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ABSTRACT

The current wind turbines are the biggest rotating machines on earth, operating
in the lowest part of the earth boundary layer. The layout scheme of wind farms is
a challenging job to researchers having many design objectives and constraints due
to the multiple wake phenomenon. The far wake effect is more prominent in wind
farm layout design problems than the near wake effect. At present, wind energy
industry is facing major design constraints in boosting power output. Most of the
existing approaches focused only on the positioning of the wind turbines within the
wind farms. They did not consider the effect of the shape of wind farm area on power
output. This research proposes a novel method to find the optimized dimensions of
the wind farm shape where maximum area could face the free stream velocity. This
is achieved by developing an area dimension method which rotates the wind farms up
to 180 degree. Afterward, a novel method called Definite Point Selection (DPS) is
developed to place the turbines in order to operate at their maximum efficiency, while
providing the obligatory space between adjacent turbines for operation safety. The
positions within the wind farm facing zero wake effect can be identified by using DPS
method. It is observed that the combined area dimension and DPS techniques are more
effective than the previous approaches. Jensen’s wake model is used to calculate the
wake effects among wind turbines as existing literatures illustrate that the Jensen’s
far wake model is a good choice acceptably for the solution of layout problem. A
wind farm of 2 km x 2 km area is divided into 10 x 10 cells for case study. Three
different wind scenarios i.e. constant wind speed with uniform direction (Case 1),
uniform wind speed with variable direction for equal probability of occurrence (Case 2)
and variable wind speed with variable direction for unequal probability of occurrence
(Case 3) are considered for the application of proposed methods. The proposed layouts
are simulated to place different number of wind turbines in all wind scenarios. The
optimized layout operates with efficiency of 99.15%, 96.9% and 93.9% for Case 1,
Case 2 and Case 3 respectively. Results show that power output of the wind farm by
using the same area in different dimension has increased even with identical number
of wind turbines. The proposed method is useful for onshore as well as offshore wind
farms.
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ABSTRAK

Turbin angin semasa adalah mesin berputar terbesar di dunia, yang beroperasi
di kawasan paling rendah di lapisan sempadan bumi. Skim susun atur ladang
angin adalah satu pekerjaan yang mencabar untuk para penyelidik yang mempunyai
objektif reka bentuk banyak dan kekangan akibat fenomena berbilang keracak. Kesan
keracak yang jauh ini adalah lebih menonjol dalam ladang angin masalah reka bentuk
susun atur daripada kesan keracak yang dekat. Pada masa ini, industri tenaga
angin sedang menghadapi kekangan reka bentuk utama dalam meningkatkan kuasa
keluaran. Kebanyakan pendekatan yang sedia ada hanya memberi tumpuan kepada
usaha membangunkan turbin angin dalam ladang angin. Mereka tidak mengambil
kira kesan bentuk kawasan ladang angin pada kuasa keluaran. Penyelidikan ini
mencadangkan satu kaedah baru untuk mencari dimensi optimum bentuk ladang
angin di mana kawasan maksimum boleh menghadapi halaju arus bebas. Ini dicapai
dengan membangunkan satu kaedah dimensi kawasan yang berputar ladang-ladang
angin sehingga 180 darjah. Selepas itu, satu kaedah baru dipanggil Pemilihan Titik
Tentu (DPS) dibangunkan untuk meletakkan turbin untuk beroperasi pada kecekapan
maksimum, manakala menyediakan ruang yang wajib antara turbin bersebelahan untuk
keselamatan operasi. Kedudukam dalam ladang angin menghadapi kesan keracak sifar
boleh dikenal pasti dengan menggunakan kaedah DPS. Adalah diperhatikan bahawa
kawasan dimensi gabungan dan teknik DPS adalah lebih berkesan daripada pendekatan
yang sebelumnya. Model keracak Jensen digunakan untuk mengira kesan keracak
antara turbin angin sebagai literatur menggambarkan bahawa model keracak jauh
Jensen adalah pilihan yang baik boleh diterima bagi penyelesaian masalah susun atur.
Sebuah ladang angin di kawasan 2 km x 2 km dibahagikan kepada 10 x 10 sel-sel
untuk kajian kes. Tiga senario angin yang berbeza iaitu kelajuan angin yang berterusan
dengan hala tuju seragam (Kes 1), kelajuan angin seragam dengan arah ubah untuk
kebarangkalian kejadian yang sama (Kes 2) dan kelajuan angin berubah-ubah dengan
arah ubah untuk kebarangkalian kejadian yang tidak sama (Kes 3) dipertimbangkan
untuk penggunaan kaedah dicadangkan. Susun atur yang dicadangkan adalah simulasi
untuk meletakkan beberapa jenis turbin angin dalam semua senario angin. Susun atur
dioptimumkan beroperasi dengan kecekapan 99.15%, 96.9% dan 93.9% untuk Kes 1,
Kes 2 dan Kes 3 masing-masing. Hasil kajian menunjukkan bahawa kuasa keluaran
ladang angin dengan menggunakan kawasan yang sama dalam dimensi yang berbeza
telah meningkat walaupun jumlah nombor turbin angin adalah sama. Kaedah yang
dicadangkan adalah berguna untuk daratan dan juga untuk ladang angin luar pesisir.
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CHAPTER 1

INTRODUCTION

1.1 Background of study

Due to depletion of the fossil fuels, leading to acute scarcity of energy
production from the conventional source, there is an upsurge in utilization of the non
conventional energy resources like wind, biogas, solar etc [1]. One of the profligate
developing sources of energy among sustainable and renewable is the wind energy
source [2, 3]. Wind energy installation has experienced a tremendous increase in
the past years. At the same time, related research activities have flourished in the
past decade [4]. According to the Global Wind Energy Council 2015 Report [5], it
has become the fastest growing energy source in the world with a steep increase in
development from 2009 to date. Figure 1.1 shows the global installed wind capacity
from 1997 to 2014. In 2004, the total world wide wind capacity was 14,781 MW but
in 2014 the capacity became 51,477 MW [5].

Due to rapid development of wind turbine technology and increasing size of
wind farm, 4 GW in construction now, 40 GW by 2020, and 150 GW by 2030 are
planned to construct, meaning many large wind farms [6, 7]. Now wind power plays a
significant role in the power production of developing countries as well as in developed
countries [8–15]. This increasing demand for wind energy has given way to a shift
from single turbine installation to multi megawatt installations consisting of a large
number of clustered wind turbines called ’Wind Farms’. The main task of a wind farm
is to get maximum possible power by using minimal area with less number of wind
turbines [16, 17].
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Figure 1.1: Global Annual Installed Capacity from 1996 to 2014 [5]

1.2 Problem statement

The problems can be formulated into three points.

• The wind farm area dimension is a crucial parameter that is not mentioned by
wind energy community. In other words, except the relative positions of the
wind turbines in the installation site, the boundaries of the installation area also
affect the overall electricity production. In literature an unavailability of wind
farm area dimension model has been observed.

• Careful planning of the geometrical arrangement of wind turbines in the wind
farm can minimize the wake effects and increase the farm efficiency in terms of
power production. However, the question, “where to install the turbines”, is not
a trivial one. The wind flow inside the farm (evolution of wakes) depends on the
wind speed and direction, as well as on the wind turbine specifications.

• Wind direction varies with time making it challenging to arrange turbines in a
manner such that they can escape, wakes of upstream turbines for a majority of
their operational time. At the same time, the determination of the wind farm
output for a given layout is also not straight forward, since wake effects, wind
variations and turbine responses need to be carefully considered. Advanced
numerical methodologies are, therefore, necessary to optimize the arrangement
of turbines in the wind farm, a process more commonly known as Wind Farm
Layout Optimization (WFLO).
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1.3 Research objectives

The objectives of this research are:

1. To model wind farm area dimension which ensures the maximum width of wind
farm perpendicular to the mean wind direction and investigate its effect on the
total output power of a wind farm.

2. To develop a new technique named ’Definite Point Selection (DPS)’ which
identify the zero wake effect points within the wind farm. The DPS is based on
an idea of installing the wind turbines in a form of group, while no one turbine
laying in the wake of other wind turbine.

3. To explore the validation of the DPS algorithm applying it on different wind
scenarios with varying number of wind turbines installation and verify by
comparing with previous relative research work.

1.4 Significance of research

The present research offers a paradigm move in wind farm layout optimization
problem. A momentous research work has been done (and is on-going) in the wind
farm design literature. However, the most researches in this field focused only the
placement of wind turbine within some given boundaries of the wind farm. In contrast,
present research introduces the new concept of two level optimization. First, to identify
and analyze the impact of land area and land shape on the optimization of wind farm
layout, an area dimension method is proposed to get the optimal area dimension of
wind farm. This can provide novel insights into the role of farm land shape in the wind
farm layout design. Second to explore the zero wake effect points within the wind
farm area for wind turbine placement. For this, a novel method called Definite Point
Selection (DPS) is developed to place the turbines in order to operate their maxima,
while provided the obligatory space between adjacent turbines for operation safety.
The implementation of such novel concepts present significant modelling and design
challenges that have been appropriately addressed in this research. In addition, this
research takes three different type of wind scenarios, constant wind speed with constant
direction, variable wind speed with variable wind direction for equal probability
of occurrence and variable wind speed with wind direction for unequal probability
of occurrences. In order to explore the effectiveness of the developed techniques
‘wind farm area dimension and DPS algorithm’, these techniques are applied on each
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wind scenario with varying number of wind turbines installation and are validated by
comparing the outcomes with previous relative research work.

1.5 Scope of study

In order to achieve the objective of the research, the scope of research will be
carried out: The total area of wind farm is fixed which is equal to 2 km × 2 km and
divided into cells of same size for wind turbine installation. This dimension is chosen
based on the benchmark in the literature for comparative study purposes. This type of
discrete siting is convenient for the realization of optimal method. As the wind turbine
type matters, only horizontal axis are considered, and all having same rotor radius, hub
height and power curve characteristics. It is also assumed that the turbine nacelle is
fully controlled and can move the rotor towards the wind direction. The obligatory
distance between wind turbines in the columns and rows is accepted to be around five
rotor diameters (5D), the wind farm area is discretized by equal number of cells. The
layout is simulated to work on different wind farm layouts for the maximum power
output. It seems good to understand the impact of multiple shadowing of turbines on
one another in the farm in different wind conditions. The proposed layout technique is
equally valid for onshore as well as offshore wind farms.

1.6 Organization of thesis

This thesis is organized into five chapters, namely the introduction, literature
review, research methodology, results and discussion, and conclusion and future
recommendations.

Chapter 1 provides information on the background of study, problem statement,
objectives and scope of research.

Chapter 2 analyzes the status of wake effect in wind farm, discusses its
significance on the energy yield and structure of the problem will be defined. This
chapter also reviews the optimization methods used in Wind Farm Layout Optimization
(WFLO). The important finding from the previous work will be used as a guideline in
this research.
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Chapter 3 aims to focus the wind farm modelling which includes cost model,
wake model, power and efficiency modelling. In this chapter, the novel methods of
influence of wind farm area on power yield and Definite Point Selection (DPS) for
wind turbine positioning are proposed. This chapter also presents the implementation
of the proposed methodology in different wind scenario.

Chapter 4 discusses and compares the results of proposed research finding
with the previous work for three wind scenarios; constant wind speed with uniform
direction, uniform wind speed with variable direction and variable wind speed with
variable direction.

Chapter 5 concludes the discussion of the work undertaken and highlights the
contributions of this research. Several suggestions are recommended for possible
directions of future work.
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