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ABSTRACT 

Muscle fatigue is defined as a reduction in muscle’s ability to contract and 

produce force due to prolonged submaximal exercise.  Since fatigue is not a physical 

variable, fatigue indices are commonly used to detect and monitor muscle fatigue 

development.  One suggested approach to quantitative measurement of muscle 

fatigue is based on surface electromyography (sEMG) signal.  Short-Time Fourier 

Transform (STFT) and Continuous Wavelet Transform (CWT) are commonly used 

techniques to obtain time-frequency representation of sEMG signals.  However, S 

Transform (ST) technique has not been applied much to physiological signals.  No 

found literature has used ST technique to extract muscle fatigue indices.  Thus, this 

study intends to determine the feasibility of using ST technique to extract muscle 

fatigue indices from sEMG signal.  Thirty college students with no illness history 

were randomly selected to perform bicep curl activities for 130 seconds while 

holding a 2 kg dumbbell.  Using the three time-frequency techniques (STFT, CWT, 

and ST), four commonly extracted muscle fatigue indices (Instantaneous Energy 

Distribution (IED), Instantaneous Mean Frequency (IMNF), Instantaneous 

Frequency Variance (IFV) and Instantaneous Normalize Spectral Moment (INSM)) 

were extracted from the acquired biceps sEMG signals.  Indices from fatigue signals 

were found to be significantly different (p-value < 0.05) from the non-fatigue 

signals.  Based on the Normalization of Root Mean Square Error (NRMSE) and 

Relative Error, ST technique was found to produce less error than STFT and CWT 

techniques in extracting muscle fatigue indices.  Through the use of 3-fold cross 

validation procedure and with the help of Support Vector Machine (SVM) classifier, 

IMNF-IED-IFV was selected as the best feature combination for classifying the two 

phases of muscle fatigue with consistent classification performance (accuracy, 

sensitivity and specificity) of 80%.  Therefore, this study concludes that ST 

processing technique is feasible to be applied to sEMG signals for extracting 

screening or monitoring measures of muscle fatigue with a good degree of certainty.
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ABSTRAK 

Keletihan otot ditakrifkan sebagai pengurangan keupayaan otot untuk 

mengecut dan menghasilkan daya disebabkan oleh senaman submaksimum yang 

berpanjangan.  Oleh kerana keletihan bukan satu pemboleh ubah fizikal, indeks 

keletihan sering digunakan untuk mengesan dan memantau pengorakan keletihan 

otot.  Salah satu pendekatan yang dicadangkan untuk pengukuran kuantitatif 

keletihan otot adalah berdasarkan kepada isyarat permukaan Elektromiografi 

(sEMG). Jelmaan Fourier Masa Pendek (STFT) dan Jelmaan Wavelet Berterusan 

(CWT) adalah teknik yang biasa digunakan untuk mendapatkan perwakilan masa-

frekuensi bagi isyarat sEMG.  Walau bagaimanapun, teknik Transformasi S (ST) 

tidak banyak digunakan pada isyarat-isyarat fisiologi.  Tiada penulisan dijumpai 

yang menggunakan teknik ST untuk mengekstrak indeks keletihan otot.  Oleh itu, 

kajian ini bertujuan menentukan kemungkinan penggunaan kaedah ST dalam 

mengekstrak indeks keletihan otot daripada isyarat sEMG.  Tiga puluh pelajar kolej 

yang tiada sejarah penyakit telah dipilih secara rawak untuk melaksanakan aktiviti 

ikal bisep selama 130 saat sambil memegang dumbel 2 kg.  Dengan menggunakan 

tiga teknik masa-frekuensi (STFT, CWT, dan ST), empat indeks keletihan otot yang 

sering diekstrak (Taburan Tenaga Ketika (IED), Frekuensi Min Ketika (IMNF), 

Frekuensi Varians Ketika (IFV) dan Spektrum Momen Ternormalisasi Ketika 

(INSM)) telah diekstrak daripada isyarat sEMG bisep.  Indeks daripada isyarat 

keletihan didapati berbeza dengan signifikan (nilai-p < 0.05) daripada isyarat tak-

keletihan.  Berdasarkan kepada Normalisasi Ralat Punca-Min-Kuasa Dua (NRSME) 

dan Ralat Relatif, teknik ST didapati menghasilkan kurang ralat daripada teknik 

STFT dan teknik CWT dalam mengekstrak indeks keletihan otot.  Melalui 

penggunaan tatacara 3-lipat pengesahan silang dan dengan bantuan pengelas Mesin 

Vektor Sokongan (SVM), IMNF-IED-IFV telah dipilih sebagai kombinasi sifat 

terbaik untuk mengklasifikasikan kedua-dua fasa keletihan otot dengan prestasi 

klasifikasi yang konsisten (ketepatan, kepekaan dan kekhususan) iaitu 80%.  Maka, 

kajian ini menyimpulkan bahawa teknik pemprosesan ST boleh dilaksanakan pada 

isyarat sEMG untuk mengekstrak pengukur penyaringan atau pengukur pemantauan 

keletihan otot dengan kepastian yang boleh diterima. 
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  CHAPTER 1

INTRODUCTION 

1.1 Introduction 

Muscle fatigue index is a concept used in the study of fatigue development 

which is defined as the rate of decline of the muscle’s ability to contract and produce 

force.  Since fatigue index is very important in detecting or predicting fatigue 

development, there is a need to find a reliable and sensitive muscle fatigue index.  

Quantitative measurement of fatigue is normally conducted through the analysis of 

electro-myographic signal in time, frequency, and time-frequency domains. 

 

 

Time domain analysis has been widely used by previous researchers because 

of its low computational difficulty and low noise environments (Tkach et al., 2010).  

However, there are situations where some of the information cannot be analysed in 

time domain.  This requires the signal information to be studied in frequency 

domain.  However, frequency domain only describes the frequencies in a waveform, 

but not the timing.  In addition, frequency representation is only suitable for 

stationary signal since the frequency of the stationary signal does not change with 

time.  Yet, real life signals almost always exhibit some degree of non-stationarity 

(frequency of the signal changes constantly).  For these signals, it is not enough to 

know the global frequency content.  It is also important to know the timing in which 

these changes in frequency occur, in order to follow the dynamics of the signal.  

Time and frequency information can be obtained from the time-frequency 

representation.   
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1.2 Background of Study 

Movement of the human body through muscles is controlled by the brain.  

The brain sends excitation signals through Central Nervous System (CNS) whenever 

the muscles of the body are to be used for certain activities; messages from the nerve 

cells in the brain (upper motor neurons) are transmitted to the nerve cells within the 

brain stem and spinal cord (lower motor neurons) which are then transmitted to 

particular muscles (Vincent and Wray, 1990).  In general, movements in the arms, 

legs, chest, face, throat, and tongue are produced by the lower motor neurons which 

were directed by the upper motor neurons. 

 

 

A motor unit is the junction point where the muscle fibres and the motor 

neuron meet.  An illustration of the Motor Unit is shown in Figure 1.1.  A group of 

motor units often work together to coordinate the contractions of a single muscle.  

 

 

 

Figure 1.1  Motor Unit (Jamal, 2012) 

 

 

Dynamic contraction is the most common type of muscle contraction within 

the body.  Dynamic contractions typically involve the rhythmic and repetitive 

motion of large muscle groups.  This is the type of muscular exertion that is often 

used during strength training and cardiovascular exercise, resulting in net gains in 

muscular size, strength, and endurance.   

 

 

Electromyography (EMG) is a measurement of the electrical activity in 

muscles as a by-product of contraction (Konrad, 2006).  A small electrical current 

during muscle activation, known as the myoelectric signal, is generated when a 

http://www.intechopen.com/source/html/40131/media/image1.jpeg
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motor neuron action potential from the spinal cord arrives at a motor end plate.  All 

muscle fibres contract when a motor unit is activated.  The summation of action 

potentials from the muscle fibres is called ‘Motor Unit Action Potential’ (MUAP).  

The MUAP size, shape, and firing rate provide important information for diagnosing 

muscle disorders such as neuromuscular disease (Subasi, 2013; Wu et al., 2013), low 

back pain  (Larivière et al., 2003), and motor control disorder (Oliveira et al., 2010).  

 

 

Recent developments in the analysis and evaluation of EMG signal have 

spurred researches in muscle fatigue assessment (Shaw and Huang, 2010; Al-Mulla 

et al., 2011b; Rogers and MacIsaac, 2013), muscle endurance (Lee et al., 2011), and 

muscle geometry (Phinyomark et al., 2012b).  A muscle may experience fatigue 

when excessive force (above the level of muscle’s strength) is applied to the muscle.  

Generally, muscle fatigue is a body’s way of saying take a break when one is doing 

too much work with one’s muscle.  The symptoms of muscle fatigue such as 

soreness, cramping, pain, tenderness and weakness may last for a few days as people 

recover.  It is important to monitor muscle fatigue as its effect varies from temporary 

disability to death.  Treatment is usually unnecessary if muscle fatigue is induced by 

exercise or overload weight.  However, the treatment and rehabilitation differ if the 

cause was not exercise-induced.  As a rule of thumb, medical attention should be 

sought if the fatigue persists and affects the mechanics and performance of daily 

activities.   

1.3 Problem Statement 

Fatigue is not a physical variable.  Its assessment requires the definition of 

indices based on physical variables that can be measured.  One possible approach to 

quantitative measurement of muscle fatigue is based on the analysis of the surface 

electromyography (sEMG) signal.  According to Al-Mulla et al. (2012), the most 

suitable clinical research tool for muscle fatigue assessment is electromyography 

(EMG).  Studies on muscle fatigue using EMG signal have been widely discussed 

(see Farina et al., 2004; Reaz et al., 2006; Chowdhury et al., 2013).  The changes in 

EMG signals due to fatigue can best be monitored in time-frequency domain 
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(Bartuzi and Roman-Liu, 2014).  This representation which is suitable for a time-

varying (non-stationary) signal is used to obtain the information on the time 

localisation of the spectral components.   

 

 

Short-Time Fourier Transform (STFT), S Transform (ST), Wavelet 

Transform (WT), Wigner-Ville Distribution (WVD), and Cohen Class 

Transformation (CCT) are examples of time-frequency method.  STFT extends the 

applicability of Fourier transform method (for frequency representation) by dividing 

the input signal into segments.  STFT is the most often used by researcher since it 

has less computational burden.  However, the resolution of STFT method is poor.  

Therefore, WT was proposed to overcome the limitations of the STFT.  The 

advantages and the better performance of the WT over STFT, WVD and CCT have 

been reported in the literatures (Karlsson et al., 2000; Bonato et al., 2001; Camata et 

al., 2010; Subasi and Kiymik, 2010).  One advantage of CWT is good in extracting 

information from both time and frequency domains.  It extracts the time and 

frequency components within its entire spectrum by using small scales for 

decomposing high frequency parts and large scales for low frequency component 

analysis.  Although WT is better than other methods, it produces time-scale plot that 

are unsuitable for intuitive visual analysis (Sahu et al., 2009).  It also suffers from 

computational burden and its accuracy depends on the chosen mother wavelet. 

 

 

ST was introduced by Stockwell et al. (1996) to provide the supplementary 

information about spectra which is not available from WT.  Furthermore, ST 

combines the advantages and strength of both STFT and WT to provide multi 

resolution analysis.  For example, if the window of ST is wider in time-domain, it 

can provide better frequency resolution for lower frequency component and if the 

window is narrower, it can provide better time resolution for higher frequency 

component.  Due to its ability to track changes in amplitude and frequency 

simultaneously, ST method is widely used in engineering field.  However, the 

application of ST to electro-physiological signal is very few.  Only two found 

published articles had applied ST method; Rakovic et al. (2006) considered ST in 

heart sound analysis and Assous and Boashash (2012) applied ST to 

electroencephalography (EEG) signal to estimate the robustness of the method to 
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noise.  So far, no research has used ST in muscle fatigue assessment and compared 

the performance of ST with other time-frequency analyses in tracking and 

monitoring muscle fatigue.  Thus, this study was conducted to investigate the good-

of-fit of ST method in extracting muscle fatigue indices.  For that reason, three 

signal processing methods in time-frequency domain (STFT, WT, and ST) were 

compared for their good-of-fit in extracting muscle fatigue indices.  

 

 

Muscle fatigue indices (indicators) are not only important in muscle fatigue 

detection and classification but also for prediction.  The detection and classification 

of muscle fatigue provides important information for sport performance prediction as 

well as rehabilitation program.  Thus, the classification and prediction of muscle 

fatigue using predictive model need to be investigated and enhanced in order to 

improve athletes’ performance and prevent injury.  Even though Artificial Neural 

Network (ANN) (Al-Mulla et al., 2009), Support Vector Machine (SVM) (Oskoei 

and Hu, 2008; Ahmad Sharawardi et al., 2014), Fuzzy Classifier (Shalu George et 

al., 2012), Linear Discriminant Analysis (Al-Mulla et al., 2011b), and K-nearest 

neighbour (K-NN) (Ahmad Sharawardi et al., 2014) are among the promising 

techniques in predicting muscle fatigue, SVM has been shown to outperform the 

other techniques (Subasi, 2013).  Thus, with the assistance of SVM classifier, it is 

also the intention of this study to classify muscle signals (fatigue or non-fatigue) 

based on the extracted fatigue indicators.  

1.4 Research Objectives 

This research aims to classify fatigue phases based on time-frequency 

analysis of sEMG signal via the following objectives: 

 

 

i. To extract significant fatigue indicators from biceps brachii sEMG 

signal (during dynamic contractions) using three time-frequency 

methods: Short Time Fourier Transform (STFT), S Transform (ST) 

and Continuous Wavelet Transform (CWT). 
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ii. To compare the good-of-fit of the three time-frequency methods in 

extracting fatigue indicators based on Normalization of Root Mean 

Square (NRMSE) and Relative Error. 

iii. To classify the fatigue and non-fatigue phases of EMG signal using 

SVM classifier based on the significant fatigue indicators which were 

extracted using the best good-of-fit among the three time-frequency 

methods. 

1.5  Research Scope 

The scopes of this research are: 

 

 

i. The participants that took part in this research were healthy college 

students with no historical muscle disorder. 

ii. The NEUROPRAX full band DC-EEG system was used for dynamic 

EMG data collection. 

iii. The muscle signals were acquired by using surface Electromyography 

(sEMG). 

iv. The electrodes of sEMG were applied to the biceps brachii of right 

upper arm. 

v. The fatigue indicators were extracted from three time-frequency 

methods: STFT, CWT, and ST. 

vi. The data or signal processing was performed using MATLAB 

software. 

vii. SVM classifier was used as the predictive model. 
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1.6 Research Contributions 

The contributions of this research are: 

 

 

i. The application of ST method to the sEMG signal.  The findings 

show that the ST method produces lower error than STFT and WT 

methods when assessing muscle fatigue during dynamic contractions. 

 

 

ii. The reliable muscle fatigue indicators which were extracted in time-

frequency domain.  The selected fatigue indicators (instantaneous 

mean frequency (IMNF), instantaneous frequency variance (IFV), 

instantaneous energy distribution (IED), and instantaneous 

normalized spectral moment (INSM)) characterize muscle fatigue and 

serve as significant indices in muscle fatigue assessment. 

 

 

iii. The good performance of a simple yet effective predictive model 

(Support Vector Machine, SVM) in detecting or predicting muscle 

fatigue during dynamic contraction.  The findings show that the 

signals with and without fatigue are effectively classified and the 

combination of fatigue indicators increase the accuracy of the 

classification. 

 

 

iv. This study produces two articles which are attached in Appendix A. 

1.7 Thesis Organization 

This thesis is structured into five chapters.  Chapter 1 introduces the 

background of the research as well as highlighting the problem statement, objectives, 

and scopes of this research.  The research contributions are also highlighted in this 

chapter.   
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Chapter 2 covers the literature review and theoretical background of the 

research.  The review focuses on the background of muscle fatigue, surface 

Electromyography, time-frequency analysis, and predictive modelling method 

(which includes model design and model validation).  Knowledge gap are 

highlighted along the reviews. 

 

 

 Chapter 3 describes the methodology that was used to experimentally 

acquire the data, analyse the acquired data, and validate the performance of the SVM 

predictive model.  All research activities in analysing muscle fatigue signal are 

described in details.  

 

 

Chapter 4 presents the analyses of the result along with discussion.  The 

significance of the extracted fatigue indicators and the good-of-fit of the three time-

frequency methods are reported in this chapter.  The performances of SVM classifier 

in classifying fatigue phases are discussed comprehensively.  Statistical analysis of 

the outcome measures and the classification performance are presented as well. 

 

 

Chapter 5 concludes the findings of the research.  In order to improve the 

performance of the proposed method and the development of muscle fatigue 

research, this chapter provides some suggestions and recommendations for potential 

future study. 
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