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ABSTRACT

Integrated mathematical Navier-Stokes model for transportation of drug across 
the blood flow medium by partial differential equations (PDE) with one dimensional 
(1D) and two dimensional (2D) parabolic type in cylindrical coordinates system are 
considered. The process of magnetic nanoparticle drug delivery system is made 
measurable by identifying some parameter such as magnetic nanoparticle targeted 
delivery, blood flow, momentum transport, density and viscosity on drug release 
through blood medium, the intensity of magnetic fields, the radius of the capillary and 
controllability expression to control the concentration of blood. Finite difference 
method (FDM) with centre difference formula was used to discretization the 
mathematical model. This research focuses on two types of discretization controlled 
by weighted parameter 6 = 1 and 6 = -  which are implicit (IMP) and Crank Nicolson
(CN) schemes respectively. The implementation of several numerical iterative 
methods such as Alternating Group Explicit (AGE), Red Black Gauss Seidel (RBGS) 
and Jacobi (JB) method are used to solve the linear system equation (LSE) and is one 
of the contributions of this research. The sequential algorithm was developed by using 
C Microsoft Visual Studio 2010 Software. The numerical result was analysed based 
on execution time, number of iteration, maximum error, root mean square error, and 
computational complexity. The grid generation process involved fine grained of large 
sparse matrix by minimizing the size of interval, increasing the dimension of model 
and level of time steps. Parallel algorithm was proposed for increasing the speedup of 
computations and reducing computational complexity problem. The parallel 
algorithms for solution of large sparse systems were design and implemented 
supported by the distributed parallel computing system (DPCS) containing 8 
processors Intel CORE i3 CPUs employing the Parallel Virtual Machine (PVM) 
software. The parallel performance evaluation (PPE) in term of execution time, 
speedup, efficiency, effectiveness, temporal performance, granularity, computational 
complexity and communication cost were analysed for the performance of parallel 
algorithm. As a conclusion, the thesis proved that the 1D and 2D Navier-Stokes model 
is able to be parallelized and parallel AGE method is the alternative solution for the 
large sparse simulation. Based on numerical result and PPE, the parallel algorithm is 
able to reduce the execution time and computational complexity compared to the 
sequential algorithm.
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ABSTRAK

Navier-Stokes pemodelan matematik bersepadu bagi pengangkutan ubat
melalui aliran darah dengan menggunakan persamaan pembezaan separa (PDE)
dengan satu dimensi (1D) dan dua dimensi (2D), berjenis parabola dalam sistem
koordinat silinder dipertimbangkan. Proses nanopartikel magnet melalui sistem
peredaran ubat dalam aliran darah diukur dengan mengenal pasti beberapa parameter
seperti penghantaran nanopartikel magnet sasaran, aliran darah, pengangkutan
momentum, ketumpatan dan kelikatan bagi perlepasan ubat melalui pengantaraan
darah, keamatan medan magnet, jejari kapilari dan juga ungkapan pengawalan yang
mengawal kelikatan darah. Kaedah beza terhingga (FDM) dengan formula pembezaan
tengah telah digunakan untuk mendiskretasikan model matematik tersebut. Kajian ini
tertumpu kepada dua jenis pendiskretan yang dikawal oleh parameter pemberat 9 = 1 

1
dan 6 = -  yang melibatkan skim tersirat (IMP) dan skim Crank Nicolson (CN) secara
khususnya. Perlaksanaan beberapa kaedah berangka seperti Kelas Tak Tersirat 
Kumpulan Berarah Berselang-seli (AGE), Gauss Seidel Merah Hitam (RBGS) dan 
Kaedah Jacobi (JB) digunakan untuk menyelesaikan persamaan sistem linear (LSE) 
dan merupakan salah satu sumbangan dalam kajian ini. Algoritma berjujukan 
dibangunkan menggunakan perisisan C Microsoft Visual Studio 2010. Keputusan 
berangka dianalisis berdasarkan masa perlaksanaan, bilangan lelaran, ralat maksima, 
ralat punca min kuasa dua, dan kekompleksan pengiraan. Proses penjanaan grid yang 
dihaluskan lagi bagi matrik berskala besar dengan meminimumkan saiz selang ruang, 
meningkatkan dimensi model dan peringkat paras masa. Algoritma selari dicadangkan 
untuk meningkatkan kecepatan pengiraan dan mengurangkan masalah kekompleksan 
pengiraan. Algoritma selari bagi menyelesaikan masalah sistem yang berskala besar 
dirangkakan dan dilaksanakan serta disokong oleh sistem pengkomputeran selari 
teragih (DPCS) yang mengandungi 8 pemproses Intel CORE i3 CPUs menggunakan 
perisian Parallel Virtual Machine (PVM). Penilaian prestasi selari (PPE) berdasarkan 
masa pelaksanaan, kecepatan, kecekapan, keberkesanan, prestasi sementara, 
granulariti, kekompleksan pengiraan dan kos komunikasi dianalisis untuk menilai 
prestasi algoritma selari. Sebagai kesimpulan, kajian ini membuktikan pemodelan 
Navier-Stokes bagi 1D dan 2D dapat diselarikan dan kaedah selari AGE merupakan 
penyelesaian alternatif bagi simulasi berskala besar. Berdasarkan keputusan berangka 
dan PPE, algoritma selari dapat mengurangkan masa pelaksanaan dan kekompleksan 
pengiraan apabila dibandingkan dengan algoritma berjujukan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Nanotechnology is a general purpose technology because of its important 

effects that are related to most of the industries and people. Nanotechnology can be 

applied to many areas of research and development such as medicine, manufacturing, 

computing, textiles and cosmetics (Dutta, 2015). Nanotechnology is defined as 

‘engineering at a very small scale’ which is shown through a nanoparticle range from 

1 to 100 nanometers (nm) (Gupta, 2014). In others description, Figure 1.1 shows 

structure of nanoparticles with a range of structure size starting from 1 to 100 nm 

(Taylor et al, 2013).

Figure 1.1 Structure of Nanoparticle

In nanoparticle manufacturing, a variety of compositions can be achieved as it 

may have many practical applications in a variety of areas such as engineering and 

medicine. The nanoparticles of drug delivery and related to pharmaceutical
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development in the context of nanomedicine should be viewed as science and 

technology of nanometer scale complex systems. The nanoparticles that are created 

for drug delivery purposes are defined as small particles (< 100nm). This definition 

includes nanospheres which the drug is absorbed, dissolved or dispersed throughout 

the matrix; and nanocapsules in which the drugs are limited to an oily core that 

surrounded by the shell-like wall (Kreuter, 2004).

The nanoscale devices allow the chemotherapeutic drug to be discharged into 

the blood vessels, spreading out through the tissue and gaining access to the tumour 

cells location. Nowadays, drug delivery system is notable for its capabilities when 

compared to traditional delivery via bolus injection (Allen and Cullis, 2004). The 

structure of nanoparticle platforms for drug delivery is shown in Figure 1.2 (Schoonen 

and van Hest, 2014).

The potential of nanoparticles delivery systems provides chances to diversify 

the drug delivery approaches or therapeutic options in cancer disease treatment 

(Gabathuler, 2010). However, Timchack (2008) said that the drug delivery system is 

being designed to ensure an efficient therapy which meant that no harmful side effects 

for the body cells and therefore improving the patient life quality. In other words, there 

should be minimal damage inflicted to the healthy cells within the body while ensuring 

a good recovery progress.

Lifelong diseases such as cancers or tumour growths are common among 

people nowadays. Hence, more studies and researches are needed to be carried out so 

that the crucial effects of nanoparticles drug delivery systems can be understood more 

thoroughly. Drug delivery systems are recommended particularly as the alternatives

times and non-specific 
recognition

Figure 1.2 Structure of nanoparticle platforms for drug delivery
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in the form of nanoparticles in order to maintain the effectiveness of the new drugs 

that been developed which are more potent and more complex ever before. Magnetic 

nanoparticles platform has the ability to let the physicians detect and treat diseases 

such as cancer and cardiovascular disease more effectively than before (Baptista et al, 

2013).

The unique advantages of an external magnetic field control have achieved the 

purpose of targeted delivery because they can be remotely navigated to the intended 

site via application of an external magnetic field gradient. Magnetic therapy is widely 

used to assist in curing various diseases. The drug that possessed magnetic 

nanoparticles properties will be easier to be controlled by external magnetic field and 

it has potential therapeutic usage in the cancer cells as well as helps in controlling the 

blood pressure in the blood medium (Kumar and Mohammad, 2011). At stationary 

position, the transverse magnetic field is applied externally to a moving electrically 

conducting fluid where electrical currents are induced in the fluid. The interaction 

between these induced currents and the applied magnetic field produces body forces 

with a tendency to move slowly along with the movement of blood and bring the drug 

to the targeted cells (Sun et al, 2008).

Mathematical models have been developed in order to understand the process 

of magnetic nanoparticle drug delivery system. The development of mathematical 

model is to predict, design and control the movement of drug delivery through blood 

medium controlling by external magnetic fields. Parameters during the process can be 

range from very simple to complex in order to upgrade the quality of the system. Some 

authors in the area of blood flow feel that blood can be assumed as Newtonion in 

nature especially in large blood vessels. In Wang et al. (2014), the flow treatment of 

blood has been assumed to be Newtonian fluid and flow as laminar, incompressible, 

unsteady and the flow field is simulated by solving the Navier-Stokes equation.

Numerical methods are capable to solve a complex system of partial 

differential equation (PDE) which is almost impossible to be solved analytically. The 

Finite Element Method (FEM), Finite Volume Method (FVM) and Finite Difference 

Methods (FDM) are some alternative methods to solve the PDE (Peiro and Sherwin, 

2005). For other application of drug delivery system, the FDM and FEM have been
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widely used to solve the models (Siepmann, 2008; Palazzo et al, 2005; Dev et al, 

2003). However, the FDM scheme is chosen because this method is simple to 

formulate a set of discretized equations from the transport differential equations in a 

differential manner (Mitchell and Griffiths, 1980). Besides, this method is 

straightforward in determining the unknown values. Only a few researchers in 

magnetic nanoparticles drug delivery system solved the model using numerical 

methods. Thus, due to this reason, the mathematical Navier-Stokes model magnetic 

nanoparticles drug delivery system in this research is solved using FDM. Further 

details of FDM will be discussed in Chapter 2.

A large scale of system linear of equations is discretized from the FDM for 

simulation and visualization. However, one central processing unit (CPU) is not 

enough to compute the large computation. Therefore, the parallelization in solving 

the large scale of system linear of equations is great importance. The objective is to 

speed up the computation and increase the efficiency by using massively parallel 

computers. The domain problem is partitioned into subdomain or equal sized tasks. 

Then, the tasks are connected to each other local and global communication. Static 

mapping strategy is implemented because this research focuses on the distributed 

parallel computing architecture. Further detail to describe the parallel algorithm 

design methodology is discussed in Chapter 2.

The magnetic nanoparticle drug delivery system to treat the cancer cell 

problem is very interesting. Mishra et al (2008) has conducted the application of 

magnetic nanoparticle drug delivery system. However, from the existing work by 

Mishra et al (2008), this research implement the parallel algorithm of Navier-Stokes 

model in magnetic nanoparticle drug delivery system for 1D and 2D model. Thus, this 

research which involved a large scale matrix of the discretization model, a large sparse 

computational complexity, intensive large-scale parallel computing system and a huge 

memory space to support the simulation with a high-speed solution. All the numerical 

methods and parallel programming that are used in visualizing and observing the 

changing parameters of phase change simulation models run on Linux operating 

system by using distributed parallel computing system (DPCS). The parallel 

algorithms are programmed in C language while the communication software tool 

involves the use of Parallel Virtual Machines (PVM). The parallel performances are
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analysed in reference to the numerical result and parallel performances evaluation 

(PPE).

1.2 Problem Statement

Magnetic nanoparticle drug delivery system is closely related with 

biomechanical researchers due to its relationship with cancerous cell or tumour. Some 

problem statements will be explored and discussed through this research. Firstly, on 

how to model the mathematical modelling and illustrating the visualization of 

magnetic nanoparticles drug within its delivery to the specific targeted cell. The 

integrated mathematical modelling that uses Navier-Stokes model with continuity and 

momentum equations that are related to parameter changes is developed. Thereafter, 

the 1D and 2D model with parabolic type equations are solved by the weighted 

parameter central FDM in order to obtain the results. The discretized computational is 

conducted for 6 = 1 and 6 = -, which represent Implicit (IMP) and Crank Nicolson

(CN) schemes respectively. Dealing with nanoscale phenomena system with large 

sparse matrices. By applying some iterative numerical methods, the impact of domain 

decomposition techniques, message passing model and grid generation technique can 

be stimulated. Furthermore, the implementation of sequential and parallel algorithms 

on the PDE is generated by some numerical iterative methods such as Alternating 

Group Explicit (AGE), Red Black Gauss Seidel (RBGS) and Jacobi (JB). PPE will be 

conducted to measure the superiority of generate FDM schemes in solving the PDEs.

1.3 Objectives

The objectives of the study are:

1. To formulate and visualize the mathematical Navier-Stokes model for 

magnetic nanoparticles on the delivery of the drug through blood flow for 

cancer cell treatment.
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2. To discretize the mathematical models using weighted parameter central FDM 

involving a number of parameter changes for the large sparse data set.

3. To develop the sequential and parallel algorithms for the Navier-Stokes model 

based on three different numerical iterative methods; AGE, RBGS and JB.

4. To analyze the results of 1D and 2D based on the numerical results and PPE 

in solving the Navier-Stokes model.

1.4 Scope of Study

In real phenomenon, mathematics provides a broad foundation in each of these 

overlapping areas: pure mathematics, applied mathematics, and statistics. This 

research will focus on the mathematical modelling for drug delivery via magnetic 

nanoparticle system through the blood flow within the cancer cell treatment 

application by using PDE. The non Newtonian fluid in blood medium is derived from 

the theory that is based on Navier-Stokes model, which emphasizes on the continuity 

and momentum equation. The flow scope of the research in Figure 1.3 shows that this 

study is focused on the applied mathematics that deals with mathematical modelling 

PDE with parabolic type in order to predict the magnetic nanoparticles drug delivery 

system. The mathematical modelling involved the continuity and momentum equation 

with the initial and boundary conditions are made to be known. Controllability 

expression to control the concentration blood is also considered. The 1D and 2D 

problems are discretized by using the weighted parameter method. The numerical 

iterative methods that are being considered to be used in the comparison are AGE, 

RBGS and JB method. The mathematical modelling of the sequential and parallel 

algorithms are implemented to solve the problem of drug delivery for the purpose of 

dealing with the cancer cell. The approximate solution that uses COMSOL is utilized 

for 3D visualization, Matlab for the 1D and 2D visualization and the DPCS with the 

communication platform PVM and C programming is applied. The superior iterative
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method of FDM is being observed and utilized in the solution process of the Navier- 

Stokes model.

Figure 1.3 The scope of research.
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1.5 Significance of Study

The magnetic nanoparticles for the drug delivery model are significant in the 

process of developing the alternative numerical simulation for the treatment of the 

cancer cell growth. The application of nanoparticles is assumed to be the solution for 

early detection of tumour cell growth. The importance of the Navier-Stokes model in 

predicting and visualizing the parameters involved to deliver the magnetic 

nanoparticles towards the targeted cells. The implementation of the numerical iterative 

methods such as AGE, RBGS and JB methods are suitable to solve the 1D and 2D 

model. Besides, the simulation of large sparse matrix for the multidimensional models 

on DPCS will help reduce the execution time and increases the performance of 

speedup. In addition, the approximation result uses parallel computing which is a fast 

prediction of the movement of the magnetic nanoparticles through the blood medium. 

This medical practice is related to the evolution of biological systems in cancer cells 

treatment. Furthermore, this research is beneficial to the cancer patients and doctors 

who are working on the cancer diagnostics and cancer treatments through efficient 

stimulation and coordination.

1.6 Thesis Outline

The contents of this research can be divided into seven chapters which includes 

an introduction, literature review, mathematical modelling, implementation of the 

sequential algorithm, implementation of the parallel algorithm, result, discussion, and 

conclusion. Chapter 1 starts with a brief discussion on the introduction, problem 

formulating, research objectives, the scope of research, significance of study and the 

thesis outlines.

Chapter 2 focused on the review regarding the problem, solution of problem, 

methodology, computing platform and analysis. The discussion regarding the 

problems includes the cancer related issues, the growth of tumours and magnetic 

nanoparticles. The mathematical Navier-Stokes model on the magnetic nanoparticle
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drug delivery is portrayed as the solution to the problem. The mathematical modelling 

is used to deal with PDE with parabolic type. Some common methods that are used to 

solve this mathematical modelling are the formulation of FDM and weighted average 

parameter. The classical and advanced iterative methods are also being highlighted. 

Besides, the computational solution of the sequential and parallel algorithm with the 

use of common mathematical software and DPCS are also being studied. This chapter 

also includes the importance and purpose of mathematical modelling in predicting the 

magnetic nanoparticle drug delivery within the cancer cell treatment. Some important 

terms that are related to numerical analysis and PPE such as convergence, consistency, 

stability, speedup, efficiency, effectiveness, temporal performance and granularity are 

also discussed in the chapter.

The scope in Chapter 3 is focused on the integrated mathematical modelling 

that is based on the theory of Navier-Stokes model in the fluid dynamic for blood flow 

which are the mass (continuity) and momentum conservation equation for 1D and 2D 

model. The flow is expected to take place under the influence of externally applied 

magnetic field in the axial direction. The equation of continuity is integrated into each 

other together with the equation of momentum equation. The governing equations for 

1D and 2D are written in the cylindrical coordinate system (r, z, 0). Discretization by 

weighted parameter with the usage of the central FDM as well as LSE is also being 

discussed in this chapter. Finally, the presence of controllability expression is injected 

to 1D Navier-Stokes model due to control of the concentration of blood in capillary 

that influenced the magnetic nanoparticle drug delivery system will be developed.

The contribution of Chapter 4 is the development of sequential algorithms of 

the magnetic nanoparticle drug delivery model for 1D and 2D. The continuity and 

momentum equation will be solved using some numerical iterative methods. The 

numerical iterative methods mentioned are AGE (1D SAGE and 2D SAGE), RBGS 

(1D SRBGS and 2D SRBGS) and JB (1D SJB and 2D SJB) method. These numerical 

method are compared according to the execution times, number of iterations, 

maximum errors and root mean square errors (RMSE).

Chapter 5 convert the iterative methods are being presented in Chapter 4 into 

the parallel algorithms which aims to improve the time execution when dealing with
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large sparse matrix and nanoscale problem. The parallelization of the 

multidimensional equation will use the same numerical methods discussed in Chapter

4. The parallel algorithm is implemented on PVM with distributed memory within the 

message passing environment. The numerical methods are parallelized into 1D PAGE, 

2D PAGE, 1D PRBGS, 2D PRBGS, 1D PJB and 2D PJB. The performances are 

measured based on speedup, efficiency, effectiveness, temporal performance and 

granularity.

The numerical results and the PPE obtained from Chapter 4 and Chapter 5 are 

then discussed in Chapter 6. The visualization of the mathematical model is simulated 

by using Comsol Multiphysic in 3D simulation and Matlab R2013a stimulation for 1D 

and 2D mathematical model. To validate the results obtained, a comparison of the 

velocity of the blood and velocity of drug magnetic nanoparticle is made with Mishra 

et al. (2008) as a limiting case where it involved 1D model. Simulation of 

controllability expression in 1D mathematical modelling is simulated by using Matlab 

R2013a. The mathematical modelling which are related to Navier-Stokes magnetic 

nanoparticle drug delivery model of 1D and 2D model are analysed based on the 

numerical analysis and PPE by comparing between two type of schemes and three 

types of numerical iterative method.

Lastly, Chapter 7 draws on the conclusion of the thesis. Contributions are 

highlighted and further studies are suggested. An overview of the thesis research is 

described in Figure 1.4.
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