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ABSTRACT 

 

 

 

 

This thesis presents investigation of path loss, PL, and shadowing, Xσ, of signal 

wave along and about multi floor stairways that have dog-leg stairwell configuration. The 

objective is to develop frequency-dependent empirical propagation models that could 

approximate PL and Xσ for two conditions.  The first condition is when both transmitter, 

Tx, and receiver, Rx, are within the stairwell structure.  The second condition is when either 

one of the Tx or Rx is inside adjacent rooms to the stairwells.  Attention was also drawn 

towards the influence of stair flights and floor height to attenuation of signal wave as it 

propagates within the stairwell.  Analysing the impact of the aforementioned structures 

within the stairwell, signal wave propagating between stairwell and adjacent in-building 

space as well as developing frequency-dependant empirical propagation model are research 

areas which have yet to be covered by previous propagation studies pertaining to multi 

floor stairway.  Frequencies of interest, f, ranged from 0.7 GHz up to 2.5 GHz that cover 

various long term evolution (LTE) and public safety communication bands.  Research 

works involved measurement campaign in four different multi-floor buildings inside 

Universiti Teknologi Malaysia’s campus.  PL’s relations with separation distance between 

Tx and Rx, d, and f were formulated with auxiliary site-specific terms added to improve 

two proposed empirical propagation models.  It was found that for signal wave propagation 

where both Tx and Rx were within the stairwell, placing Rx at elevated or lower position 

than Tx does not influence significantly recorded PL data.  However, for propagation 

between stairwell and adjacent rooms, placing Rx at elevated or lower than Tx may 

influence significantly recorded PL data.  Suitable measurement campaign planning was 

arranged in the light of this finding.  The proposed models were then examined and 

compared with ITU-R, COST and WINNER II indoor empirical propagation models.  From 

measurement in dedicated testing sites, it was demonstrated that the proposed models have 

the smallest computed mean, µR, relative to the other standard models.  The largest µR was 

-2.96 dB with a 3.34 dB standard deviation, σR.  On the other hand, results from COST, 

ITU-R and WINNER II models demonstrated lower precision in all inspected settings, with 

the largest µR being 8.06 dB, 7.71 dB and 15.98 dB respectively and their σR being 3.79 dB, 

6.82 dB and 9.40 dB accordingly.  The results suggest that the proposed PL models, which 

considered the impact of building structures within and about the stairwell could provide 

higher PL prediction’s accuracy for wireless communication planning pertaining to the 

stairwell environment, particularly for public safety responders.  

 

 

 

 

 



vi 

 

ABSTRAK 

 

 

 

 

Tesis ini mempersembahkan pemeriksaan terhadap kehilangan laluan, PL, dan 
pemudaran bayang, Xσ, gelombang isyarat di dalam dan sekitar tangga yang mempunyai 
konfigurasi separuh pusingan.  Objektif penyelidikan ini adalah untuk menghasilkan model 
perambatan gelombang secara empirik yang bersandar frekuensi dan mampu meramal PL 
dan Xσ bagi dua keadaan.  Keadaan pertama adalah ketika kedua-dua pemancar, Tx, dan 
penerima, Rx, berada di dalam struktur tangga.  Manakala keadaan kedua pula adalah ketika 
salah satunya berada di dalam bilik-bilik bersebelahan dengan tangga.  Tumpuan 
penyelidikan turut diberikan kepada kajian kesan deretan anak tangga dan ketinggian 
tingkat bangunan terhadap tahap pelemahan isyarat gelombang yang merambat di dalam 
struktur tangga. Analisis impak daripada struktur-struktur binaan tangga yang dinyatakan, 
kesan perambatan gelombang di antara tangga dan ruang dalam bangunan di sekitar tangga 
serta pembentukan model empirik perambatan gelombang yang bersandarkan frekuensi 
merupakan bidang kajian yang masih belum diterokai untuk kerja penyelidikan perambatan 
gelombang berkaitan tangga dalam bangunan bertingkat.  Julat frekuensi, f, yang 
ditumpukan dalam penyelidikan ini adalah antara 0.7 GHz sehingga 2.5 GHz yang meliputi 
beberapa julat khusus untuk aplikasi evolusi jangka panjang (LTE) dan sistem 
telekomunikasi untuk tujuan keselamatan awam.  Kerja-kerja pengukuran dilakukan untuk 
persekitaran tangga di dalam empat bangunan berbeza di kampus Universiti Teknologi 
Malaysia.  Hubungan PL dengan jarak di antara Tx dan Rx, d, serta f kemudiannya 
diformulasikan.  Beberapa terma tambahan ditambah pada formulasi yang telah dibentuk 
untuk menambahbaik dua model perambatan gelombang yang dikemukakan hasil analisis 
dalam penyelidikan ini.  Bagi perambatan gelombang ketika Tx dan Rx berada dalam 
struktur tangga, didapati kedudukan Rx berada lebih tinggi atau rendah berbanding Tx tidak 
mempengaruhi secara signifikan data PL yang diperolehi.  Namun, bagi perambatan 
gelombang di antara tangga dan bilik-bilik bersebelahan, kedudukan Rx yang berada lebih 
tinggi dari Tx boleh mengakibatkan data PL berbeza dengan ketara berbanding dengan 
keadaan kedudukan Rx lebih rendah dari Tx.  Oleh itu, kempen pengukuran disesuaikan 
mengambil kira penemuan ini. Model-model perambatan gelombang yang dikemukakan 
kemudiannya diuji dan dibandingkan dengan model-model perambatan gelombang dalam 
bangunan ITU-R, COST dan WINNER II.  Daripada penelitian yang dijalankan, dua model 
yang dikemukakan mempunyai min, µR, terkecil berbanding model-model rujukan lain.  µR 
terbesar yang telah dikira adalah -2.96 dB dengan sisihan piawai, σR, 3.34 dB.  Pengiraan 
berdasarkan model COST, ITU-R dan WINNER II pula menghasilkan kejituan yang lebih 
rendah bagi setiap pengujian yang dibuat, dengan µR terbesar boleh mencapai sehingga 
8.06 dB, 7.71 dB dan 15.98 dB dengan σR sebesar 3.79 dB, 6.82 dB and 9.40 dB bagi 
ketiga-tiga model tersebut.  Keputusan ini menunjukkan model-model PL dikemukakan 
yang telah mengambil kira impak struktur binaan di dalam dan sekitar tangga mampu 
meramal PL dengan lebih baik bagi perancangan sistem komunikasi wayarles persekitaran 
tangga, khasnya bagi kegunaan para petugas keselamatan awam. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The success of public safety personnel’s operations depend heavily on the 

ability of these personnel to communicate in the most effective manner. Critical 

information would need to be relayed among these personnel and to other 

associated parties that are involve in the emergency response.  Growing 

investment towards improving the standards and capability of public safety 

communication technologies reflects the acknowledgement from public towards 

the need to equip public safety personnel with the finest telecommunication 

system and resources (Doumi et al., 2013).  Many improvements to available 

communication technologies used for emergency response have been proposed in 

order to accelerate warning ability in the face of disaster and also assists in 

decision making in the disaster relief operations. 

 

 

Among the most critical part of public safety communication is the one 

utilized by first responders who are present and actively engage in operations at 

emergency or disaster site.  Contemporary emergency-response communication 

especially for first responders heavily depend on terrestrial cellular infrastructure.  

Unprecedented emergency events, either man-made or natural occurrence, could 
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lead to the cease of operation or inadequate service by terrestrial infrastructures 

due to damage or interrupted electricity supplies to those infrastructures.  Thus, 

back-up telecommunication system has to be in place if such a disaster’s 

aftermath happens (Portmann and Pirzada, 2008).  

 

 

   To improve the aforementioned limitations, deployment of incident area 

network (IAN) that could widen and improve radio frequency (RF) coverage has 

been studied and in the process to be made available.  The IAN network can be 

set-up temporarily in an ad-hoc manner.  IAN’s areas of interests include all 

known environments where wireless signal strength reception need to be boosted 

up or the covered vicinity has to be extended (Gentile et al., 2012).   

 

 

The establishment of Long Term Evolution (LTE) and LTE-Advanced 

broadband technologies are expected to supplement variety of IAN requirements.  

Since these networks will be widely deployed, regulators, public community and 

manufacturers have begun cooperating towards realizing a common standard so 

less costly equipments can be used in facilitating LTE application for public 

safety use (Doumi et al., 2013).  The use of carrier aggregation (CA) technology 

that is supported by LTE-Advanced system (Pedersen et al., 2013) means that 

first responders could also take advantage of large data or files transfer for 

effective emergency response (Al-Hourani and Kandeepan, 2013).  Therefore, 

investigating frequency range covering from below 1 GHz until beyond 2 GHz 

(Yan et al., 2013) that have been allocated for LTE or LTE-Advanced 

applications should be important to strengthen the know-how in implementing 

LTE- assisted IAN.   

 

 

 In a high rise where the number of floors is considerably large, the 

availability of reliable telecommunication means for emergency responders inside 

stairway is crucial.  These responders commonly use the stair when attending to 

emergency cases that take place in a multi floor building due to safety reason.  

Thus, radio propagation along the stairway need to be carefully characterize in 
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order to ensure communication link between emergency responders is not 

susceptible to interference due to the stair setting (Lim et al., 2009).  Given that 

the stair structure is heavily made up of reinforced concrete (Ashraf et al., 2010), 

radio frequency penetration from outside sources is typically minimized (Aerts et 

al., 2013).  Thus, the use of repeaters or relays to extend coverage should be 

expected (Craighead, 2009).  Small cell LTE relays could play important roles in 

filling up the gap towards enhancing public safety communication coverage for 

this crucial segment of a multi floor building (Al-Hourani and Kandeepan, 2013).   

 

 

An IAN that is set up to provide reliable wireless coverage for stairways in 

a tall high rise would require a significant number of relays.  Relays may need to 

be placed within the stair itself (Souryal et al., 2008) as well as in nearby indoor 

locations (Liu et al., 2014).  The planning stage of establishing the relay-assisted 

IAN is very critical.  Deploying too many relays can cause conflict in the network 

due to packet loss and time delay (Rafaei et al., 2008).  On the other hand, 

insufficient number of relays would results in poor coverage (Liu et al., 2014).  

Modelling signal attenuation or popularly known as path loss, PL, as a function of 

separation distance between transmitter-receiver link could help by providing 

early PL prediction and act as a tool to demonstrate best practices when setting up 

the wireless network (Valcarce and Zhang, 2010).   

 

 

 

 

1.2 Problem Statement 

 

 

Investigation on wireless signal wave propagation along the stairway at 

different operating frequency ranges had been carried out by Yang and Wu 

(2001), Teh and Chuah (2005) and Lim et al. (2009).  The research works, 

nevertheless, were based on ray-tracing deterministic approaches that are 

computationally intensive and require prolonged time-period to complete.  

Additionally, the laborious tasks require the use of software with complex 
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computational capabilities.  A much simpler and easily implemented technique to 

estimate signal wave’s attenuation is via empirical PL model (Valcarce and 

Zhang, 2010).  Empirical PL models for the stairway environment were presented 

by Yu et al. (2014), Lim et al. (2014) and Wang et al. (2014) but only covered 

operating frequency for 2.4 GHz and higher frequency ranges.   

 

 

To the author’s knowledge, no existing stairway’s empirical PL models 

for spectrum range below 2 GHz have been proposed and available in the 

literature despite various bands in the mentioned range have been stipulated for 

public safety purpose (Matolak et al., 2013).  Therefore, developing 

comprehensive empirical PL model that comprise of frequency spectrum below 2 

GHz is necessity to assist stairway’s IAN planning since unprecedented 

emergency events may require the IAN to be adaptive and operates in more than 

one frequency (Rafaei et al., 2008).      

 

 

For better characterisation of signal wave attenuation inside multi floor 

buildings, a mathematical term is commonly introduced in empirical PL 

formulation to signify losses incurred as signal wave penetrates into different 

floors (Sarkar et al., 2003).  The proposed stairway’s empirical PL models by Yu 

et al. (2014), Lim et al. (2014) and Wang et al. (2014) had not considered the 

floor attenuation factor, which limits practical application of the models given the 

ambiguity on the maximum floors that the models can still be considered 

befitting.  Hence, a different independent analysis need to be carried out to 

identify the floor attenuation factor for better stairway’s PL prediction.    

 

 

It is also important to note that attenuation of signal wave as it penetrates 

nearby floors could be influenced by building’s floor height.  Investigation to 

demonstrate the dependency of signal wave losses to floor height can improve 

indoor PL model (EUR., 1999).  Emergency responders may encounter different 

high rises with floor height variations and need unique strategies to deploy IAN’s 

relays based on the different heights.  Investigation on the effect of floor height to 
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floor attenuation is thus essential and must be looked into in order to warrant that 

proposed PL model for the stairway setting could be fine-tuned with respect to 

diverse building floor height.  At present, no study has been carried out to 

characterise the effect.       

 

 

 Aforementioned studies on signal wave propagation were also limited to 

propagation along the stairway structure and did not consider neighbouring indoor 

setting.  IANs for stairway coverage are in fact expected to include adjacent in-

building space where emergency responders demand seamless connectivity 

beyond the stairway to support reliable communication in their emergency 

operations (Souryal et al., 2008).  Signal wave’s propagation through the stairway 

into nearby multi floor sections may have traits that can be distinguished from 

propagation in conventional indoor settings (Austin et al., 2011).  Modelling the 

setting would facilitate future IAN implementation through an optimized 

deployment strategy (Liu et al., 2014).  

 

 

 

 

1.3 Objectives 

 

 

The aim of this research was to develop empirical propagation models 

with respect to the stair environment based on measured PL along and about 

stairways residing in multi floor buildings.  This aim was meant to support and 

further enrich literature on LTE application for public safety communication.  

Thus, objectives that were included in this research study are as follows. 

 

 

1. To characterise PL and the shadowing phenomena for propagation 

within the stairway as well as between the stairway and adjacent 

indoor settings. 
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2.  To conduct the characterisation of PL and shadowing at different 

operating frequencies within the spectrum allocated for LTE.  

 

3. To develop frequency-dependent empirical propagation models for the 

investigated scenarios based on the characterisation of PL and 

shadowing conducted. 

 

4. To validate the empirical propagation models with measurement 

results and make comparison to available indoor empirical propagation 

models. 

 

 

 

 

1.4 Scopes of Work and Research Limitation 

 

 

In order to ensure the research study’s significance, the most popular and 

generally constructed stairway arrangement in multi floor buildings will be 

investigated.  Follows, are the scopes of work decided for this research study. 

 

 

1. The study of PL and shadowing focused on signal wave propagation 

within and about reinforced concrete dog-leg stairway environment. 

 

2. The study of PL and shadowing between stairway and nearby setting 

would be limited to neighbouring rooms adjacent to the stairway.  

 

3. Empirical PL measurement carried out at five narrow band frequencies 

namely 0.7 GHz, 0.9 GHz, 1.8 GHz, 2.1 GHz and 2.5 GHz.   

 

4. Measurement carried out at four different student residential and 

faculty buildings inside Universiti Teknologi Malaysia’s (UTM) 

campus with diverse floor height.  
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5. Measurement carried out in the presence of sporadic and small number 

of moving stair occupants. 

 

 

 

 

1.5 Research Contributions 

 

 

This research work focused on modelling PL empirically with respect to 

the dog-leg stairwell, which is the most common stair configuration found in 

modern buildings.  The proposed PL models have been validated and are shown 

to compute closer prediction-to-measured PL values relative to several indoor PL 

models that are usually set as benchmark when assessing indoor signal wave 

attenuation (Zyoud et al., 2013).  Spectral range covered by the proposed 

frequency-dependant PL models envelop bands that have been dedicated for 

public safety communications (Matolak et al., 2013) as well as Long Term 

Evolution (LTE) fourth-generation (4G) wireless technology (Yan et al., 2013).  

The proposed models could therefore be used as reference works for not only 

public safety communication but also the planning of LTE indoor small cells for 

frequencies within the range where wireless coverage associated to multi floor 

stairwell is concerned (Lim et al., 2014).  Follows are the contributions pertaining 

to indoor empirical propagation modelling presented from this research study. 

 

 

1. The reference measurement campaign setup for transmitter, Tx, and 

receiver, Rx, positioning at two examined scenarios, namely when 

both Tx and Rx are within the stairwell structure as well as when either 

one is located outside and adjacent to the stairwell structure.  Another 

related contribution for the latter scenario include the identification of 

region where different locations of receiver, Rx, but with 

approximately similar d could nonetheless resulted in considerable 

differences in terms of PL values due to their relative position to Tx.  

The observation was reflected in the proposed model.  
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2.  The development of the first frequency-dependant PL and shadowing 

models, covering a nearly 2 GHz wide spectrum ranging from 0.7 GHz 

up to 2.5 GHz for within the stairwell scenario.   

 

3. The description of floor loss and stair flight impact to wireless signal 

wave attenuation that have never been included in preceding works on 

stairwell’s empirical PL models.  Results from examining signal wave 

attenuation when penetrating different floors had in addition revealed 

the influence of floor height variations to PL.  These observations have 

been weighed in to develop a more accurate empirical PL model for 

propagation along the stairwell scenario. 

 

4. The development of the first frequency-dependant PL model for 

stairwell and nearby in-building setting covering spectrum ranging 

from 0.9 GHz up to 2.5 GHz.  Experimental works and analysis on PL 

for stairwell and adjacent rooms in this research work have produced 

frequency-dependent PL model that is more precise for the examined 

scenario relative to standard indoor empirical models. 

 

     

 

 

1.6 Thesis Layout 

 

 

The next five chapters in this thesis cover the fundamentals along with 

research activities involved in the development of propagation models along and 

about the multi floor stairwell for LTE frequency spectrum plus the inferences 

drawn from the study. 

 

 

 The second chapter is the literature review.  This chapter provides review 

on recent developments of public safety communication along with technologies 

that have been proposed to enhance the communication system.  Next, studies 
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carried out by researchers on wireless signal wave propagation along the stairway 

are described.  Topics on wireless propagation and the stairway structure are then 

explained.  The chapter subsequently presents the fundamentals of statistical 

analysis employed in this investigation work. 

 

 

 The third chapter is on methodology.  This chapter illuminates the flow of 

research study by explaining procedures of research activities that have taken 

place.  The activities include pilot study, measurement campaign, and using 

certain techniques to analyse collected data for the development of propagation 

model.   

 

 

Chapter four is on results and discussions for propagation along the 

stairway.  In this chapter, results and analysis based on recorded PL data for the 

stated scenario are presented in order to demonstrate related PL and shadowing 

models as well as their validation. 

 

 

Chapter five is on results and discussions for propagation between 

stairway and adjacent rooms.  Results and discussions are explained in similar 

style as the presentation in chapter four. 

 

 

 Chapter six is the conclusion.  This chapter discusses the inference drawn 

from this research study, justify the significance of the research work and give 

suggestions on future development based on the findings.  
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