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ABSTRACT 

Many works highlight the use of effective parameters in Tunnel Boring 

Machine (TBM) performance predictive models. However, there is a lack of study 

considering the effects of tropically weathered rock mass in these models.  This 

research aims to develop several models for predicting Penetration Rate (PR) and 

Advance Rate (AR) of TBMs in fresh, slightly weathered and moderately weathered 

zones in granite. To achieve these objectives, an extensive study on 12,649 m of the 

Pahang- Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was carried out.  

The most influential parameters on TBM performance in terms of rock (mass and 

material) properties and machine specifications were investigated. A database 

consisting the tunnel length of 5,443 m, 5,530 m and 1,676 m representing fresh, 

slightly weathered and moderately weathered zones, respectively was analysed. 

Based on field mapping and laboratory study, a considerable difference of rock mass 

and material characteristics has been observed.  In order to demonstrate the need for 

developing new models for prediction of TBM performance, two empirical models 

namely QTBM and Rock Mass Excavatability (RME) were analysed.  It was found that 

empirical models could not predict TBM performance of various weathering zones 

satisfactorily.  Then, multiple regression (i.e. linear and non-linear) analyses were 

applied to develop new equations for estimating PR and AR.  The performance 

capacity of the multiple regression models could be increased in the mentioned 

weathering states with overall coefficient of determination (R2) of 0.6.  Furthermore, 

two hybrid intelligent systems (i.e. combination of artificial neural network with 

particle swarm optimisation and imperialism competitive algorithm) were developed 

as new techniques in field of TBM performance. By incorporating weathering state 

as input parameter in hybrid intelligent systems, performance capacity of these 

models can be significantly improved (R2 = 0.9).  With a newly-proposed systems, 

the results demonstrate superiority of these models in predicting TBM performance 

in tropically weathered granite compared to other existing and proposed techniques.   
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ABSTRAK 

Pengaruh iklim tropika panas lembab mengakibatkan kesan luluhawa yang 

berbeza sifat jasad batuannya dengan kebanyakan model menilai jangka prestasi 

mesin pengorekan terowong (TBM) sedia ada. Kajian ini bertujuan membangunkan 

beberapa model untuk menilai jangka Kadar Penembusan (PR) dan Kadar Kemajuan 

Pengorekan (AR) TBM terbaru dalam zon luluhawa tropika rencam batuan granit. 

Bagi mencapai objektif ini, kajian yang menyeluruh terhadap prestasi pengorekan 

terowong Penyaluran Air Mentah Pahang-Selangor sepanjang 12,649 m telah 

dijalankan. Parameter  jasad dan bahan batuan yang berpengaruh terhadap prestasi 

TBM telah dikaji di lapangan dan makmal. Di samping itu, prestasi TBM juga telah 

direkodkan pada sela panjang terowong tertentu. Analisa terhadap prestasi 

pengorekan terowong sepanjang 5443 m, 5530 m dan 1676 m yang dikategorikan 

sebagai zon segar, sedikit terluluhawa dan sederhana terluluhawa telah dilaksanakan. 

Hasil daripada kajian lapangan dan makmal, mendapati bahawa terdapat pengaruh 

luluhawa terhadap prestasi PR dan AR adalah signifikan. Keputusan menilai jangka 

prestasi TBM melalui dua model empirikal iaitu QTBM dan Rock Mass Excavatability 

(RME) didapati kurang memuaskan bila dibanding dengan prestasi sebenar TBM. Di 

samping itu, penilaian jangka TBM juga telah diuji dengan kaedah regresi linear dan 

tidak linear. Hasilnya, mendapati model empirik juga tidak dapat menilai jangka 

prestasi TBM dalam zon luluhawa tropika rencam dengan memuaskan. Dengan 

analisis regresi berganda, keupayaan prestasi model menilai jangka prestasi TBM 

dipertingkatkan dengan pekali tentuan (R2) 0.6. Menyedari tentang kepentingan 

jangkaan yang lebih jitu, sistem hibrid pintar yang menggabungkan rangkaian neural 

tiruan dengan pengoptimuman (PSO) dan algoritma kompetitif imperialisme (ICA) 

telah dibangunkan bagi tujuan menilai jangka AR dan PR untuk prestasi TBM. 

Berdasarkan keputusan di lapangan dan analisis makmal tentang pengaruh luluhawa 

terhadap prestasi TBM, tahap luluhawa tropika telah digabungkan sebagai parameter 

input dalam sistem pintar hybrid. Melalui pendekatan dan pembangunan model ini, 

tahap keboleh nilai jangka prestasi TBM dalam batuan granit terluluhawa tropika 

telah dapat dipertingkatkan dengan signifikan (R2 = 0.9) berbanding dengan model 

terdahulu.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study  

The tunnel boring machine (TBM) which has been developed in recent 

decades, is a machine that is designed to excavate a safer and more economical 

tunnels.  This method has become a standard technique for excavation of tunnels 

with lengths over 1.5–2 km (Hassanpour et al., 2011).  The use of TBMs in 

construction of civil and mining projects, is controlled by several factors such as 

economic considerations and schedule deadlines (Girmscheid and Schexnayder, 

2003).  This machine has been extensively-utilised in different ground conditions 

ranging from hard and massive to broken and blocky grounds.   

Since James S. Robbins constructed the first TBM in 1954, many 

improvements have been made on the TBM design to be applicable to ever-wider 

ranges of rock conditions at higher performances.  These changes have led to the 

improvement of more powerful and efficient TBMs that can be effectively employed 

in a variety of rocks, from those that are very hard to those that are soft.  One of the 

challenging issues is predicting the performance of TBM in difficult rock mass.  

Geological documentation provides valuable information about the geological 

conditions ahead of the tunnel face and the response of the rock mass to excavation 

progress.  Rock mass weathering, strength, geological structures and other conditions 

affect TBM performance in tunnelling project.  Prediction of TBM performance is a 

critical task for planning the tunnel projects and selecting the suitable construction 
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methods.  It can decrease the risks related to high capital costs, which are very 

common for the tunnel excavation (Yagiz, 2002; Yagiz et al., 2009). 

Many classifications and models have been developed for estimation of TBM 

performance.  To estimate penetration rate (PR) and advance rate (AR), Barton 

(1999) developed QTBM model based on Q-system (Barton et al., 1974).  QTBM has 

additional parameters to the existing Q-system in order to be utilised for TBM 

applications.  In addition, rock mass excavatability (RME) was proposed by 

Bieniawski et al. (2006) to predict AR.  The development of RME index was 

according to the case histories that have been gathered from more than 400 tunnel 

sections.  This index has been already updated many times (Bieniawski, 2007; 

Bieniawski et al., 2006, 2007, 2008).  These models (QTBM and RME) have been 

applied by several researchers to predict TBM performance in their case studies.  

Goel (2008) found that the actual TBM performance parameters are less than the 

estimated values obtained by QTBM and RME models.  In addition, Palmstrom and 

Broch (2006) mentioned that QTBM is a complex model and cannot be utilised in its 

current form.  As a result, empirical models could not perform well in predicting 

TBM performance.   

Apart from empirical models, in order to propose more accurate models, 

statistical methods have been utilised by various scholars considering rock mass and 

material properties and machine characteristics (e.g. Yagiz, 2008; Khademi Hamidi 

et al., 2010; Hassanpour et al., 2011; Oraee et al., 2012; Mahdevari et al., 2014).  

However, several scholars mentioned that these methods are not always robust 

enough to describe nonlinear and complex problems and their performance capacities 

are poor in the presence of outliers and extreme values in the data.  Besides, the use 

of artificial intelligence (AI) techniques such as artificial neural network (ANN) in 

solving geotechnical problems, especially in the field of tunnelling was underlined in 

many studies (e.g. Benardos and Kaliampakos, 2004; Alvarez Grima et al., 2000; 

Yagiz and Karahan, 2011; Eftekhari et al., 2010; Salimi and Esmaeili, 2013).  It is 

due to the fact that such predictive models take advantage of flexible nature where 

the models can be easily calibrated when new data becomes available. This 

advantage makes them powerful tools in solving engineering problem more 
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specifically when the problem are highly nonlinear and the contact natures between 

input and output parameters are unknown (Garret, 1994).  As reported by many 

researchers, AI techniques can provide higher performance capacity in predicting 

TBM performance compared to statistical and conventional methods.   

1.2 Problem Statement  

The prediction of TBM performance is one of the complex tasks encountered 

frequently in mechanised tunnel excavations.  Many years after manufacturing the 

first TBM, different predictive models have been proposed based on both intact and 

mass rock properties, as well as machine specifications.  For selecting the most 

suitable economic tunnelling methods, it is very important to provide an accurate 

prediction of TBM performance.  According to many researchers (e.g. Alvarez 

Grima et al., 2000; Sapigni et al., 2002; Yagiz, 2008; Maidl et al., 2012), TBM 

performance is dependent on the rock material and mass properties as well as  

machine specifications.  Several preliminary studies have been conducted to propose 

predictive models for TBM performance mainly on the basis of one or two rock 

(mass and material) parameters and machine specifications such as uniaxial 

compressive strength (UCS), Schmidt hammer rebound value (Rn), joint condition 

and average cutter force (e.g. Roxborough and Phillips, 1975; Tarkoy and Hendron, 

1975; Graham, 1976; Farmer and Glossop, 1980; Sanio, 1985; Sato et al., 1991).  

Aside from this, many methods and classifications have been developed to predict 

TBM performance using multiple factors of rock (material and mass) and machine 

specifications (e.g. Hughes, 1986; Rostami and Ozdemir, 1993; Bruland, 1998; 

Barton, 1999; Bieniawski et al., 2008; Yagiz et al., 2009; Khademi Hamidi et al., 

2010; Farrokh et al., 2012; Delisio et al., 2013; Mahdevari et al., 2014).  Most of the 

effective parameters (as mentioned by many researchers) on TBM performance such 

as  compressive and tensile strengths, plane of rock mass weakness, joint condition, 

cutter specifications, specific energy and cutterhead torque have been considered as 

predictors in these methods and classifications.  As a result, these 

models/classifications cannot perform well in predicting TBM performance.  This is 

due to the reason that all influential factors (i.e. rock mass, rock material and 
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machine specifications) on TBM performance have not been employed in these 

models/classifications.  

 As highlighted by many researchers, weathering has an enormous impact on 

TBM performance.  While there is an extensive literature exploring the use of 

influential factors on TBM performance, there is a lack of study considering the 

effect of rock mass weathering in TBM performance predictive models.  Benardos 

and Kaliampakos (2004) predicted AR of Athens Metro tunnel, in Greece.  They 

introduced and used rock mass weathering as one of the predictors in their predictive 

model.   

To the best of author’s knowledge, only one study has been focused on 

tropically weathered granite which is carried out by Gong and Zhao (2009).  They 

estimated rock mass boreability of deep tunnel sewerage system (DTSS) project in 

Singapore.  Therefore, as far as the author knows, there is no study focusing on 

tropically weathered granite for developing the new models/techniques for TBM 

performance prediction.  Hence, proposing TBM performance predictive models for 

different mass weathering zones is of advantage.  Harvesting from the above 

discussion, this study attempts to propose new models for predicting TBM 

performance of Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in different 

rock mass weathering zones. 

1.3 Aim and Objectives of the Study 

The performance analysis of the TBM and the development of more accurate 

assessment models for prediction of TBM performance is the ultimate aim in TBM 

tunnelling research works.  Considering rock mass and material parameters as well as 

machine specifications, this study aims to predict TBM performance (in terms of 

penetration rate and advance rate) in tropically weathered granite using empirical, 

statistical and intelligent approaches.  This aim is achieved through the following 

objectives:  
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1. To determine the rock (mass and material) properties and machine 

characteristics influencing penetration and advance rate of TBM 

2. To examine empirical models namely RME and QTBM in predicting TBM 

performance of different rock mass weathering zones 

3. To propose statistical models for estimating penetration and advance rate of 

TBM in different rock mass weathering zones based on rock mass and 

material properties and machine characteristics 

4. To develop intelligent models for predicting penetration and advance rate of 

TBM in different rock mass weathering zones based on rock mass and 

material properties and machine characteristics 

1.4 Significance of the Study 

The prediction of TBM performance in a specified rock mass is a 

longstanding research topic. TBM performance has a major impact on tunnel 

completion time and cost.  To plan the tunnel projects and select proper construction 

methods, there is a need to estimate TBM performance parameters with high degree 

of accuracy.  Due to existing complex interaction between rock mass and TBM, 

prediction of TBM performance is too difficult theoretically.  Therefore, developing 

more accurate predictive models of TBM performance is of advantage.  Models with 

higher capability in estimating TBM performance can help designers to construct 

TBMs with different performance capacities.  This issue will be highlighted when 

TBMs face various ground conditions.  Results of this study can be utilised to design 

TBMs (with various capacities) in different mass weathering zones (from fresh to 

moderately weathered).  Furthermore, they can be used to estimate project 

construction time with minimum error in tropical areas.  
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1.5 Study Area  

The PSRWT tunnel project is located in central area of Peninsula Malaysia 

and has been proposed for transferring raw water (1890 million litre/day) from 

Pahang state to Selangor state.  This project aims to address appropriately the future 

water demand shortfalls in Selangor and Kuala Lumpur states.  The Pahang State that 

is located in the east of Selangor State and possesses abundant water resources in 

comparison with their local demand and it possesses adequate reserve for the 

interstate transfer.  The tunnel project is owned by Malaysian Ministry of Energy, 

Green Technology, and Water (KeTTHA).  The location of PSRWT tunnel project is 

shown in Figure 1.1.   

 

Figure 1.1 Location of PSRWT tunnel project 

PSRWT tunnel is crossing under the Main Range between Pahang and 

Selangor states.  This mountain range forming the backbone of Peninsular Malaysia 

has a general elevation ranging from 100 m to 1400 m.  The main rock type is granite 

with typical intact rock strength of 100 MPa to 200 MPa.  The tunnel is 44.6 km in 

length with diameter of 5.23 m and a longitudinal gradient of 1/1,900.  The tunnel is 

designed to operate under free flow conditions with a maximum discharge flow of 

27.6 m3/sec of raw water.  
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Tunnel excavation primarily is planned using TBM for 34.74 km long the 

main tunnel route, while the remaining tunnel portions including access work adits 

are excavated by conventional drill and blast method.  Three TBM sections and four 

conventional drill and blast sections were planned to be excavated in PSRWT tunnel 

project. The mentioned TBMs were used to excavate various ground conditions in 

different mass weathering zones from fresh to moderately weathered.  In PSRWT 

tunnel project, mixed ground (11,761 m), very hard ground (11,761 m) and blocky 

ground (11,218 m) were excavated by TBM 1, TBM 2 and TBM 3, respectively.  

Table 1.1 shows chainage and overburden details of three TBMs in PSRWT tunnel 

project.  Based on this table, minimum and maximum overburden values exist in 

TBM 3 and TBM 2, respectively.  

Table 1.1: Chainage and overburden details of TBMs in PSRWT tunnel 

Section 
Chainage (m)  Overburden (m) 

From To  Min Max 

TBM 1 6821 18582  260 1240 

TBM 2 18582 30343  194 1390 

TBM 3 30343 41561  110 490 

All 6821 41561  110 1390 

From 34,740 m of PSRWT tunnel which was excavated by TBMs, a total 

12,649 m comprising of 5,443 m in fresh, 5,530 m in slightly weathered and 1,676 m 

in moderately weathered zones, was investigated.  Rock (mass and material) 

properties and machine characteristics of the mentioned tunnel distances (TDs) were 

recognised and used to develop some new models for predicting TBM performance 

of different mass weathering zones (from fresh to moderately weathered).  

1.6 Limitation of the Study 

This study has some limitations which are discussed here.  As mentioned 

before, this study aims to predict hard rock TBM performance namely penetration 

rate and advance rate using as-built data obtained from PSRWT tunnel in different 
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rock mass weathering zones.  Since three rock mass weathering zones ranging from 

fresh to moderately weathered were observed in PSRWT tunnel, it is obvious that the 

developed models in this study should be used in the above mentioned rock mass 

weathering zones.  Hence, applying the proposed TBM performance predictive 

models for other mass weathering zones (highly weathered, completely weathered 

and residual soil) is not suggested in the present form.  Another limitation of this 

study is related to type of rock.  As mentioned earlier, the main rock type in PSRWT 

tunnel is granite which forms the Main Range granite.  Due to the difference in the 

nature of rock, the models/equations proposed in this study, should be used only in 

the case of tropically weathered granite.  It is worth noting that the proposed TBM 

performance predictive models are open to further development by other researchers. 

1.7 Definition of Key Terms  

In this section, the definition of key terms used in this research is explained. 

This study mainly involves different concepts such as TBM, TBM performance 

parameters, weathering, statistical models and artificial intelligence techniques.  

1.7.1 Tunnel Boring Machine 

A  TBM is a machine used to excavate tunnels with a circular cross section 

through a variety of soil and rock strata. TBMs can bore through anything from hard 

rock to soil.  

1.7.2 TBM Performance Parameters 

TBM performance is commonly measured in terms of utilisation index (UI), 

penetration rate (PR, the rate of TBM penetration during boring times) and the 

advance rate (AR, the rate of TBM progress during a work time period).   

http://en.wikipedia.org/wiki/Tunnel
http://en.wikipedia.org/wiki/Stratum
http://en.wikipedia.org/wiki/Boring_(earth)
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1.7.3 Weathering 

Weathering is the breaking down of the soil, rock and minerals  contact with 

the earth's atmosphere, biota and waters.  In case of rock, weathering is composed of 

both decomposition and disintegration.  Decomposition weathering refers to changes 

in rock produced by chemical agents such as hydration, oxidation and carbonation.  

Disintegration is the result of environmental conditions such as wetting and drying, 

freezing and thawing that break down the exposed surface layer.  According to 

International Society of Rock Mechanics (ISRM) (2007), a typical rock weathering 

profile is composed of 6 weathering grades namely fresh, slightly weathered, 

moderately weathered, highly weathered, completely weathered and residual soil. 

1.7.4  Statistical Models  

Statistical models can be used to recognise the relationships between 

independent (predictor) and dependent (output) variables.  In cases where more than 

one independent variable exists, these models may be employed in order to achieve 

the best-fit equation (Khandelwal and Monjezi, 2013).   

1.7.5 Artificial Intelligence Systems 

Artificial intelligence systems are information processing patterns designed 

based on the simulation of the biological nervous systems.  They are used for 

predicting existing function from the actual data.  It means that they are flexible non-

linear function approximation that are capable of figuring out relationships between 

predictors and output parameters.   

 

 

http://en.wikipedia.org/wiki/Soil
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Biota_(ecology)
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tropical areas. In addition, other researchers can use the procedures employed in this 

study for other rock types such as sandstone and shale in weathered rock mass. 

As artificial intelligence systems are a simplified mathematical model inspired 

by the biological structure, they can be extensively-used in the field of engineering 

problems.   The results of this study can be expanded by future research projects using 

newly-developed intelligent models such as genetic programming and combination of 

ICA and fuzzy model to predict PR and AR of TBM with higher performance capacity 

compared to developed models in this study.  
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