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ABSTRACT 

Kenaf fibers generally has some advantages such as eco-friendly, 

biodegradability, renewable nature and lighter than synthetic fibers. However, their 

mechanical properties are lower than synthetic fibers. Hybridization of bio-fiber with 

a synthetic fiber could improve the mechanical properties of composites.  The aims 

of the study are to characterize and evaluate the properties of kenaf fiber composites 

and its hybridizations with glass fiber and also to investigate the performance of bio-

composite as the strengthening plate for structural applications. The study was 

conducted in three stages. Firstly, the raw materials and composites were developed 

by conducting laboratory tests on physical and mechanical properties. The properties 

and the effects of different conditions of alkaline treatment on the properties of kenaf 

fibers were studied due to the various alkaline treatment conditions. Besides, the 

scanning electron microscopy was employed to observe the specimens appearance, 

fracture area and fiber diameter. The tensile properties of glass fiber composites, 

kenaf fiber composites and hybrid kenaf/glass fiber composites were determined 

with various fiber volume contents. The second stage was the application of 

composite materials as strengthening plate in reinforced concrete beams and 

subjected to flexural test under the four points loading system until failure. Fifteen 

beam specimens were prepared and tested for the study. The third stage was 

analytical investigations and theoretical development of the properties of composites 

and performance of strengthened reinforced concrete (RC) beams. According to the 

results of this study, the average diameter, the density and tensile strength of kenaf 

fiber were 67.6 μm, 1.2 g/cm
3
 and 780 MPa, respectively. Meanwhile, the tensile 

strength of hybrid kenaf/glass bio-composites exhibited almost equivalence to the 

glass fiber composites and also the highest strain energy density among the 

composites in the same value of fiber content.  It was observed that increasing the 

glass fiber fraction more than 10% in hybrid composite caused the reduction in the 

ultimate tensile strain. For the hybrid bio-composites, debonding between the kenaf 

and glass layers caused the failure of composites. The flexural tests of RC beams 

showed the equivalent performance of the hybrid kenaf/glass bio-composite and the 

glass fiber composite strengthening plates. An analytical investigation has validated 

that the rule of mixture (ROM) could predict reasonably the elastic modulus of 

composites. The analytical model of this study based on the nonlinear stress–strain 

curve of concrete predicted well the moment capacity of RC beams as compared to 

the ACI 440.2R guideline. Therefore, this model was proposed in order to establish 

the analytical formulations for RC beams strengthened with the composites plates. 
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ABSTRAK 

Kebaikan gentian kenaf adalah kerana sifat-sifat yang mesra alam, kebolehan 

biodegradasi, boleh diperbaharui secara penanaman semula dan ringan berbanding 

dengan gentian sintetik. Walaubagaimanapun sifat-sifat mekanikal gentian kenaf 

adalah lebih rendah berbanding dengan gentian sintetik. Keadaan ini boleh 

dipertingkatkan dengan melaksanakan penghibridan gentian asli dengan gentian 

sintetik. Oleh itu, tujuan kajian ini adalah untuk mencirikan dan menilai sifat-sifat 

komposit gentian Kenaf dan penghibridannya dengan gentian kaca, dan juga untuk 

mengkaji prestasi bio-komposit sebagai plat pengukuh untuk aplikasi struktur. Kajian 

ini telah dijalankan dalam tiga peringkat. Di peringkat pertama, bahan-bahan mentah 

dan komposit telah dikaji dan dibangunkan melalui pengujian makmal ke atas sifat-

sifat fizikal dan mekanikal. Ciri-ciri dan kesan rawatan alkali yang berbeza atas sifat-

sifat gentian Kenaf juga telah dikaji. Selain itu, mikroskop elektron pengimbas telah 

digunakan untuk memerhatikan penampilan spesimen, kawasan patah, diameter 

gentian, dan ciri-ciri lain yang boleh diperhatikan. Sifat tegangan komposit gentian 

kaca, komposit gentian Kenaf, dan hibrid komposit gentian Kenaf/kaca telah 

ditentukan mengikut kandungan jumlah gentian yang berbeza. Peringkat kedua 

adalah untuk mengkaji penggunaan bahan komposit sebagai plat pengukuh dalam 

rasuk konkrit bertetulang melalui ujian lenturan berasaskan sistem pembebanan 

empat titik sehingga mencapai tahap gagal. Sebanyak 15 spesimen rasuk telah 

disediakan dan diuji untuk kajian ini. Peringkat ketiga melibatkan proses analisis dan 

pembangunan teori sifat-sifat komposit dan prestasi kekukuhan rasuk konkrit 

tetulang. Keputusan menunjukkan bahawa diameter purata gentian Kenaf adalah 67.6 

μm, ketumpatan ialah 1.2 g/cm
3
, dan kekuatan tegangan adalah 780 MPa. Kekuatan 

tegangan hibrid Kenaf/kaca bio-komposit telah didapati setara dengan komposit 

gentian kaca dan juga didapati bahawa ia mempunyai ketumpatan tenaga terikan 

tertinggi di kalangan komposit dengan kandungan gentian yang sama. Malahan, 

penambahan kuantiti gentian kaca melebihi 10% dalam gentian hibrid juga didapati 

telah mengurangkan terikan tegangan muktamad. Bagi bio-komposit hibrid, rekahan 

antara lapisan Kenaf dan lapisan kaca dalam komposit adalah ciri kegagalan yang 

paling ketara di bawah beban muktamad. Hasil ujian lenturan untuk kedua-dua  bio-

komposit hibrid kenaf/kaca dan plat pengukuh gentian kaca adalah didapati setara. 

Kajian analisis secara teori telah mengesahkan bahawa model “rule of mixture” 

berkebolehan meramalkan nilai modulus keanjalan komposit dengan munasabah. 

Berdasarkan lengkung tegasan-terikan tak linear, model analisis kajian ini juga boleh 

meramalkan keupayaan momen bagi rasuk konkrit dengan lebih baik berbanding 

dengan garis panduan ACI 440.2R. Oleh itu model ini adalah sesuai disyorkan 

sebagai model teori untuk membangunkan rumusan analisis rasuk konkrit yang 

diperkukuhkan dengan plat komposit. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

According to environmental concerns and financial problems, natural fibers 

have become interesting and fascinating nowadays to be used as an industrial 

material such as sport equipment, automotive application and construction material 

for structural and non-structural elements [1-4]. Bio-fibers offer several advantages 

including high specific strength and modulus, low density, renewable nature, 

biodegradability, absence of associated health hazards and so on. All natural fibers 

are cellulosic in texture and composed of cellulose, hemicellulose, lignin and pectin. 

The major ingredients of natural fibers are cellulose and lignin. Cellulose is a semi 

crystalline polysaccharide hydrophilic component consisting of a linear chain of 

anhydroglucose units, which contain alcoholic hydroxyl groups. So, all natural fibers 

are hydrophilic in nature [5-7]. Therefore, fiber-matrix interface adhesion is the most 

significant parameter in the properties of composites. One of the important issues of 

natural fiber is the hydrophilic property of cellulose which impacts the weak 

interface bonding with hydrophobic polymer as a matrix.  Chemical surface 

modifications methods of natural fiber are well documented in literature include 

alkaline treatment, acidity treatment, coupling agents and, etc. 

Using natural fibers in polymer composites has become interesting because of 

the advantages of renewable fiber source, biodegradability and sustainability. 

However, an important drawback of natural fibers is the low mechanical properties in 

comparison to man-made fibers that this issue prevents to use bio fiber as a qualified 
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material for using as load carrying materials and structural elements [8]. Therefore, 

for enhancing the mechanical properties of natural fiber composites, man-made fiber, 

e. g. glass fiber, is used as hybridize the composites [9]. This study is conducted to 

investigate the characteristics of kenaf-glass fiber hybrid composites and its potential 

use as the structural elements.  

1.2 Background of the study 

All vegetable fibers are cellulosic in nature and composed of cellulose, 

hemicellulose, lignin and pectin. So, all natural fibers are hydrophilic in nature [5-7]. 

Lignin is an untidy, cross-linked polymer which gives rigidity to fiber [10]. 

Generally, the mechanical properties of natural fibers like kenaf, hemp, flax 

and jute lower than that of E-glass fiber commonly used in composites but the 

density of E-glass is high, ~2.5 g/cm
3
, while that of natural fibers is much lower 

(~1.2 to1.5 g/cm
3
). So, The specific strength and specific moduli of some of these 

natural fibers are quite comparable to glass fibers [7, 11]. 

Several different initial retting methods were reported [7] that alkaline 

treatment (mercerization) is a well-known chemical treatment of surface 

modification of natural fiber for making natural fiber reinforced polymer. This 

treatment removes lignin, hemicellulose, wax and oils covering the surface of the 

fiber [12].  

Due to particular character of kenaf fiber and its benefit to environment, 

using of kenaf fiber reinforced polymer composite is increased. The performance of 

materials is always presented in terms of their mechanical characteristics, such as 

tensile properties, flexural properties, compression properties, impact properties and 

wears behavior [13]. These features are significant to determine material ability, 

especially under extreme and critical situations. Recently, many studies have been 

completed on kenaf fiber reinforced polymer composites; with the purpose of totally 

characterize its mechanical behavior [14-17]. Generally, the tensile and flexural 
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properties of kenaf fiber reinforced polymer composites, differ depending on the 

variety of fiber, fiber aspect ratio, treatment method, its orientation (random or 

arrangement), fiber volume content and form (fiber or fabric), type of polymer used, 

curing method and also the quality of fabricating. 

However, an important drawback of natural fibers is the low mechanical 

properties in comparison to man-made fibers that this issue prevents to use bio fiber 

as a qualified material for using as load carrying material and structural element [8]. 

So, for enhancing the mechanical properties of natural fiber composites, man-made 

fiber, e. g. glass fiber, is used as hybridize the composites [9]. There are a lot of 

reports done by scientists about making hybrid composite to prove the natural fiber 

composite properties such as oil palm fiber, jute, sisal, ramie and etc. [8, 9, 18, 19]. 

1.3 Problem statement  

Fiber reinforced polymer composites (FRPs) are being used widely in all 

industrial aspects that each FRP contains two major parts include polymer matrix and 

reinforced fiber. Common thermoset polymers such as epoxy, polyester and vinyl 

ester and common fibers such as carbon, aramid and glass fiber are synthetic 

materials which are not sustainable to environment due to high energy consumption 

during process, long time remaining in environment, high smoke emission; on the 

other side, the green material especially bio-based materials which are made by plant 

not only does not have any impact to environment but also help to save the nature. 

Therefore, scientists are attempting to get green composite materials by using of bio-

fiber (natural fiber) named bio-composites. Kenaf fiber is one of natural fibers which 

is cultivated a lot in Malaysia and could be the main nominee for bio-composite as 

reinforcing fiber. Indeed, characterization of this fiber is the most important subject.   

Significantly, bio-fiber like kenaf fiber has two main drawbacks including the 

hydrophilic surface which is not compatible with epoxy resin (hydrophobic nature) 

resulting the insufficient interfacial stress between fiber and matrix. The hydroxyl    

(-OH) group of kenaf fiber causes the hydrophilic nature of kenaf fiber. Also, the 
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other issue is the lower strength of kenaf fiber as compared to synthetic fiber. The 

first issue can be improved by using of chemical surface modification method named 

alkaline treatment which will be done in different conditions in this study. The next 

issue can be improved by hybridization that in this method the kenaf fiber and 

synthetic fiber like glass fiber are put in the polymer matrix together as reinforcing 

material. The aspect ratio of fiber, stacking sequence of fiber layer and fabricating 

method in FRP can vary depend on the desired goal. For making structural element, 

it needs to have adequate mechanical properties to meet the design requirements. 

Furthermore, due to the changing of design codes in terms of loading 

coefficients, safety factors and also because of some problems as a result of natural 

hazards or unexpected loading on structures, some of them need to be strengthened 

or rehabilitated. Using of strengthening plate to strengthen beams especially RC 

beams is a well-known method that can be done by using of bio-composite plate. The 

capability of this green composite should be investigated and clarified.  

1.4 Aim and Objectives of the study 

The aim of the study is to investigate the characteristics of kenaf-glass fiber 

hybrid composites and its performance as a strengthening element for reinforced 

concrete beams. The objectives of the study are, 

a) To characterize the properties of kenaf fiber polymer bio-composites 

b) To evaluate the mechanical properties of kenaf-glass fiber hybrid polymer 

composites 

c) To investigate the performance of kenaf-glass fiber hybrid polymer 

composite plates as strengthening element for reinforced concrete beams 

d) To propose a theoretical formulation for kenaf-glass fiber hybrid polymer 

composites and its application as strengthening element 
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1.5 Scope of the study 

This study is conducted as experimental works in laboratory in two major 

parts. The first part is about the material development including bio fiber and bio 

composites and another part is about the application of hybrid bio-composite as 

structural element to strengthen the RC beam.  

* Material development: The physical and mechanical properties of kenaf 

fiber which is supplied by the National Kenaf and Tobacco Board (Malaysia) as long 

fiber are determined due to the four different conditions of initial water retting 

process and also nine different settings of chemical surface modifications by NaOH 

solution. According to ASTM C1557-03 (approved 2008)[20], at least 15 specimens 

from 3 different gauge lengths are needed to test to get the proper result of the tensile 

properties of kenaf fiber.  

Also, the tensile properties of unidirectional kenaf fiber epoxy bio-composite, 

unidirectional glass fiber epoxy composite and unidirectional kenaf/glass fiber epoxy 

composite are investigated in this part based on the well-known standard code named 

ASTM D3039M-08 [21]. The variable parameter of composites and bio-composite 

series is the fiber volume content while the variable parameters of hybrid composite 

are total fiber volume content and kenaf/glass fiber volume fraction. Accordingly, 

total number of composite series and specimens are 15 and at least 75, respectively, 

because 5 reasonable results are needed to determine the tensile properties of each 

series.   

* Application as strengthening plate: The last part is conducted 

experimentally to investigate the performances of bio-composite plate and 

glass/kenaf hybrid composite as structural element to strengthen RC beam under pure 

flexural moment. Consequently, 3 control RC beams and also 12 RC beams 

strengthened by kenaf fiber bio-composite, glass fiber composite and hybrid 

kenaf/glass fiber composite in 2 different plate widths are considered to 4 point 

loading flexural test. Load, mid-span deflection, tensile steel strain at the middle and 

compressive concrete at the mid-span are reported as results of test for further 
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discussion and analysis. Analytical investigation including analysis the results and 

suggestion of mathematical model is the last section of this part. 

1.6 Significance of research 

 According to the environmental concerns of the man-made materials such as 

synthetic fibers for fiber reinforced polymer composites, bio materials like bio fibers 

becomes the best replacing material for using as reinforced fiber in polymer 

composite field. To introduce the use of green materials for engineering applications 

is the main goal of this study that it can help to save the nature and to reduce the 

emission of carbon dioxide. Increasing the knowledge of hybrid composite properties 

by using of kenaf and glass fiber, can encourage others to follow this kind of 

research to gain a sustainable material. Furthermore, this study can define new 

application of natural fiber and also will benefit engineers and industries to use of 

renewable materials. Besides, this study introduces the continuous unidirectional 

natural fiber especially kenaf bio-composites structural application for future 

research. This study establishes design and construction procedure of kenaf bio-

composite to assist designer, engineer and architect. Moreover, it may succor to 

increase the agronomic activities and improve economic sector in Malaysia due to 

the demanding of kenaf fiber production. 
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