The 

application of conformal cooling channels began when rapid tooling was first 

introduced because of its simple fabrication process with various technologies as

2



compared to the conventional drilling and milling on hard tooling materials of the 

injection moulds.

In recent years, the high efficiency of conformal cooling channels in rapid 

tooling over conventional cooling channels has triggered many researchers to 

investigate its effectiveness on hard tooling for injection moulding process. 

Designing such cooling channels is always a big challenge because of its limitation 

in the fabrication process which involves free-form machining of the cooling 

channels that follows exactly the profile of the injected plastic parts.

1.3 Problems Statement

Warpage defect is a common issue in an injection moulding process due to 

non-uniform temperature variation causing differential shrinkage on the moulded 

parts (Fischer, 2003; Kazmer, 2007; Malloy, 2010). In designing plastic injection 

moulds, it is difficult to achieve efficient cooling with uniform thermal distribution 

by using traditional design of simple cooling channels with straight holes. To 

overcome these issues, the use of conformal cooling channels with uniform distance 

between the centre of the cooling channels and the mould surfaces was introduced 

which offers a better thermal distribution and reduction in cooling time.

Many researchers have studied the designing of conformal cooling channels 

on hard tooling for injection moulding process (Dang and Park, 2011; Park and 

Pham, 2009; Park and Dang, 2010; Saifullah and Masood, 2007a; Saifullah and 

Masood, 2007b; Saifullah et al., 2009; Sun et al., 2004). Similar to the findings on 

conformal cooling channels in rapid tooling, its efficiency and performance are 

proven superior in terms of the uniformity of thermal distribution, improvement on 

parts deflection, cooling time reduction and unquestionably the reduction in an 

injection moulding cycle time. However, most of the researches were focused on the 

simulation works or computer modelling which lack supports and verifications of 

real experimental data (Dang and Park, 2011; Park and Pham, 2009; Park and Dang,
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2010; Saifullah and Masood, 2007a; Saifullah and Masood, 2007b; Sun et al., 2004). 

Simulation results could not provide a full and accurate solutions to the actual 

problems in real production. Only Saifullah et al. (2009) had performed experimental 

works and compared to the simulation results. However, the experimental work only 

consider a circular part which is too simple. Besides that, most researchers only 

proposed the cooling channels in simulation without any consideration on mould 

fabrication. In addition, most of them used coolant temperature of 25oC and 35oC in 

their study which did not fulfilled the recommended temperature suggested by the 

material manufacturer. Therefore the results are questionable and less beneficial to 

the injection moulding society.

Hence, in this study extensive investigation involving experimental works 

were conducted in order to assist the moulding industries, particularly in small and 

medium enterprise, in improving the quality of plastic parts produced. A Milled 

Grooved Square Shape (MGSS) conformal cooling channels which are easy to 

design, fabricate and assemble is developed taking into the consideration on the 

fabrication of the conformal cooling channels, especially in hard tooling. The 

performance of the MGSS conformal cooling channels in term of productivity (cycle 

time) and quality (warpage) was compared to the conventional straight cooling 

channels with a same layout and cross sectional area through simulation and 

experimental works. Thus, the efficiency of the MGSS conformal cooling channels 

as compared to the conventional straight cooling channels was validated clearly. This 

study is able to address the following questions:

1. Can the MGSS conformal cooling channels be fabricated and used in real 

injection moulding processes?

2. How much a MGSS conformal cooling channels can improve the productivity 

of the injection moulding process as compared to the conventional straight 

cooling channels?

3. How much improvement on the quality of the moulded parts of a MGSS 

conformal cooling channels as compared to the conventional straight cooling 

channels?

4. What are the variation of the experimental results against the simulation 

results in terms of productivity and quality of the moulded parts?



1.4 Objectives

The main objectives of this study are:

1. To design and fabricate of conformal cooling channels for moulds used in the 

injection moulding process of a plastic part.

2. To evaluate the performance of MGSS conformal cooling channels in 

injection moulding process on the productivity and quality of the moulded 

parts by simulation.

3. To experimentally compare the quality and productivity of the moulded parts 

produced using a MGSS conformal cooling channels mould against the 

simulation results in term of shrinkage, warpage, cooling time and cycle time.

1.5 Scopes of Study

The scope of this study involves designing, fabrication and testing of the 

plastic injection moulds with a MGSS conformal cooling channels in the injection 

moulding of a front panel housing made from Acrylonitrile Butadiene Styrene (ABS) 

material. Comparative study was conducted between the MGSS conformal cooling 

channels and the straight cooling channels for the coolant temperature of 25 oC to 65 

oC in order to obtain the mould temperature of 40 oC to 80 oC as per recommended by 

the plastic material manufacturer. Performance evaluations were conducted by 

simulation and validated experimentally with regards to productivity (cycle time) and 

quality (warpage) of the moulded parts. In this study, the values of the melt 

temperature, injection rate, packing pressure and part thickness were kept constant. 

The parameters that were varied are mould temperature, filling time and packing 

time. The mould temperature depends on the coolant temperature while the filling 

and packing time depend on the mould temperature from the Fill + Pack analysis 

form simulation. Therefore, in order to control the mould temperature, filling and 

packing time, the coolant temperature needs to be controlled. A commercial 

Computer Aided Engineering (CAE) software, Autodesk Moldflow Insight 2013 was 

used for the analysis and simulation works in this study. Meanwhile a 80 Tonne

5
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Nissei NEX1000 injection moulding machine at the production laboratory, School of 

Manufacturing Engineering, Universiti Malaysia Perlis was used to perform the 

experimental works.

1.6 Significance of the Study

This study provides useful scientific knowledge and solution to plastic 

manufacturing industries pertaining to plastic injection moulding in improving the 

quality (warpage) and productivity (cycle time) of the moulded parts through the 

MGSS conformal cooling channels of an injection mould. MGSS conformal cooling 

channels has been developed and proven to be used in the real injection moulding 

process. Slight difference exists between the results from simulation and 

experimental because of the few assumptions used in Autodesk Moldflow Insight 

2013. However, the experimental results are in line with the simulation results 

whereby the MGSS conformal cooling channels is able to improve the quality and 

productivity of the moulded parts produced. The fabrication cost of MGSS 

conformal cooling channels for the front panel housing is approximately to be within

3 % to 5 % higher as compared to the straight cooling channels. However, the 

fabrication cost of MGSS conformal cooling channels depends mainly on the shape 

complexity of the moulded parts.

1.7 Organisation of the Thesis

This thesis begins with an introductory chapter that describes the general 

information of conventional injection moulding, problems statement, objectives, 

scopes and significance of this study. In Chapter 2, a thorough discussion of the 

literature on the performance of conformal cooling channels in rapid and hard tooling 

for injection moulding with different approaches to improve the quality and 

productivity of moulded parts are highlighted. In Chapter 3, detailed methodologies 

from part design, design of gating system, analysis using Autodesk Moldflow 2013



7

and experimental are presented. The simulation and experimental results are 

discussed in Chapter 4 whereas Chapter 5 concludes all of the findings of the study.
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