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ABSTRACT 

 

 

 

 

The increasing utilization of power electronics controlled devices in power 

system has increased distortion level in current and voltage waveforms in the form of 

harmonics. The increase in harmonic level also affects the performance of generator, 

thereby reducing its efficiency and lifespan. In this research, load harmonic mitigation 

method has been proposed for grid connected variable speed wind turbine generator 

using Shunt Active Power Filter (APF). The main advantage of this method is 

eliminating the effect of load harmonics from terminals of wind turbine generator and 

from the Point of Common Coupling (PCC). To evaluate the performance of shunt 

APF, two strategies have been utilized separately for extracting harmonic reference 

signal: the instantaneous reactive power method (pq method) and Synchronous 

Reference Frame (SRF) technique.  To prove the effectiveness of the proposed system, 

MATLAB simulations have been carried out on 120 kV grid connected Permanent 

Magnet Synchronous Generator (PMSG) based wind turbine. Furthermore, nonlinear 

load is also attached to PCC under fixed and variable wind speed between 8 to 12 m/s 

separately. For proper operation of APF, switching pulses have been produced by 

hysteresis band current control. This technique decreases the magnitude of Total 

Harmonic Distortion (THD) to an acceptable limit set by IEEE-519 standard for 

harmonic control. Results have also shown that the shunt APF with SRF technique 

yields better performance under fixed and fluctuating wind speed compared to pq 

method. 
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ABSTRAK 
 

 

 

 

Peningkatan penggunaan peranti terkawal elektronik kuasa dalam sistem kuasa 

telah meningkatkan tahap herotan gelombang arus dan voltan dalam bentuk harmonik. 

Peningkatan tahap harmonik juga akan mempengaruhi prestasi penjana, justeru akan 

mengurangkan kecekapan dan jangka hayatnya. Dalam kajian ini, satu kaedah 

memangkas harmonik beban telah dicadangkan untuk penjana turbin angin kelajuan 

boleh ubah sambungan ke grid menggunakan Penapis Kuasa Aktif Pirau (APF). 

Kelebihan utama kaedah ini ialah menghapuskan kesan harmonik beban daripada 

terminal penjana turbin angin dan juga Titik Gandingan Sepunya (PCC). Untuk 

menilai prestasi pirau APF, dua strategi telah diguna secara berasingan untuk 

penyarian isyarat rujukan harmonic: kaedah kuasa regangan ketika (kaedah pq) dan 

teknik Bingkai Rujukan Segerak (SRF). Bagi membuktikan keberkesanan sistem yang 

dicadangkan, penyelakuan MATLAB telah dijalankan ke atas Penjana Segerak 

Magnet Kekal (PMSG) turbin angin sambungan ke grid 120 kV. Selanjutnya beban 

tidak linear disambungkan ke PCC, dengan kelajuan angin tetap dan berubah secara 

berasingan di antara 8-12 m/s. Untuk penapis APF beroperasi dengan sewajarnya, 

denyutan pensuisan telah dihasilkan oleh kawalan semasa lingkaran histerisis. Teknik 

ini mengurangkan magnitud Jumlah Herotan Harmonik (THD) kepada had yang boleh 

diterima yang ditetapkan oleh piawaian IEEE-519 untuk kawalan harmonik. 

Keputusan juga menunjukkan bahawa APF pirau dengan teknik SRF mempunyai 

prestasi yang lebih baik di bawah kelajuan angin tetap dan angin membuai berbanding 

kaedah pq. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Background 

 

 

 Generation of electricity from renewable sources such as wind, solar and 

wave in current scenario is really essential since the demand of power is increasing 

promptly and sources of fossil fuels are restricted.  The non-conventional energy 

sources have significant contribution in power generation, the empathy and effective 

use of these sources is the plunge area in energy sector. Among all renewable 

sources, wind plays a dynamic role in energy generation.  The location of wind 

turbine is very significant as the power output of wind is proportional to cube of 

wind speed [1].  

 

 

The kinetic energy of air changed over into mechanical energy by windmill to 

directly operate a machine or to drive an alternator to generate electricity.  Wind 

energy makes for a dynamic part in creating ecological neighborly atmosphere and 

draws the world more helpful for societies and for every living beings.  Power for 

vast scale and small scale can be produced from wind turbines for utilities, 

commercial ventures, etc.  Since early 1980’s, the improvement of wind turbine 

energy, the rated capacity of wind turbines has expanded from a few several kW to 

today's MW turbines.  Simultaneously, the pattern has moved from establishments, 

including a solitary or a couple wind turbines to arranging of substantial wind farms 

running from a few many MW to more than 100 MW [1].  
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Energy produced from wind turbines on vast scale diminishes the energy 

crises and anxiety can be surrendered from different wellsprings of energy era. 

Unexpectedly, the numbers of potential problems that must be contemplated when 

raising vast scale wind energy ranches for a practical power network.  Installation 

and operation of wind farms network influence the living examples of the 

encompassing occupants, i.e., visual effects, clamor and demise of untamed life, etc. 

While combination of wind energy into the network likewise, makes potential 

specialized difficulties [1], that affect power quality (PQ) of the systems due to the 

variable nature of wind.  The key potential difficulties that influence power quality 

because of expanded dispersion of wind vitality into the matrix comprise of, voltage 

fluctuation, power system transients and harmonics, reactive power, electromagnetic 

interference, switching actions, synchronization, long transmission lines, low power 

factor, storage system, load management, forecasting and scheduling [2, 3].  

 

 

Power quality disturbances may be classified either between the quality of the 

supply voltage (source) or by the quality of the current drawn by the load.  Advanced 

power electronic devices extensively used to rapidly draw harmonic currents and 

reactive power from AC mains due to their inalienable nonlinear V-I characteristics 

[4]. Different issues created by harmonic in the power network, furthermore have 

impact on customer items, for example, abnormal voltage waveforms, apparatus 

overheating, blown capacitor wires, transformer overheating, neutral current 

increment, low power factor, etc. [5-8].  Such non-linear loads contaminate the 

system by infusing current harmonics thus, crumbling the utility voltage and have a 

fall in supply voltage and escalated losses at point of common coupling (PCC).  

Because of presence of these harmonic, the total harmonic distortion (THD) level of 

the system increments above the harmonic standard set by IEEE under IEEE-519.  

Moreover, it affects the performance and efficiency of generator by adding 

intensified losses and producing extra heat.  Thus, contributes to diminution of life 

span of generator [9].  

 

 

The situation calls for alleviation of current harmonics instabilities in the cast 

of “filter devices” which are dexterous enough to deliver made-to-measure solution 

to harmonic generation.  Generally as an Active Power Filter (APF), which is 

https://www.google.com/search?noj=1&q=define+contemplate&sa=X&ved=0CB8Q_SowAGoVChMIgteElLXVyAIVCMemCh3jlAHN


3 
 

employed for mitigating these harmonics and eventually enhancing power quality of 

the system.  APFs can likewise be connected to power system to supply 

compensation for harmonics, reactive power, and/or neutral current.  APFs can also 

be utilized to eradicate voltage harmonics, terminal voltage regulation, to suppress 

voltage flicker, and to improve three-phase balanced voltage [8].  APFs can be 

classified according to the type of compensation required.  On the basis of this 

criteria, APF can be categorized as voltage source APF and current source APF.  A 

voltage source APF has a capacitor on the DC side with a managed DC voltage, 

though a current source APF has an inductor with a regulated DC current. In spite of 

the fact that the voltage source type is better as far as filter capacity for elimination 

of PWM carrier harmonics and losses, the current source type is better regarding the 

compensating current dynamics and reliability and protection [10].  

 

 

 

 

1.2 Problem Statement 

 

 

 Different techniques have been used by the researchers in last decades to 

overcome the consequence of these harmonic contents and to supply consistent and 

sinusoidal power to the consumers which does not damage to their equipment. A. 

Prasad et al.,  [11] utilized passive filter to eliminate harmonics from the system, 

however passive filter have drawback that it only indemnify the system for under and 

over compensation.  H. Sasaki et al., [12] proposed active filter recognized as active 

power filter (APF) to minimize harmonic effects from the system. F. S. dos Reis et 

al., [13] applied APF to mitigate harmonics from permanent magnet synchronous 

generator (PMSG) based wind turbine generator (WTG) while in islanding mode 

with fixed wind speed (12 m/sec).  J. Tsai et al., [9] also proposed APF with its 

variable frequency operation under islanding mode of wind turbine system (WTS).  

A. Gaillard et al., [14] employed APF with doubly feed induction generator (DFIG) 

based fixed speed (8 m/sec) wind turbine to analyze the operational features of 

proposed system under the same islanding mode.  A. Hoseinpour et al., [15] put 

forward modified modulation technique for APF with PMSG WTG under islanding 

mode with fixed speed (8 m/sec).  All of them used different reference signal 

extraction techniques and modulation methods.  
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      In this research, APF is proposed to use with grid connected variable 

speed wind turbine system to analyze the effectiveness of proposed system.  Under 

this study, effect of wind turbine at point of common coupling (PCC) under varying 

nature of wind speed will be investigated.  Furthermore, the effect of nonlinear load 

connected at PCC and on the wind generator, considering profile of total harmonic 

distortion (THD) level is the ultimate interest of this research.  At the end, the 

effective solicitation of the proposed methodology will eventually function under 

international standard of harmonic control i.e. IEEE-519 with improved efficiency.       

 

 

 

 

1.3 Objectives  

 

 

The objectives of research are listed below, 

(i)         To develop MATLAB Simulink model for grid connected wind turbine 

 generator based on permanent magnet synchronous generator (PMSG) 

 subject to presence of harmonic with nonlinear loads. 

(ii)         To design PI controller based APF to tackle harmonic problems in the   

   proposed system under unbalanced nonlinear loads.  

(iii)       To investigate APF with instantaneous reactive power technique (pq 

 technique) and synchronous reference frame (SRF) technique to get similar or 

 better results in accordance with IEEE-519 standard under fixed and

 fluctuating wind speed. 
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1.4 Scope  

 

 

The scope of this research study will be as follow, 

 

(i)        PMSG based wind turbine will be used in this study with 120 kV grid 

 system. The prevailing load situation in grid connected wind turbine, 

 especially effect of non-linear load will be studied.  

(ii)        The proposed system will be studied under fixed (8 m/sec) and variable wind

 speeds (8-12 m/sec) for maximum power extraction from wind turbine. 

(iii)        The system design will be based on variable frequency shunt active power 

    filter and PI controller. 

(iv)         MATLAB/Simulink software will be used to develop and test the       

   proposed system model. 

(v)         Simulation results will be analyzed on the basis of control methods (SRF  

   and pq technique), to determine which method is more suitable for the    

   proposed case study. 

 

 

 

 

1.5 Significance of Study 

 

The significance of this research study is as follow, 

 

(i)       Describe viability of APF from practical applicability view-point using 

proportional integral (PI) controller under frequently faced load conditions 

and regularly experienced fault conditions and system being researched on 
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are set aside, as they may be  more prone to failing as well as more difficult 

for maintenance if put into practice. 

 

(ii)       Develop the integration principles of APF, based on instantaneous 

reactive power theory and synchronous reference frame technique, directly 

calculated from three phase a-b-c voltages and line currents using αβ0 and d-

q reference frame respectively. 

 

 

 

 

1.6 Organization of Thesis 

 

 

The thesis is organized in a manner that Chapter 1 briefly describes 

the introduction of studied system, Chapter 2 providing an up-to-date 

literature review, Chapter 3 outlining proposed methodology while Chapter 4 

representing results of the studied system and in the last Chapter 5 

symbolizing conclusion and future recommendations.    
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