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ABSTRACT 

The increasing demands of petroleum fuels, together with the environmental 

pollution issues, have motivated the efforts on discovering new alternative fuels. 

Bioethanol produced from biomass is considered as one of the important alternatives 

for petroleum fuels. In Sarawak, wastes from sago factories are currently causing 

serious environment problems. These wastes can be used as favourable feedstock for 

bioethanol production. The purpose of this research is to produce bioethanol from 

sago palm waste, and study the effects of bioethanol on corrosion of materials, and 

performance and emissions of petrol engine. First, bioethanol was produced from 

sago pith waste (SPW) using microwave hydrothermal hydrolysis accelerated by 

CO2 (MHH) and microwave assisted acid hydrolysis (MAH). Bioethanol was also 

produced from sago bark waste (SBW) using microwave aided acid treatment and 

enzymatic hydrolysis (MAEH). Second, effect of bioethanol and gasoline blends on 

corrosion of materials was studied using static immersion test. Furthermore, 

corrosion of materials in biodiesel–diesel–ethanol (BDE) fuel blends was also 

studied. Finally, the effect of bioethanol on performance and emissions of petrol 

engine was studied. A maximum of 15.6 g and 30.8 g ethanol per 100 g dry SPW 

was produced using MHH and MAH, respectively. In addition, a maximum of 30.67 

g ethanol was produced from 100 g dry SBW using MAEH. Corrosion of materials 

and degradation of fuel properties were 2.4 times higher in higher ethanol blends 

(above E25) compared to lower ethanol blends (up to E25). Corrosion and 

degradation of materials in BDE fuel blends was 1.7 times higher than petro-diesel. 

Petrol engine results showed that use of sago waste bioethanol (E25) significantly 

increased the engine power, torque, brake thermal efficiency, and mean effective 

pressure by about 4.5%, 4.3%, 9% and 4.2% compared to gasoline (E0), respectively. 

Emissions results showed a significant reduction in CO, NOx and HC emissions by 

about 42%, 7% and 5.2%, respectively for E25 compared to E0. This study acclaims 

that sago bioethanol is a feasible alternative to reduce the dependence on fossil fuels 

for the automotive industry. 
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ABSTRAK 

Permintaan yang semakin meningkat untuk bahan api petroleum, bersama-

sama dengan isu-isu pencemaran alam sekitar, telah mendorong usaha mecarii bahan 

api alternatif baru. Bioetanol yang dihasilkan daripada biojisim dianggap sebagai 

salah satu alternatif penting untuk bahan api petroleum. Di Sarawak, sisa daripada 

kilang-kilang sagu kini mengakibatkan masalah alam sekitar yang serius. Bahan 

buangan ini boleh digunakan sebagai bahan mentah yang baik untuk pengeluaran 

bioetanol. Tujuan kajian ini adalah untuk menghasilkan bioetanol daripada sisa 

pokok sagu, dan mengkaji kesan bioetanol kepada kakisan bahan-bahan, dan prestasi 

dan pelepasan enjin petrol. Pertama, bioetanol dihasilkan daripada sisa empulur sagu 

(SPW) menggunakan ketuhar gelombang mikro hidroterma hidrolisis dipercepatkan 

oleh CO2 (MHH) dan ketuhar gelombang mikro dibantu asid hidrolisis (MAH). 

Bioetanol juga dihasilkan daripada sagu sisa kulit (SBW) menggunakan ketuhar 

gelombang mikro dibantu rawatan asid dan hidrolisis enzim (MAEH). Kedua, kesan 

bioetanol dan petrol campuran ke atas kakisan bahan dikaji menggunakan ujian 

rendaman statik. Tambahan lagi, kakisan bahan-bahan dalam biodiesel-diesel-etanol 

(BDE) campuran bahan api juga telah dikaji. Akhir sekali, kesan bioetanol ke atas 

prestasi dan pelepasan enjin petrol telah dikaji. Setiap 100 g SPW kering 

menghasilkan sebanyak 15.6 g dan 30.8 g maksimum etanol menggunakan MHH dan 

MAH masing-masing. Di samping itu, 100 g SBW kering menghasilkan 30.67 g 

maksimum etanol menggunakan MAEH. Kakisan bahan dan degradasi bahan api 

adalah 2.4 kali tinggi dalam campuran etanol tinggi (melebihi E25) berbandingkan 

kepada campuran etanol  rendah (sehingga E25). Kakisan dan degradasi bahan-bahan 

dalam campuran bahan api BDE adalah 1.7 kali lebih tinggi daripada petro-diesel. 

Keputusan enjin Petrol menunjukkan bahawa penggunaan bioetanol hampas sagu 

(E25) memberi peningkatan ketara untuk kuasa enjin, dayakilas, kecekapan brek 

haba dan tekanan berkesan min, masing-masing sebanyak kira-kira 4.5%, 4.3%, 9% 

dan 4.2% berbanding petrol (E0). Keputusan emisi menunjukkan pengurangan ketara 

dalam emisi CO, NOx dan HC dalam kira-kira 42%, 7% dan 5.2% masing-masing 

untuk E25 berbanding dengan E0. Kajian ini menunjukan bahan api bioetanol sagu 

adalah alternatif yang boleh dilaksanakan untuk mengurangkan pergantungan kepada 

bahan api fosil bagi industri automotif. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Worldwide increment in population growth rate, economic interdependencies 

between nations and the rapid developments in industries and automotive society 

have created several impeding issues around the world. These issues comprises of, 

but not limited to: uncompensated demands of petroleum based fuels that causes 

increasing fuel prices; environmental pollution problems; climate changes; energy 

crisis; and waste management. There is now global insistence to manage the above 

listed issues. 

One of the promising solutions to address the above listed issues is renewable 

energy (RE) technology. RE sources, such as solar, wind, biomass, hydro, nuclear, 

geothermal, and tidal are most commonly utilized in different tropical location for 

power generation. RE sources have number of benefits, such as being sustainable 

having environmental and economic benefits; and pricing flexibility. However, the 

main drawbacks of most of the RE sources are reliability of supply due to 

unpredictable weathers, high capital cost and large land requirement. However, the 

biomass energy, which is among the RE family, can overcome the above mentioned 

drawbacks. There are many environmental benefits of using biomass energy as 

described below (IEA Bioenergy, 2005): 
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 reduced the reliance on limited natural resources 

 reduced greenhouse gas (GHG) emission through fossil fuel replacement 

 reduced landfill waste 

 enhanced biodiversity 

 protection of ground water supplies 

 reduced dry land salinity and erosion 

Currently, about 10 to 15% of world energy demand is supplied by bioenergy 

in developed countries, and the same is up to 3% in developing countries (Hosseini 

and Wahid, 2014). Figure 1.1 shows the share of biomass in world total primary 

energy supply. Most of the RE sources are utilized for electrical power generation 

globally. However, the global automotive and industry sectors are completely 

dependent on petroleum-based fuels as main energy source, which cannot be easily 

met by RE sources such as solar and wind other than bioenergy. 

 

Figure 1.1 Share of biomass in world total primary energy supply (IEA, 2014) 

Presently, petroleum-based fuels are obtained from limited reserves, so there 

is a greater anxiety about the shortage of petroleum fuels due to finite reserves; 

moreover, environmental pollutions problem have been emphasized around the 
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world in recent days. Similar to the global situation, Malaysian automotive society is 

also more dependent on petroleum based fuels. The transportation sector of Malaysia 

has been the largest consumer of petroleum fuels and the largest contributor of GHG 

emission accounting more than 40% of the total GHG emission (Abdul-Manan et al., 

2014). Thus, it is of urgency to find a suitable alternative fuels for automotive 

engines. The most preferred choice for replacing petroleum-based fuels as the main 

energy in automotive sector is biofuels (Demirbas, 2011). 

Biofuels are produced from biomass and bioenergy crops through different 

conversion process, which are generally thermochemical or biochemical. Biofuels 

have gained progressive importance as alternative fuels for automotive engines. 

Biofuels have shared 10% in the world primary energy supply of 1.56 × 1011 MWh 

by fuels in the year 2012 (IEA, 2014). Biofuels are classified based on the production 

technologies, namely, first, second, third and fourth generation biofuels (Demirbas, 

2011). Table 1.1 shows the classification of biofuels based on different feedstock. 

Table 1.1: Classification of biofuels (Demirbas, 2011) 

Generation  Feedstock Biofuels examples 

First 

Generation 

Sugar, starch grains, 

vegetable oils and 

animal fats 

Bio-alcohols such as ethanol, propanol 

and butanol, vegetable oils, biodiesel, 

green diesel, bio-syngas and biogas 

Second 

Generation 

Non-food crops, 

agriculture residues, 

woody biomass and 

municipal solid wastes 

Bio-alcohols such as bioethanol and 

methanol, bio-oil, bio-dimethyl Furan 

(DMF), bio-hydrogen, bio-char and 

bio-Fischer–Tropsch diesel 

Third 

Generation 
Algae based 

Vegetable oils, biodiesel and 

bioethanol, methanol, butanol 

Fourth 

Generation 

Vegetable oils and 

biodiesels 
Bio-gasoline and jet fuel 

First generation biofuels are mainly produced from the food based feedstock, 

such as sugar, starch, vegetable oils and animal fats. Second generation biofuels are 

produced from the feedstock, such as non-food crops, agricultural residues, wood 

and municipal solid wastes. Algae based biofuel production is named as third 

generation biofuels. Among the various classifications of biofuels, liquid biofuels, 
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namely, biodiesel and bioethanol offer promising alternatives for petroleum based 

fuels in automotive engines. Biodiesel is produced from vegetable oils or animal fats 

through transesterification process, and bioethanol is produced from biomass and 

bioenergy crops using biochemical conversion. Table 1.2 shows the processes of 

converting biomass into biofuels and corresponding energy services. 

Table 1.2: Conversion of biomass into biofuels (IEA Bioenergy, 2005) 

Biomass resources   Processes  Biofuels Energy services 

Agriculture and 

forestry residues  

Densification  Wood pellets  

Briquettes 

Heat  

Electricity 

Energy crops: 

Biomass, sugar, oil  

Combustion 

Gasification 

Pyrolysis 

Esterification  

Fermentation 

Char/charcoal 

Fuel gas 

Bio-oil 

Biodiesel 

Bioethanol  

Heat 

Electricity 

Electricity  

Transportation 

Transportation   

Biomass processing 

wastes 

Digestion 

Hydrolysis/ 

fermentation 

Biogas 

Bioethanol Transportation  

Municipal solid wastes   Digestion 

Combustion 

Gasification  

Refuse-derived 

fuels (RDF) 

Biogas 

 

Heat  

Electricity 

1.2 Bioethanol as Alternative Fuel 

Bioethanol (ethanol, fuel ethanol, ethyl alcohol, grain alcohol, EtOH or CH3-

CH2-OH) is one of the liquid biofuel, which is considered as a clean, renewable and 

green combustible fuel, alternative to petroleum fuels in internal combustion engines. 

The ethanol fuel has the properties of higher octane number, higher flammability 

limit, similar or lower flame speeds, and higher heats of vaporization than gasoline 

fuel (as in Table 1.3). These fuel properties allow for a higher compression ratio, 

shorter burn time and leaner burn engine, which leads to better performance over 

gasoline in internal combustion engines (Balat and Balat, 2009). The higher octane 

helps to run the vehicles more smooth, and keeps the vehicle’s fuel system clean for 

optimal performance (Kumar et al., 2010). 
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Table 1.3: Fuel properties of ethanol and gasoline (Kumar et al., 2010) 

Property  Ethanol Gasoline 

Formula C2H5OH C5 to C12 

Specific gravity at 15.55 °C  0.79 0.72-0.75 

Distillation temperature (°C) 78.4 32-210 

Flash point (°C) 12 13 

Kinematic viscosity (mm2/s) 1.5 0.6 

Reid vapour pressure at 37.8 °C (kPa) 17 35-60 

Octane number 

(i) Research 

(ii) Motor 

 

111 

92 

 

91-100 

82-92 

Oxygen content (wt.%) 34.7 0 

Stoichiometric air/fuel ratio (w/w) 8.97 14.6 

Net heat of combustion (MJ/kg) 27 43.5 

Heat of vaporization (kJ/kg) 900 400 

Water solubility  ∞ 0 

Vapour flammability limit (vol.%) 3.5-15 0.6-8 

Maximum flame speed (m/s) 0.33 0.40 

Flame temperature at 101.325 kPa (°C) 478 392 

Color  Colorless 
Colorless to light 

amber glass 

The anti-knock characteristics of ethanol allow for a high compression ratio, 

and therefore, produce higher engine power output. In addition, higher heat of 

vaporization of ethanol and faster flame speed permit for increased fuel conversion 

efficiency compared to gasoline (Costa and Sodre, 2011). Ethanol acts as oxygenate 

in gasoline engines, elevating its oxygen content, allowing a best oxidation of 

hydrocarbon, reducing the amount of aromatic compounds and carbon monoxide 

released to atmosphere (Balat et al., 2008). 

Globally, bioethanol production reached 24.6 billion gallons in 2014, up from 

22.4 billion gallons in 2011. Bioethanol presently accounts for more than 95% of the 

global biofuel production, with the majority coming from first generation food based 

feedstock, such as sugarcane, corn, wheat and cassava (Lichts, 2015). Due to the 

ethical concern about the food being used as fuel raw material, researches have re-
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directed their work on the second generation lignocellulosic feedstock (Balat and 

Balat, 2009). 

Extensive research has been carried out on bioethanol production from 

lignocellulosic biomass in the past two decades. Rice straw, wheat straw, corn straw, 

and sugarcane and sorghum bagasse are the major agricultural wastes which are 

suitable for large scale bioethanol production in terms of quantity of biomass 

available. Moreover, the starchy lignocellulosic biomasses, such as waste from starch 

processing and potato food factories, beverage and brewery factories are promising 

feedstock for bioethanol production in the tropical locations. A short process chart 

for bioethanol production from lignocellulosic feedstock is shown in Figure 1.2. 

 

 

  

 

 

 

Figure 1.2 Ethanol fermentation from biomass 

The second generation of bioethanol fuel production from lignocellulosic 

biomass involves four different steps, such as pretreatment, hydrolysis, fermentation 

and ethanol recovery (as in Figure 1.2). Different pretreatments, such as physical, 

chemical, physico-chemical and biological have been studied in the past decade to 

alter structural characteristics of lignocellulosic biomass. Hydrolysis is an essential 

step to produce fermentable sugars which are then fermented into ethanol by 

microbial biocatalyst. 
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1.3 Research Problem Statement 

Bioethanol fuel has the potential to replace petroleum fuels in internal 

combustion engines. However, the cost of bioethanol production (0.97 USD/litre) is 

high compared to petroleum-based fossil fuels (0.22 USD/litre) (Banerjee et al., 

2010; Macrelli et al., 2012). Currently, large scale bioethanol production is mainly 

based on sugar containing raw materials (e.g. sugar cane) and starch grains (e.g. 

corn, wheat and cassava), which is not appropriate due to their feed value. The 

lignocellulosic biomass, such as agriculture waste, woody biomass, algae, and 

municipal solid waste is not only a sustainable feedstock, as it incurs low cost and is 

abundantly available (Limayem and Ricke, 2012). 

Although lignocellulosic biomass is sustainable and abundant; the bioethanol 

fuel production from lignocellulosic biomass is not commercialized in many 

countries including Malaysia. The main obstacles in bioethanol production are high 

production cost and energy requirements. The conversion of biomass into bioethanol 

using energy efficient, economic and faster technique is the greatest concern for 

commercial bioethanol production. Currently, acid and enzymatic hydrolysis is 

widely employed to breakdown the starch, cellulose and hemicellulose of biomass 

into fermentable sugar. These existing approaches tend to be slow, expensive and of 

high dilutions that give poor yields of glucose (Fan et al., 2013). 

In Malaysia, the availability of lignocellulosic biomass, such as waste from 

wood industry, agriculture residues, oil palm waste and sago palm waste is abundant. 

The sago palm wastes, namely, sago pith waste, sago bark waste and sago effluent 

are the starchy lignocellulosic by-product generated from Metroxylon sagu (sago 

palm) after extraction of starch. Sago bark, which is peelings from initial process, is 

generated in sago starch processing factories. It is estimated that about 5 to 15 tons of 

sago bark waste and about 50 to 110 tons of sago pith waste are produced daily from 

starch processing factories in Sarawak, Malaysia, which are currently washed off into 

the nearby stream together with waste water (Awg-Adeni et al., 2010). This can 

cause serious environmental problems in Sarawak, Malaysia. 
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In addition to the above problems in bioethanol production, material 

compatibility of bioethanol fuels in automotive engines is another issue, for which 

the engineers and manufactures are working to find a suitable solution. The addition 

of bioethanol to gasoline in petrol engines normally creates corrosion in fuel system 

materials. In petrol engines, fuel gets in contact with various parts contributing to 

corrosion. The blends of diesel and ethanol could be used in existing diesel engines 

without engine modification. In addition, the biodiesel–diesel–ethanol (BDE) blend 

represents an important alternative fuel for diesel engines; however, changes in the 

fuel composition and the introduction of new alternative fuel often results corrosion 

in fuel system metals, and degradation in fuel system elastomers and polymers.  

Most of the spark ignition (SI) engine studies discovered a significant 

improvement in engine performance and emission reductions, such as carbon 

monoxide (CO) and unburned hydrocarbon (HC) for ethanol fuel compared to 

gasoline. However, carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions 

were not significant (increased or decreased), and moreover, the brake specific fuel 

consumption (BSFC) also increased or decreased due to low calorific value of 

bioethanol fuel (27 MJ/kg) compared to gasoline (43.5 MJ/kg). There are 

contradictory results attained for CO2 and NOx emission and BSFC (Masum et al., 

2013), motivating for further investigations using lignocellulosic bioethanol, such as 

sago bioethanol. 

 

 

 

 

 



9 
 

1.4 Hypothesis of Research Study 

 Currently, acid and enzyme hydrolysis are generally employed to breakdown 

the starch, cellulose and hemicellulose of sago pith waste into fermentable sugar, 

however, little information only available in bioethanol production from sago pith 

waste using economic, environmental friendly and energy efficient method. Further 

experimentation required for sago pith waste to produce bioethanol using alternative 

hydrolysis. Hydrothermal hydrolysis offers an alternative way to hydrolyze starchy 

and cellulosic biomass into fermentable sugars. Bioethanol fuel production from sago 

pith waste using microwave assisted hydrothermal hydrolysis and microwave 

hydrothermal hydrolysis accelerated by CO2 is required to be further experimented. 

The acid hydrolysis aided with microwave irradiation offers an economical 

and energy efficient alternative method for bioethanol production from sago pith 

waste. The microwave assisted acid hydrolysis was widely used to produce glucose 

but with no emphasis on energy consumption to produce fermentable sugars. 

Moreover, a low concentration of acid (< 0.5 mol/L) was commonly used with long 

irradiation time (5 min to 30 min) to achieve maximum fermentable sugars. 

However, no information on the microwave assisted acid hydrolysis (both H2SO4 and 

HCl with ≥ 0.5 mol/L) for sago pith waste with an aim to develop energy efficient 

approach. In addition, microwave aided acid treatment followed with enzyme 

hydrolysis was used for bioethanol production from sorghum bagasse, wheat straw, 

and rape straw. However, no research is found on bioethanol production from sago 

bark waste using microwave aided acid treatment, which necessitates further 

investigation. 

The corrosion behavior of metals in ethanol and gasoline blends was studied 

through electrochemical properties. However, little information is available on 

change of bioethanol fuel properties after exposure to metals and the corrosive nature 

of bioethanol fuel for metallic materials. In addition, the effect of sago waste 

bioethanol on corrosion and degradation of materials requires further investigation. 
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The corrosion behavior of materials (metals, polymers and elastomers) in 

different biodiesel, such as palm oil, rapeseed oil and sunflower oil was widely 

studied. Literatures show a gap that no study has reported on corrosion and 

degradation behavior of materials in biodiesel–diesel–ethanol (BDE) fuel blend. 

Moreover, none of the study investigated the change of BDE fuel properties after 

exposure to materials, and the corrosive nature of BDE fuels. Further 

experimentation is required to analyze the corrosive behavior of BDE fuel blend on 

engine fuel system materials. 

Investigations on the effect of ethanol and gasoline on performance and 

emissions of SI engine were carried out in past decade. Hydrous ethanol was found 

to be suitable to reduce NOx and CO2 emissions compared to anhydrous ethanol. 

Hydrous ethanol reduces the NOx and CO2 emission, however, engine performance 

decreased. Thus, further experimentation is required for achieving significant 

reduction in NOx and CO2 emissions, without affecting the engine performance. 

Literatures show a gap that the effect of sago waste ethanol on the performance and 

emissions of petrol engine need to be further investigated. 
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1.5 Objectives 

The main objectives of this study are: 

a) To produce bioethanol fuel from sago palm wastes using economic and 

energy efficient approach. 

b) To evaluate the corrosion of fuel system materials in bioethanol and gasoline 

fuel blends. 

c) To examine the compatibility of fuel system materials in biodiesel–diesel–

ethanol (BDE) fuel blends. 

d) To assess the effect of sago bioethanol fuel on performance and emissions of 

petrol engine. 
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1.6 Scope of the Research Study 

The scope of this research is to achieve the objectives described below: 

a) Bioethanol fuel was produced from sago pith waste (SPW) using microwave 

hydrothermal hydrolysis accelerated with CO2 (MHH) and without CO2. 

MHH was carried out for different microwave power rating (550, 700 and 

900 W) and heating time (1, 2, 3 and 5 min).  

b) Bioethanol fuel was also produced from SPW using microwave acid 

hydrolysis (MAH) using both H2SO4 and HCl (0.5, 1.0 and 1.5 mol/L 

concentration only used to avoid decomposition of sugar). MAH was carried 

out for different microwave power (550, 700 and 900 W) and heating time (1, 

2 and 3 min). 

c) Bioethanol was produced from sago bark waste (SBW) using microwave 

aided acid pretreatment followed with enzymatic hydrolysis (MAEH) and 

fermentation. MAEH was carried for different microwave power (700, 900 

and 1100 W), heating time (30 s, 1, 2 and 3 min), and biomass liquid loading 

(10, 20, 30, 40 and 50%). 

d) Corrosive behaviors of bioethanol fuel (E10, E25, E50 and E85) and gasoline 

(E0) on metals (mild steel, copper and aluminum) were examined at room 

temperature (25 to 30 °C). Corrosion immersion testing was carried for 700 

and 1400 h. 

e) Corrosive behaviors of biodiesel–diesel–ethanol (BDE) blends (B20D75E5 

and B20D70E10) on metals (mild steel, copper and aluminum) were studied 

at room temperature and 60 °C. 

f) The impact of B20D75E5 fuel on degradation of elastomer, namely nitrile 

rubber (NBR) and polymer, namely polytetrafluroethylene (PTFE) at 50 °C 

was studied. 

g) The performance and emission characteristics of a 1.3 litre 4-stroke 4-

cylinder petrol engine using three different fuel blends, such as E0 (100% 
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gasoline), E25 (25% sago waste ethanol and 75% gasoline) and E25C (25% 

commercial anhydrous ethanol and 75% gasoline) were studied. 

h) The properties of fuel blends (E0, E25 and E25C) were determined according 

to the American Society for Testing and Materials standards (ASTM D1298, 

ASTM D2699 & ASTM D240). 

1.7 Significance of the Research 

The importance of this study is to implement the economic and energy saving 

technology to produce bioethanol commercially in Malaysia, from the resources 

available locally within the country. The use of bioethanol fuel in transportation 

sector save significant amount of fossil fuels and reduce greenhouse gas emission in 

Malaysia. This research developed a novel technique (MHH) to produce bioethanol 

fuel from sago pith waste, which is suitable for any kind of starchy lignocellulosic 

biomass. Moreover, this research developed an economic, environmental friendly 

and energy efficient methods to produce bioethanol fuel from sago palm waste (pith 

and bark waste). An alternative waste management for sago factories in Malaysia to 

convert all the sago waste into a renewable fuel is also proposed in this research. 

Another importance of this research is to identify the suitable materials to make 

engine fuel system parts that can perform effectively with alternative fuels such as 

bioethanol. Investigation of corrosion behavior of materials in bioethanol fuel 

proposes proper materials to manufacture engine fuel system parts. Sago waste 

bioethanol produced in this research is suitable for petrol engine compared to 

gasoline for better engine performance and low engine out emissions. 



14 
 

1.8 Structure of the Thesis 

This thesis reports the results of the research work carried out by the author 

during the years 2012 – 2015. The research focused on bioethanol fuel production 

from sago palm waste as an alternative fuel for automotive engines including 

material compatibility, and engine performance and emissions. The outline of the 

thesis is as follows: 

In Chapter 1, the background of the research along with the importance of 

bioenergy and biofuels are discussed in the beginning. Then, the research problem is 

pointed out towards the essentials of bioethanol fuel production, and its effects on 

engine materials, engine performance and emissions. The hypothesis of the research 

is discussed through the literatures. Then, the objectives of this thesis are reported, 

followed with the scope and significance of this research. Finally, the structure of the 

thesis is presented in the end of the chapter. 

 In Chapter 2, a detailed literature review is presented about the existing 

bioethanol production technologies including the comprehensive review of various 

pretreatment techniques, hydrolysis and fermentation methods. In addition, types of 

lignocellulosic biomass, existing bioethanol production techniques from various 

starchy lignocellulosic biomasses, and its potential ethanol yields are reported. The 

importance of sago palm waste as a potential substrate for bioethanol production in 

Malaysia is also discussed. Moreover, existing studies in bioethanol production from 

sago palm waste is described. In addition, existing studies in corrosion behavior of 

metals in ethanol and gasoline blends are presented. Furthermore, existing studies in 

the corrosion behavior of various biodiesel and diesel blends are also discussed. 

Finally, a comprehensive review on effects of ethanol blended gasoline on SI engine 

performance and emission characteristics are described. 

 In Chapter 3, materials and experimental methodology utilized for bioethanol 

production from sago pith waste (SPW) and sago palm waste (SBW) are described 

(Sections 3.1 to 3.3). The materials and experimental methodology utilized to study 
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the corrosion of fuel system metals in bioethanol and gasoline blends are described in 

Section 3.4, additionally, the materials and experiments used to study the 

compatibility of automotive fuel system materials in biodiesel-diesel-ethanol (BDE) 

blend is presented in Section 3.5. Finally, the engine setup and experimental 

procedure used to investigate the effect of bioethanol fuel blend on performance and 

emissions of petrol engine are described in Section 3.6. 

 Chapter 4 describes the results and discussion of different methods (MHH, 

MAH and MAEH) used for bioethanol production from sago pith waste (Section 4.1 

and 4.2) and sago bark waste (Section 4.3). Results and discussion for the methods 

used in the Sections 3.4 about the corrosion of metals in bioethanol and gasoline 

blends is described in Sections 4.4. In addition, results and discussion for the 

methods used in Section 3.5 about the compatibility of materials in in biodiesel-

diesel-ethanol (BDE) blend are presented in Sections 4.5 and 4.6. Finally, the results 

and discussion for engine study is presented in Sections 4.7 and 4.8. 

Chapter 5 provides the conclusions and findings of the thesis, highlighting the 

most important findings of each section. The suggestions for the future work are also 

provided at the end of the thesis. 
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