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ABSTRACT

The bridge monitoring system which can analyze aredlicts damage level
of bridges due to earthquake loads is not yet abkslin Malaysia. Even though
Malaysia is not an earthquake-prone country, eaekg from neighboring countries
could affect the stability of the existing bridges Malaysia. This study aims to
analyze the performance of the bridge subject tthg@aake loads and develop the
intelligent monitoring system to predict the bridgealth condition. The case study
is the Second Penang Bridge Package-3B. Theig@etl System consists of the
Artificial Neural Networks (ANN) and Genetic Algdinm (GA) hybrid model to
obtain the optimum weight in the prediction systeiihe ANN inputs are 4633 data
of the bridge response accelerations and displatsmehile the outputs are the
bridge damage levels. Damage levels are obtaimedigh nonlinear time history
analyses using SAP2000. The damage level criteisobased on FEMA 356
focusing on Immediate Occupancy (I0), Life Safdi$) and Collapse Prevention
(CP) level. This intelligent monitoring system Mdisplay the alert warning system
based on the prediction results with green forylow for LS and Red color for CP
level. According to the results, the best perfarogaof the displacement as data
input in the prediction system is 2.2% higher tiaacceleration data. This study is
verified with pushover-static test to the mini-gcaliers model in ratio 1:34. The
first crack occurred on the base of Pier 1 wherlatexal load is 9 kN, 12 kN for Pier
2 and 8 kN for Pier 4. Maximum displacement at Ries 10 mm while at Pier 2 and
Pier 4 is 6 mm individually. The intelligent moniilmg system can greatly assist the
bridge authorities to identify the bridge healtmdiion rapidly and plan the bridge

maintenance routinely.
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ABSTRAK

Sistem pemantauan jambatan yang boleh menganddisimeramalkan tahap
kerosakan jambatan akibat beban gempa bumi masiimbe&idapati di Malaysia.
Walaupun Malaysia bukan negara yang terdedah séaagsung kepada gempa
bumi, dikhuatiri ancaman gempa bumi dari negararegran boleh menjejaskan
kestabilan jambatan yang sedia ada di Malaysia.jiaiaini bertujuan untuk
menganalisis keupayaan jambatan akibat beban géwmpa dan membangunkan
sistem pemantauan pintar yang boleh meramalkarakeakksihatan jambatan. Kes
kajian ialah Jambatan Kedua Pulau Pinang-Pakej SiBtem pintar terdiri daripada
campuran algoritma genetik (GA) dan jaringan neutilan (ANN) untuk
mendapatkan pemberat optimum di dalam sistem ram&ata masukan ANN ialah
sejumlah 4633 data pecutan dan anjakan dari tiradaklstruktur jambatan manakala
data hasil ialah tahap kerosakan jambatan. Talespsakan diperolehi melalui
analisis riwayat masa tidak linear menggunakans@eriSAP2000. Kriteria tahap
kerosakan berdasarkan FEMA 356 memberi tumpuandeekarosakan ringan (10),
kerosakan sedang (LS) dan kerosakan teruk (CPgterBipintar ini memaparkan
sistem amaran jambatan berdasarkan ramalan haisih kaengikuti kaedah warna
hijau untuk tingkatan 10, kuning untuk tingkatan 8&n merah untuk tingkatan CP.
Berdasarkan hasil kajian, data anjakan memberikangpaian terbaik sebesar 2.2 %
lebih tinggi daripada data pecutan. Kajian iniatlisan dengan menggunakan
pengujian tolak-tarik statik untuk model jambatdala mini dengan nisbah 1:34.
Keretakan pertama terjadi pada dasar model tiapgdh masa pembebanan sisi 9
kN, manakala model tiang ke 2 dan ke 4 terjadi padaa pembebanan sisi 12 kN
dan 8 kN. Anjakan maksimum pada tiang 1, tiangl@a) tiang ke 3 masing-
masingnya ialah 13 mm, 7 mm dan 6 mm. Sistem ptuwan pintar boleh
membantu pihak berkuasa jambatan untuk mengetaaddan kesihatan jambatan

dengan pesat dan penyelenggaraan jambatan dagatkdih secara rutin.
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CHAPTER 1

INTRODUCTION

11 General

Bridges are indispensable structures to connect two places throughout the
transportation system. The bridge should have an enough strength capacity to
withstand the self-weight and moving loads on the deck. Construction of the bridge
shall be supervised by the bridge authorities in order to obtain long service life,
ensure public safety, and reduce maintenance costs. Operation and maintenance of
bridges become more complex with the increased age of the bridges. One of the
essentia efforts to know the life cycle performances and management procedures of
bridges is through Structural Heath Monitoring (SHM). According to Wenzel
(2009), SHM refers to the implementation of a damage identification strategy for
Civil Engineering infrastructures. Application of SHM in Bridge Engineering aims
to ensure long service life and improve the high level service to the highway users.
Moreover, the objectives of bridge monitoring are to ensure bridge safety; to provide
a better maintenance planning; to extend the life of deficient bridges; and to improve
the knowledge of structure. Bridge monitoring is also used to track any aspect of
performance or condition of a bridge in a proactive manner, using measured data and
analytical simulation (Pearson-Kirk, 2008).

The concept of health monitoring can be explained in terms of the goals of
preventive health management in medical sciences. The diagnosis and precaution due
to common ailments at a sufficiently early stage are the best option as the chances of

curability are significantly higher. The potential in applying this concept in many
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CHAPTER 1

INTRODUCTION

11 General

Bridges are indispensable structures to connect two places throughout the
transportation system. The bridge should have an enough strength capacity to
withstand the self-weight and moving loads on the deck. Construction of the bridge
shall be supervised by the bridge authorities in order to obtain long service life,
ensure public safety, and reduce maintenance costs. Operation and maintenance of
bridges become more complex with the increased age of the bridges. One of the
essentia efforts to know the life cycle performances and management procedures of
bridges is through Structural Heath Monitoring (SHM). According to Wenzel
(2009), SHM refers to the implementation of a damage identification strategy for
Civil Engineering infrastructures. Application of SHM in Bridge Engineering aims
to ensure long service life and improve the high level service to the highway users.
Moreover, the objectives of bridge monitoring are to ensure bridge safety; to provide
a better maintenance planning; to extend the life of deficient bridges; and to improve
the knowledge of structure. Bridge monitoring is also used to track any aspect of
performance or condition of a bridge in a proactive manner, using measured data and
analytical simulation (Pearson-Kirk, 2008).

The concept of health monitoring can be explained in terms of the goals of
preventive health management in medical sciences. The diagnosis and precaution due
to common ailments at a sufficiently early stage are the best option as the chances of

curability are significantly higher. The potential in applying this concept in many



aspects such as in Bridge Engineering in ordeepdace time-based maintenance
with a symptom or health-based maintenance areestblished (Chang, 2001).

SHM can also help the owners, builders and dessgoiestructures in rational
decision making (Huston, 2011). In developing ddes, bridge evaluation and
maintenance still uses the conventional method asddon Destructive Test (NDT)
and Visual Inspection (VI). This conventional apgeh should be developed if the
bridge authorities want to implement the systentsexisting technologies similar to
the bridges structural health monitoring systenad@spted by the modern countries
before. The variation of bridge data and information indge SHM should be
recorded in real time so that the bridge structame be observed in the monitoring
room or remote area using internet connection. r&fbee, the experts rationally

should make the right decisions based on the bigijd results.

1.2. Problem Background

In the past decade, traditional SHM combines visbakervations and heuristic
assumption with mathematical models of predictethabmur. Currently, the
modern SHM system which includes the sensors, amneated reasoning
techniques have been applied in bridge monitorihgere are many uncertainties or
factors in the bridge projects have the high impfact the stability of bridge
structures. Among the factors are human errors ¢hased by the low level of
engineers’ knowledge and experience on constructiand method of
implementation. The failure in the bridge condiiut can cause catastrophic
damages in element of a bridge and might even teathe collapse of bridge
structures. One example is the I-35W Bridge in diapolis, Minnesota designed in
1964 and opened to traffic in 1967, which collapseddenly on August 1, 2007 as
shown in Figure 1.1. The investigation revealsItB8W Bridge collapse is caused
by human errors that using undersized gusset jat@idge construction (Hao,
2010). Another example is the collapse of the Kitartanegara Bridge in East
Kalimantan Indonesia on 26 November 2011, approtéipalO years after

construction completed, as shown in Figure 1.2utdd as Golden Gate Bridge of



Indonesia, the longest suspension bridge in thatepat 710 m length, collapsed in
less than 20 seconds. The evaluation and invéistiggeam which is appointed by
Indonesia’s Ministry of Public Works announced ttiet cause was an accumulation
of problems that included brittle bolts, lack oarmstlards, fatigued materials, and
improperly performed maintenance. These problexddd fatal stress to the bridge.
The failure occurred when engineers were jackindeumeath one side of the bridge
deck at mid span. The structural stress causeprdaiously undetected problems
was exacerbated by maintenance that was not macagedttly (JPCL, 2012). Both
the examples indicate that the human errors sugioas supervision and unethical
builders ware compounded by flawed specificatioms lack of standards have been
identified as the cause to the larger problem imyr@spects such as human safety,

damages of public facilities and economics.

Figurel.1  One section of the I-35W Bridge collag&ambaugh and Cohen,
2007)



Figurel.2  Kutai Kartanegara Bridge before and after coafd$*CL, 2012)

Natural disaster such as an earthquake can affect thelitstatii bridge
structures. The proximity of the bridge to thelfand site conditions influences the
intensity of ground shaking and ground deformaticass well as the variability of
those effects along the length of the bridge. Iikedihood of damage increases if
the ground motion is particularly intense, the sodre soft; the bridge was
constructed before modern codes were implementetheobridge configuration is
irregular. Even a well-designed bridge may facealge as a result of increased
vulnerability of the bridge to non-structural maditions as well as structural
deterioration due to earthquake loads. Despiteethmcertainties and variations, a
lot can be learnt from past earthquake damage,ubecthe type of damage occurs
repetitively. Unfortunately, there is a little mtoring system currently available
which can evaluate and analyze the bridges duartbcpake.

In Malaysia, bridge monitoring system is not foadsfor seismic
monitoring, however the monitoring system which eldwy Public Work Department
(Jabatan Kerja Raya) was addressed for routinetemaince due to vehicle loads.
Therefore in this study, the monitoring system axussed for evaluation and
prediction the damage level of bridges due to egadke loads which can be
accessed for public. Even though Malaysia is mo¢athquake-prone country, it is
feared that the threat of an earthquake from neighbg countries could affect the

stability of the existing important structures iralysia as shown in Figure 1.3. The



nearest threat is from North Sumatera earthquakieish is about 275 km from the
Penang Island-Malaysia. Therefore, the seismicadgaZrom the neighbouring
countries should be aware by Malaysia Governmespe@ally for high-risk

structures such as the long span bridges and togles buildings.
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Figurel.3  The threat of the Sumatera earthquakes to Maagsgjion

(www.bgs.ac.uk).

There are little studies for short-term and longntéoridge monitoring in
Malaysia. A few researchers have conducted thaystbout bridge assessment and
visual inspection in Malaysia such as Adnan e8Dg) for 75 concrete bridges on
federal highway in Johor state and Khaw et al. (3Gar Sungai Pinang Bridge in
Pinang Island. Other researchers, Brownjohn angav{@001) have conducted a
study about monitoring of the prestressed box giSi@gapore-Malaysia Second
Link (Tuas Link) during construction. The bridge1.9 km long, and consist of 27
spans, which was completed in mid 1997 and opeoddaffic in the same year

(Figure 1.4). The monitoring of Tuas Link Bridgema to observe the bridge’s



response due to heavy vehicles and ground motiothgeovide critical information
for the design and construction of similar bridges.

Figurel.4  Singapore Malaysia Second Link (Omenzetter amvBjohn, 2006)

Other than human error and earthquake threatscdhstruction age also
contributes to the problems faced by the bridgéaittes. Several examples in the
literatures demonstrate that the construction dge laridge is a good indicator of
likely performance, with higher damage levels exgpedn older construction than in
newer construction. The older construction was thasesignificantly lower design
forces and less stringent detailing requirementspayed with current requirements
(Chen and Duan, 2003).h& older bridge was confined to older structurak more
than 30 years ago and before the introduction ofleno seismic codes (Buckle,
1995). One of the examples is the effect of construotianon Routes 3 and 5 of the
Hanshin Expressway in Kobe while the Kobe earthquakcurred Route 3 was
constructed from 1965 through 1970, while Routeds wompleted in the early to
mid-1990s. The two routes are parallel to eaclerptivith Route 3 being farther
inland and Route 5 being built largely on reclaint@dd. Despite the potentially
worse soil conditions for Route 5, it performed hatter than Route 3. Route 3 has
been estimated to have sustained moderate to $aaje-damage in 637 piers, with



damage in over 1300 spans and approximately 50Osspeed replacement as shown

in Figure 1.5.

Figurel5 Higashi-Nada Viaduct collapse in the 1995 dukdbe earthquake
(Chen and Duan, 2003)

At the same time, the Route 5 has only been losingle span owing
apparently to permanent ground deformation and spaeating as shown in Figure
1.6.

Figurel.6  Nishinomiya-ko Bridge approach span collapse @1895 due to
Kobe earthquake (Chen and Duan, 2003)



In order to mitigate major problems, it is very ionfant to monitor the
condition of the bridges before the onset of proise Bridge authorities should
understand that to obtain long service lives ancktluce maintenance costs, correct
actions must be implemented right from the desigd eonstruction phases. The
actions must also be implemented with bridge mamagé systems for service stage.
This management system will assist in maintenaecesiwn making by considering
both structural safety and economy. The monitoohdridges is also designed to
extend the lifetime of deficient bridges and to e the knowledge of the
structure. The complexity and problem size inre@&smonitoring and analysis of

bridges disallow the use of conventional methodofablem solving.

Currently, problems faced in a conventional bridgenitoring system are
divided into system and human problems. The systeilems include the errors to
interpret monitoring data and slower report genenaand submission to database
system (server). Furthermore, there is no exisiyggiem that is able to unite bridge
monitoring and analysis in a combined Artificiatdigent (Al) system to interpret
and predict the damage level of bridge structure tuearthquake load. Many Al
systems have successful to solve the Civil Engingeproblems such as Neural
Networks, Fuzzy Logic and Genetic Algorithms. TNNeural Networks have the
ability to model the non-linear relationship betwes set of input variable and the
corresponding outputs without the need for pre@efimathematical equations. In
addition to that, Neural Networks do not need pkinowledge of the nature to the
relationship between the model inputs and corredipgnoutputs. Comparison to
traditional methods, Neural Networks tolerate re&dy imprecise, noisy or
incomplete data. Approximate results are less emalole to outliers, have better
been filtering capacity and more adaptive. Thiabdes Neural Networks to
overcome the limitations of the existing methodsl anccessful in be applied on
many problems within the field of Civil Engineering@everal researchers have done
the study about acceleration and displacement alatéhe input domain in Neural
Networks such as Ok et al. (2012) and Qian and [2iB®8). However their studies
are not discussed in detail. Therefore in thigtine acceleration and displacement
data domain will be combined with time domain aflge structure response due to

earthquake loads in Neuro-Genetic Hybrids and #mults are expected more



accurate and precise for bridge damage predictiimese results will be compared
with acceleration and displacement data withouetishomain for validation of the

input data.

Meanwhile human problems include inconsistence aunbjective while
reading data, and also insufficient knowledge talyme lacking of interaction
between visible defects and invisible structurajrddation. On the other hand, data
entry was done manually caused the time consumingpractice, the monitoring-
results are decided according to the level of digeeof engineers. Therefore, the
accuracy and reliability of the results are prettych subjective of the engineer
experiences. Thus, the inexperienced engineetsreegpecial training before they
go into the field. They should understand the amedntal knowledge of bridge
engineering not only in theory but also in applmatto project. Therefore, the
errors occurred while performing analysis and joteting data reading can be solved
and minimized uses Atrtificial Intelligent method$he Artificial Intelligent method
which is applied in this study is Neuro-Genetic tgb method. The Neuro-Genetic
Hybrids method consist of Artificial Neural Netwarlkand Genetic Algorithms as
numerical modelling techniques. In the publishédrature, the Neuro-Genetic
Hybrids method which is used in bridge health p#oih based on acceleration and
displacement time series as input values and daheagé (Immediate Occupancy,
Life Safety and Collapse Prevention) as outputesiliave not been studied in detail
by other researchers. This intelligent method banapplied to the monitoring
system for prediction of the bridge performancesnmduand after the earthquake and
getting the optimum weight more accurate and rgpidlfrhe term of weight in
Artificial Intelligent is the strength of a conngxt between two processing element

which can adjusted to reduce the overall errohérhonitoring system.

The intelligent bridge monitoring system in thedstus proposed to apply on
the Second Penang Bridge. The Second Penang Bsi@dg24 km long and 16.9 km
above seawater, connecting Peninsular MalaysiaRemhng Island. The bridge
which is completed in 2013 becomes the longesigbrid Malaysia and Southeast
Asia. Additionally, the Second Penang Bridge hasnbdesign for earthquake used
the 475-year time period with PGA 0.1773g and th@(2year time period with PGA
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0.3262g. Therefore, the Second Penang Bridgeitshdel for a case study in bridge

seismic monitoring system.

The pushover test is required to obtain the belamol possibly the failure
mechanisms of the Second Penang Bridge piers. tédtieg is also to validate the
finite-element analysis which has been done. Tibe podel is mini scale which
aims to reduce the cost and make simple the maalalichtion. In general,
numerical models are typically suitable for preidigtthe elastic response however
they are often not very accurate in predictingittgastic response such as force and
displacement capacity. Therefore, pushover testetgired to understand the
behavior of pier structure when subjected to seidoading because during design

earthquake, structures are expected to respore ime¢lastic range.

In general, seismic monitoring is separate withsre@ analysis system.
Sometimes the analysis is performed after the mong results obtained.
Additionally, the analysis is based on the expert$ engineers in the process of
monitoring results. In this study, analysis systEmintegrated with intelligent
system, therefore it can be used to predict daneage of bridges in seismic zone

include the high and low earthquake region.

1.3 Problem Statements

According to problem background, the problem sh&tiets can be

summarized as follows,

0] The responses of bridge structure that includelaaten and displacement
time histories due to earthquake loads are requivetie input values in

intelligent monitoring software.

(i) Intelligent Monitoring Software needs optimum waigtihrough Neuro-

Genetic Hybrid for prediction of damage level rapid



(iii)

(iv)
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(i)

(ii)

(iii)

(iv)

11

The numerical model are not very accurate in ptedjcthe inelastic
response, therefore pushover test is required tierstand the behavior of

pier structure model.

There is no existing bridge monitoring system tisatble to unite bridge
monitoring and analysis using a Neuro-Genetic Hylsystem to interpret
and predict the bridge condition and damage lef/blidge due to earthquake

loads.

Objectives

The objectives of the research can be stated as;

To study the performance of the acceleration asgdlacement time histories
of bridge structure response due to earthquakesl@edinput domain in
training and testing process of Artificial NeuragtWorks using one and two

hidden layers.

To obtain the optimum weight for prediction of dagadevel rapidly through
Neuro-Genetic Hybrids.

To determine failure mechanisms of the mini-scdlepier models using

pushover test and predict damage level using N&anmetic Hybrids.

To conduct the intelligent seismic monitoring systédy integrating the
analysis, damage level prediction and seismic ea#lyning system for a
bridge structure.
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15  Scopeand Limitations

The results of the study can be affected by sewsdhbles and factors
involved. Therefore, the scopes and limitationustidoe defined clearly in order to
conduct the good results as mentioned in the abgsciof study. The scope and
limitation in this study are:

(1) The case study is Second Penang Bridge packageoB8BGH 16913 m until
CH 17015 m. The bridge is a prestressed concrate3vspans. The total of
the bridge is 102 m length.

(i) Analysis uses the dynamic non-linear method on $@P2ver.14.2. The
bridge is analyzed based on 12 earthquakes fromfiPd€arthquake
Engineering Research database and two earthquakes Malaysian
Meteorological Department (MMD).

(i) Damage level occurred based on Federal Emergencadément Agency
(FEMA) 356. The damage levels are Immediate Ocoypél®), Life Safety
(LS) and Collapse Prevention (CP) using Non linleare History Analysis.

(iv) Development of damage level prediction on bridgeicstire uses Neuro-
Genetic Hybrid, which includes Neural Networks aBdnetic Algorithms.
Input data for training in Neural Networks are decations, displacements
and time series from the finite-element modellimguits. Total of data is
4633. Data is used for training is 70% of totatag while data is used for
testing and validation, 15% of whole data respetyiv Neuro-Genetic hybrid
is trained and optimized used MATLAB Programmingl@0sersion under
UTM license.

(v) Laboratory test for bridge model is done at thedratory of Structure and
Material Universiti Teknologi Malaysia, Skudai Jol®ahru. Bridge model
has been produced through equation derivation rofliside laws. Bridge
design used AASHTO and Eurocode 8 part-2. Thesdcabwn of a model
has been constructed at laboratory and tested ssiregal sensors.
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(vi)  Development of an intelligent system for bridge manng due to earthquake
loads. The intelligent monitoring system is cortddcthrough Visual basic

programming.

1.6  Organization of Theses

The study is divided into eight chapters. The eontof each chapter is

summarized as follows,

Chapter 1 Introduction, this chapter describesstiuely background and the
objectives to be achieved. Furthermore, the sa limitations of study, the
organization of theses and the outcome of resdarble conducted are explained at

the end of this chapter.

Chapter 2 Literature Review, this chapter discussassut several bridges
seismic analyses from other researchers, intelligetonitoring system and
application hybrids of Neural Networks and Gene&lgorithms to find the better
prediction the damage level under earthquake load$ie end of this chapter is a

summary of the literatures that has been reviewigdmithis chapter.

Chapter 3 Theoretical Background, this chapter shalae fundamental
knowledge of a bridge seismic performance-basedgulesnd seismic response
analysis for the linear and non linear responsleis Thapter also explains the theory
of Neural Networks and Genetic Algorithms, and corabon of the both in Neuro-

Genetic hybrids.

Chapter 4 Research Methodology, this chapter explthe step by step to
solve the problem and achieve the results of stullye step starts in a preparation
model for simulation and experimental until thetafistion of sensor in a bridge

model. The methodology includes the flowchart algbrithms of Neural Networks
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(NN) and Genetic Algorithms (GA) process. The efhthis chapter, the procedures
of intelligent monitoring systems are also included

Chapter 5 Concrete Bridge Behaviours under Eartkgjl@ad, this chapter
describes the material properties of bridge model @arthquakes’ excitation data
from Pacific Earthquake Engineering Research Ce(B®EER) and Malaysian
Meteorology Department (MMD). This chapter alsolues the behaviour of the
bridge model that has been analyzed based on mear ltime history analysis to find

the bridge acceleration and displacement response.

Chapter 6 Application Neuro-Genetic Hybrids in Bygd Seismic Monitoring
System, this chapter explains about the term afiéigl Intelligence includes Neural
Networks, Back-propagation, Genetic Algorithms agtrid of the Neural Networks
and Genetic Algorithms. The last of this chaptkoves the comparison of the
acceleration, displacement and time data as ant idpmain in Neuro-Genetic
hybrids in one and two hidden layers.

Chapter 7 Implementation of Intelligent Seismicdge Monitoring System
using Experimental Test, this chapter explainsgreparation and calibration of a
bridge model using pushover frame at Structure Material Laboratory-UTM and
how the sensor and data acquisition are installedthe networking and
communication system. The chapter also analyzesdbult of laboratory test to

know the behaviour of piers’ models.

Chapter 8 Conclusions and Recommendations, thipteh&oncludes and
summaries the results on the previous chaptereapldins the advantages of using
Neuro-Genetic Hybrids in bridge monitoring softwar@he final of the chapter

consists of the recommendation for the furtherytud
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1.7 Research Finding

Given the innovative and ambitious objectives amal scope expected from
the health monitoring paradigm, it is important @mduce a digital form of the
intelligent seismic system for bridges. The mamigy and analysis tools can be
operated in computer unit or mobile devices. Tlagomnovelties adopted the hybrid
of Artificial Neural Network (ANN) and Genetic Algithm (GA) as known as
Neuro-Genetic Hybrids, which act as the intelligeatmponents that facilitated the

systems for forecasting of seismic performancedardage level.

In current practice, the monitoring and data anslygere not integrated in a
single system. Hence, the Neuro-Genetic Hybridhis system will use the finite-
element results to generate the bridges seismiforpgance and damage levels.
Besides serving as a handy, the convenience mogttayols, the major key feature
of this system is the capability to continuouskhgaih and learn’ by itself through the
increasing input obtained from the numeric simolatnd field data. Therefore, this
system will benefit broad user groups ranging frili® site inspectors to structural
engineers. This is because the system is notajusbnitoring tool with the alert
system for public, but at the same time the systeaapable of control construction
procedures and phases while analyzing and forecgafstiure behaviour of bridges at

any given time duration.
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