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ABSTRACT 

Micro hydrokinetic energy scheme presents an attractive, environmentally 

friendly and efficient electric generation in rural, remote and hilly areas. However, this 

scheme is yet to be fully discovered, as researchers are still searching for solution for 

the main problems of low velocity of current in the open flow channels and low 

efficiency of hydrokinetic turbines. This research proposes a novel system 

configuration to capture as much as kinetic energy from stream water current. 

Deploying acceleration nozzle in channels is a unique solution for increasing the 

efficiency of channels’ current flow systems while the use of micro hydraulic cross 

flow turbine (CFT)/ Banki turbine is the most proper and practical solution. This 

system,  known as bidirectional diffuser augmented (BDA) channel, functions by 

utilizing dual directed nozzles in the flow, and surrounded by dual cross flow/ Banki 

turbines. In this study, numerical and experimental investigations were carried out to 

study the flow field characteristics of the new system approach with and without 

turbines. A numerical investigation was carried out in this research work using finite 

volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX 

and Fluent. Validation was carried out by using experiments, with and without 

turbines. The flow characteristics through channel and the performance of the twin 

(lower and upper) cross flow turbines were studied, and it was found that the water 

flow speed had been significantly enhanced due to the current BDA system in which 

the speed of the flow was increased by 400%.  The maximum efficiency of the overall 

system with two turbines was nearly 55.7%. The efficiency was relatively low 

compared to hydraulic turbine efficiency, however, this can be considered very good 

in view that head available to the present system was very low. The use of this system 

will contribute towards a more efficient utilization of flows in rivers and channels for 

electrical generation in rural areas.  
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ABSTRAK 

Sistem tenaga mikro hidrokinetik merupakan sumber janaan tenaga yang mesra 

alam dan cekap di luar bandar, pedalaman dan kawasan berbukit. Walau 

bagaimanapun, sistem ini masih belum dikaji sepenuhnya dan para pengkaji masih 

mencari penyelesaian kepada masalah halaju yang perlahan dalam saliran air terbuka 

dan rendahnya kecekapan turbin hidrokinetik. Kajian ini mencadangkan konfigurasi 

sistem baru untuk menjana seberapa banyak tenaga kinetik daripada arus aliran air. 

Pemasangan nozel pemecut di saliran merupakan penyelesaian unik untuk 

meningkatkan kecekapan sistem arus saliran manakala penggunaan turbin aliran 

lintang hidraulik mikro (CFT)/turbin Banki merupakan penyelesaian terbaik dan 

praktikal. Sistem ini yang dikenali sebagai saluran penambah serapan dua hala (BDA) 

berfungsi dengan menggunakan nozel dwi tuju di dalam aliran, dikelilingi aliran dan 

lintang/ turbin Banki. Kajian berangka dan eksperimen telah dijalankan untuk 

mengkaji kaedah baru sistem ciri-ciri medan aliran ini dengan dan tanpa turbin. 

Simulasi berangka telah dilakukan menggunakan kod ANSYS CFX dan Fluent finite 

volume Reynolds-Averaged Navier-Stokes Equations (RANSE). Pengesahan telah 

dijalankan melalui eksperimen, dengan turbin dan tanpa turbin. Ciri-ciri aliran melalui 

sistem saluran dan prestasi dwi (bawah dan atas) turbin aliran lintang telah dikaji dan 

didapati bahawa aliran air telah dipertingkatkan dengan ketara disebabkan oleh sistem 

BDA di mana kelajuan aliran telah meningkat sebanyak 400%. Kecekapan tertinggi 

keseluruhan sistem dengan dua turbin adalah hampir 55.7%. Kecekapannya didapati 

lebih rendah daripada kecekapan turbin hidraulik. Namun, kecekapan ini boleh 

dianggap sangat baik memandangkan tekanan sedia ada untuk sistem kajian ini adalah 

sangat rendah. Penggunaan sistem ini akan menyumbang ke arah penggunaan aliran 

yang lebih cekap di sungai-sungai dan saluran bagi penjanaan elektrik di kawasan luar 

bandar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

From 7 billion population of the world, 1.3 billion people still remain without 

access to electricity, especially those in the rural and poor areas. From this number, 

22% are those living in developing countries; mostly living in the sub-Saharan Africa 

and developing countries in Asia (International Energy Agency's World Energy 

Outlook 2014). Nevertheless, it is expected that in the beginning of year 2040, at least 

one billion people gain access to electricity while nearly 500 million still remain 

without access. Renewable energy is also expected to represent 50% of the total power 

generation in these areas (International Energy Agency). This is because renewable 

resources provide efficient solution to achieve a perfect connection between renewable 

energies and sustainable development in the future. Tidal- current energy is one of the 

most prominent, clean and predictable renewable power resource from water in the 

world, especially regarding micro stations which can be deployed in isolated and hilly 

areas for electrification process (Kai et al., 2013; Hammar. et al., 2012; Liu, et al., 

2011).  

Micro hydropower scheme is the most suitable and efficient option for 

generating renewable energies. This is due to its low environmental harmful effect and 

lower operation and maintenance costs (Paish, 2002). Most rural and hilly areas use 

micro hydropower plants in order to generate cheap, available and effective electricity 

supply (Vermaak et al., 2014). Moreover, the micro hydropower schemes present an 

effective solution which has been recommended by many international organizations 
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such as The United Nations Industrial Development Organization and The World 

Bank. Hydrokinetic technology is a new type of micro hydro-power that functions by 

utilizing hydrokinetic turbines in flow of river or channels to produce power (Vermaak 

et al., 2014; Chamorro et al., 2013; Kumar et al., 2011). Harnessing kinetic energy 

from the flow of water in open channels is closely similar to tidal current power 

generation, so that existing facilities like weirs, barrages and falls can be optimized. 

Many countries such as Malaysia that are surrounded by irrigation or rainy 

channels, have a great potential for exploiting this feature of nature. Adhau et al. 

(2012) carried out extensive study for potential sites, on the hydrological data for 

feasible development of mini/micro hydro power plant. They concluded that irrigation 

projects are viably economical and technical for micro power generation. Current or 

hydrokinetic energy that can be captured from the water flow in the irrigation and rainy 

channels is a new type of micro hydro-power system. This might be a promising 

technology in the countries with vast tidal current energy.  

The open helical channels has wide range of application in nuclear, chemical, 

polymer processing, heat and mass transfer fields. These various applications can be 

developed for expanding the range of their applications, especially in the renewable 

energy field. The flow in helical channels is able to create centrifugal force from the 

curved wall to the channel center by which the highest velocity at the outside wall 

caused (Williams et al., 1902). This accelerates the flowing water through the 

channels. It is certainly useful in case of energy extraction from the water channels.  

On the other hand, accelerated nozzle in channels, a subject in the renewable 

energy fields that little attention is paid to, is the most efficient choice to accelerate the 

flow and increase the harnessed power of the flowing water. 

In the last four years, researches were focused on studying the stream of water 

in channel technology in both flow pattern and turbine system viewpoint. They have 

discussed the developments on the open channel flow and the most appropriate turbine 

system which can be utilized in these channels. There are various conventional current 
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energy turbines which can be used to capture the hydrokinetic energy from the flowing 

of water, horizontal axial flow turbines and vertical axis flow turbines. 

Besides, one of the most attractive turbines is cross flow turbine (CFT) which 

is known as Banki and Ossberger turbine. This type of turbine is more practical than 

the other types of existing micro hydropower turbines. It is easy to construct and cost 

effective (Olgun 1998). These turbines are also suitable for high and medium flow 

rates and low head (Ghosh et al.,2011) capable of generating average efficiency of 

80% for small and micro power outputs (Ossberger GmbH Co. 2011). This value is, 

however, lower than those of other most popular hydro turbines such as Pelton, Turgo, 

Francis and Kaplan (Okot 2013). In comparison, the main advantage of this turbine is 

its ability to keep maximum efficiency with different ranges of flow (Walseth 2009). 

Hence, the CFT is more appropriate for run-of-river applications due to its lower 

requirement for large head, and it is depending on the flow rate than other types of 

hydro turbines (Olgun 1998). 

1.2 Problem Statement 

Nowadays, irrigation or rainy channels have a great potential for developing 

renewable energy sector in the developing countries. Though potential, this scheme is 

yet to be fully discovered to the considerable extent, as researchers are still searching 

for solution for the main problem of low velocity and low depth of current in the open 

flow micro channels. This low current characteristic is the main consideration of this 

study. This is become important when it is known that conventional tidal current 

turbines are highly dependent upon the current speed and water depth. Moreover, 

another drawback of the conventional tidal current turbines is its low efficiency.  

1.3 Objectives of the Study 

Due to the shortcomings explained in the problem statement, the flow in the 

channel system needs to be accelerated in order to increase the harnessed power. 
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Deployment of a novel turbine configuration in the channel is a solution to overcome 

the low efficiency of conventional hydrokinetic turbines. Therefore, the main goal of 

this research is to improve the flow characteristics and enhance overall efficiency of 

the system for better extracting tidal current energy from flow in a channel, stream or 

river. 

The objectives are to: 

i. Develop a new configuration system with bidirectional nozzles in two 

directions of the micro channel. 

ii. Develop a new type of hydraulic cross flow turbine system suitable for 

the micro scale water channels. 

iii. Evaluate turbine operation and performance in the new channel 

arrangement in order to analyze the whole system. 

1.4 Scope of the Study 

In this study, a novel system configuration has been proposed in order to 

capture as much as kinetic energy from the water flow in micro scale channels. This 

idea is fairly a new approach in the hydrokinetic energy generation fields. The system, 

known as bidirectional diffuser augmented channel (BDA), is totally dependent upon 

utilizing bidirectional nozzle in two different flow directions, surrounded by dual cross 

flow/Banki turbines. 

The optimum parameters of the bidirectional nozzle and CFT runners utilizing 

in micro channels were analyzed and determined using CFD. Then, prototype of the 

BDA channel with optimized CFT rotors had been fabricated for using in experiment. 
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1.5 Significance of the Study 

Micro hydropower stations are significantly cost effective in socio-economic 

development, particularly for isolated hilly and rural areas. Moreover, hydrokinetic is 

a novel type of micro hydropower energy by which the energy can be extracted from 

rivers, irrigation/rainy channels and shallow waters. Development of hydrokinetic or 

current schemes involves with a main problem which is the appearance of low 

velocities. Installing nozzles in channels is the most efficient solution to overcome this 

issue. The current study proposed a new system of nozzles to be deployed in micro 

rainy and irrigation channels.  

Implementation of cross flow turbine (CFT) or Banki turbine also is the most 

proper solution to overcome the low efficiency of conventional tidal current turbines. 

It is observed that this solution is more practical; efficient, simple and cost effective. 

The use of CFT with current configuration is a new concept of hydrokinetic power 

generation.  

Numerical and experimental investigations were carried out in this research in 

order to evaluate the novel approach system. Moreover, CFD is becoming an important 

tool to investigate and design the cross flow turbines and it is supported by validated 

results. 

1.6 Organization of the Thesis 

Structure of this thesis is organized in six chapters. First chapter presents an 

overview of the current study. It also provides the objectives, scope and the 

significance of the present research with respect to the literature review findings. 

In chapter two a detailed review of the previous researches which are related 

to the current work are provided. For the clarity of presentation, the literature review 

has been grouped under different headings namely, open channel flow, tidal current 
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power (hydrokinetic power) turbines, operation and performance of low head micro 

hydropower turbines and cross flow turbines/ Banki turbines. 

Chapter three presents objectives, scopes and numerical and experimental 

research methods of different stages. Mathematical model, grid generation, 

computational method, and its assumptions are explained in this chapter. Experimental 

methodology which gives the detailed description of facilities, experimental set up and 

apparatus and the test procedure are also included.  

Chapter four proposes the numerical results for the usage of helical channel 

and different nozzle shapes in micro scale open channels. It also presents the 

experimental and numerical results and findings of a new configuration system known 

as bidirectional diffuser-augmented channel which utilizes bidirectional nozzles in two 

directions of channels with and without turbines. 

Chapter five discusses the numerical results of flow characteristics of helical 

and nozzle channel. Furthermore, special configuration of ducted channel and dual 

cross flow turbines performance are discussed experimentally and numerically in four 

sections.  

Finally, chapter six presents the conclusions drawn from the numerical 

simulation and experimental test of the special configuration of nozzle system and 

cross flow turbines. In addition, recommendations for future studies in this field have 

also been presented. 
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