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ABSTRACT 

Common authentication mechanisms in mobile devices such as passwords 

and Personal Identification Number have failed to keep up with the rapid pace of 

challenges associated with the use of ubiquitous devices over the Internet, since they 

can easily be lost or stolen. Thus, it is important to develop authentication 

mechanisms that can be adapted to such an environment. Biometric-based person 

recognition is a good alternative to overcome the difficulties of password and token 

approaches, since biometrics cannot be easily stolen or forgotten. An important 

characteristic of biometric authentication is that there is an explicit connection with 

the user's identity, since biometrics rely entirely on behavioral and physiological 

characteristics of human being. There are a variety of biometric authentication 

options that have emerged so far, all of which can be used on a mobile phone. These 

options include but are not limited to, face recognition via camera, fingerprint, voice 

recognition, keystroke and gesture recognition via touch screen. Touch gesture 

behavioural biometrics are commonly used as an alternative solution to existing 

traditional biometric mechanism. However, current touch gesture authentication 

schemes are fraught with authentication accuracy problems. In fact, the extracted 

features used in some researches on touch gesture schemes are limited to speed, time, 

position, finger size and finger pressure. However, extracting a few touch features 

from individual touches is not enough to accurately distinguish various users. In this 

research, behavioural features are extracted from recorded touch screen data and a 

discriminative classifier is trained on these extracted features for authentication. 

While the user performs the gesture, the touch screen sensor is leveraged on and 

twelve of the user‘s finger touch features are extracted. Eighty four different users 

participated in this research work, each user drew six gesture with a total of 504 

instances. The extracted touch gesture features are normalised by scaling the values 

so that they fall within a small specified range. Thereafter, five different Feature 

Selection Algorithm were used to choose the most significant features subset. Six 

different machine learning classifiers were used to classify each instance in the data 

set into one of the predefined set of classes. Results from experiments conducted in 

the proposed touch gesture behavioral biometrics scheme achieved an average False 

Reject Rate (FRR) of 7.84%, average False Accept Rate (FAR) of 1%, average Equal 

Error Rate (EER) of 4.02% and authentication accuracy of 91.67%,. The 

comparative results showed that the proposed scheme outperforms other existing 

touch gesture authentication schemes in terms of FAR, EER and authentication 

accuracy by 1.67%, 6.74% and 4.65% respectively. The results of this research 

affirm that user authentication through gestures is promising, highly viable and can 

be used for mobile devices.  
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ABSTRAK 

Mekanisme pengesahan lazim untuk peranti mudah alih seperti kata laluan 

dan Nombor Pengenalan Peribadi gagal untuk bersaing dengan sentakan cabaran 

disebabkan penggunaan merata peranti internet kerana ia mudah hilang atau senang 

dicuri. Oleh itu, pembangunan mekanisme pengesahan yang boleh di adaptasi kepada 

persekitaran sedemikian amat penting. Pengecaman perseorangan berasaskan 

biometrik adalah alternatif terbaik untuk mengatasi kesukaran yang dihadapi 

pendekatan penggunaan katalaluan dan token, kerana biometrik tidak mudah dicuri 

atau dilupai. Ciri penting pengesahan secara biometrik adalah perhubungan tersurat 

dengan identiti pengguna, kerana biometrik bergantung sepenuhnya kepada ciri 

perlakuan dan fisiologi manusia. Terdapat beberapa pilihan pengecaman biometrik 

yang wujud sejak kebelakangan ini, dan kesemuanya boleh digunakan untuk telefon 

mudah alih. Pilihan ini termasuk tetapi tidak terhad kepada pengecaman muka 

melalui kamera, cap jari, pengecaman suara, ketukan kekunci, dan pengecaman 

gerak isyarat melalui skrin sentuh. Perlakuan biometrik gerak isyarat sentuhan 

lazimnya digunakan sebagai penyelesaian alternatif kepada mekanisme biometrik 

tradisional sedia ada. Walau bagaimanapun skema pengesahan gerak isyarat 

sentuhan dipenuh dengan masalah ketepatan pengesahan. Dalam beberapa kajian 

skema gerak isyarat sentuhan, ciri yang diekstrak hanya terhad kepada komponen 

kelajuan, masa, kedudukan, saiz jari dan tekanan jari. Walau bagaimanapun, 

pengekstrakan beberapa ciri daripada sentuhan individu adalah tidak memadai dalam 

membezakan pengguna secara tepat. Dalam kajian ini, ciri tingkah laku diekstrak 

dari data skrin sentuh yang telah direkodkan. Pengkelas diskriminatif difokuskan 

kepada ciri tersebut bagi tujuan pengesahan. Semasa pengguna melakukan gerak 

isyarat, skrin sentuh akan diumpil dan dua belas daripada ciri sentuhan jari pengguna 

diekstrak. Lapan puluh empat pengguna berbeza mengambil bahagian dalam kajian 

ini; setiap pengguna melakarkan enam gerak isyarat yang berbeza dengan 504 

jumlah tika. Ciri gerak isyarat sentuhan yang diekstrak dinormalisasikan melalui 

penskalaan nilai supaya ia tergolong dalam julat kecil tertentu. Seterusnya lima 

Algoritma Pemilihan Ciri berlainan digunakan untuk memperolehi ciri subset yang 

paling bererti. Enam pengkelas pembelajaran mesin berbeza telah digunakan  untuk 

mengkelas setiap tika dalam set data kepada salah satu daripada set kelas yang 

tertakrif. Hasil ujikaji yang dilaksanakan dalam skema biometrik tingkah laku ini 

mencapai ketepatan purata FRR (Kadar Pendakan Palsu) sebanyak 7.84%, purata 

FAR (Kadar Penerimaan Palsu) sebanyak 1%, purata EER (Kadar Ralat Sama) 

sebanyak 4.02% dan ketepatan pengesahan sebanyak 91.67%. Perbandingan hasil 

kajian menunjukkan skim yang dicadangkan mengatasi skim pengesahan gerak 

isyarat sentuhan sedia ada dari segi keupayaan FRR, FAR dan EER masing-masing 

sebanyak 1.67%, 6.74%, dan 4.65%. Hasil kajian ini mengesahkan bahawa 

pengesahan pengguna menggunakan gerak isyarat adalah sangat menggalakkan, 

berdaya maju, dan boleh digunakan untuk peranti mudah alih. 
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CHAPTER 1  

INTRODUCTION 

In this chapter, the research problem background and statement are stated, 

and then followed by research objectives, which used to handle and treat these 

problems. Furthermore, other aspects such as research scope, and significance of the 

research are determined. Finally, the chapter concluded with thesis organization and 

summary. 

1.1 Research Overview 

Mobile phones and to be specific the smartphone have largely permeated in 

almost all our daily lives, currently they are part and particle of our daily lives be it at 

work, in schools, generally in all spheres of our lives today. This has been largely 

due to the wide range of services the smartphone provides such as keeping track of 

appointments, meetings, providing multimedia storage, access to social media and 

email, among others making it a very fundamental device in human life today. This 

has made its demand to soar up in terms of number of its users, according to Seo et al 

(2012), there were 326.5 million smartphone users in 2010 globally, this was an 

increase of roughly 15 times in comparison to the number of users in 2005; they 

forecast by 2012 the number of users would reach 766.1 million. Most mobile phone 

services are provided via the internet making it ubiquitous, with a potential of 

unauthorized users getting unlimited access to the device. This may lead to data that 

is private and sensitive to the owner be stolen or abused (Guse and Müller, 2011). To 

help deter such, it is necessary to develop authentication mechanisms that are reliable 

and secure enough for mobile phones. 
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Currently common mobile authentication mechanisms such as passwords, 

PINs have failed to keep up with the pace of challenges presented with use of 

ubiquitous devices over the internet, since they can easily be lost or stolen 

(Crawford, 2010). Thus, it is important to develop authentication mechanisms that 

can be adapted to such environment. Biometric-based person recognition is a good 

alternative to overcomes the difficulties of password and token approaches (El-Abed 

et al, 2010; Jain and Kumar, 2010; Shanmugapriya and Padmavathi, 2011). In 

addition unlike PINs, passwords, tokens, biometrics cannot be easily stolen or 

forgotten. 

An important characteristic of biometric authentication is that there is an 

explicit connection with the user's identity, since biometrics rely entirely on 

behavioral and physiological characteristics of the human being. Thus, require the 

physical presence of the human being in question to explicitly provide the required 

biometric authentication actions for the device authenticate. Derawi et al, 2010 

mentioned that there are a variety of biometric authentication options that have so far 

emerged which can be used on a mobile phone. These options include but not limited 

to, face recognition through the camera, fingerprint, voice recognition, keystroke and 

gesture recognition via touch screen or camera.  

Android mobile devices recently brought face recognition to the masses by 

enabling user authentication through the front-facing camera. Even though intuitive 

and fast, this type of authentication suffers from typical computer vision limitations. 

According to Wang et al (2015) face recognition performance degrades under poor 

or different lighting conditions than the ones used during training. Given that mobile 

devices constantly follow their users, such fluctuations on the environmental 

conditions are common. 

More recently, iPhone mobile devices enabled users to easily and securely 

unlock their devices by embedding a fingerprint sensor in the home button. Even 

though this approach addresses both the usability and security requirements of the 

authentication process, it is fundamentally limited to devices with large physical 

buttons on the front, such as the home button on iPhone, where such a sensor can be 
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fitted. However, as phone manufacturers push for devices with large edge-to-edge 

displays, physical buttons are quickly replaced by capacitive buttons that can be 

easily embedded into the touch screen, eliminating the real-estate required by a 

fingerprint sensor. Embedding fingerprint sensors into touch screens behind gorilla 

glass is challenging, and has not been demonstrated. 

This research focuses one of the mentioned biometric authentication methods, 

namely touch gesture recognition. According to Zhang et al (2015) most of the latest 

mobile phones have embedded sensors which can be used for touch gesture mobile 

biometric authentication. Touch gestures, as a kind of behavioural biometric, are 

basically the way users swipe their fingers on the screen of their mobile devices. 

They have been used to authenticate users while users perform basic operations on 

the phone. In these methods, a behavioural feature is extracted from the recorded 

screen touch data and a discriminative classifier is trained on these extracted features 

for authentication.  

While the user performs the gesture, it leverages the touch screen sensor to 

extract touch user‘s finger features (size, pressure, timing and distance).  When 

combined, the information from touch sensors provides ides a detailed view into how 

the individual user performs the gesture, and, as it shows in this research, it can be 

used as a sensor finger touch to authenticate the user. Attackers willing to bypass this 

authentication mechanism, face a much harder task as they have to simultaneously 

reproduce the timing, placement, size, and pressure of each finger touch. This thesis 

presents a mechanism of user authentication in mobile devices based on gestures as 

the behavioral biometrics. Results from experiments conducted in this research work 

affirm that user authentication through gestures is promising, viable and can be used 

in mobile devices.  

1.2 Research Background 

When a mobile phone in particular a smartphone is stolen, a lot of private and 

sensitive data can be compromised and be exploited for malicious activities, as such 
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users of such phones usually are concerned about their sensitive data stored in the 

phone than the phone itself (Kuhn and Johnson, 2013). In essence, when a 

smartphone is lost, the consequences that come with it are dire, they include privacy 

intrusion, user impersonation, and sometimes severe financial loss. As a first defense 

step, user authentication is essential to protect a system (Crawford, 2010). Currently, 

user authentication systems for mobile phones are mainly based on three techniques: 

passwords, physiological biometrics and behavioral biometrics (Meng et al, 2013). 

Password authentication has well-known drawbacks, for instance, passwords 

can often easily be guessed and stolen through ―shoulder surfing‖ (Meng et al, 2013). 

Ross et al (2008), have come up with a list of attacks such as password guessing, 

shoulder surfing and password log-in mobile applications among others; in most 

cases these attacks are easily launched to compromise password based authentication 

systems. Furthermore, even the best password can be stolen by dictionary and brute 

force attacks (Karnan et al, 2011). Moreover, password authentication method bring 

insufficient security level because writing them down, using simple passwords, or 

reusing passwords make them easy to break. 

In order to alleviate these pitfalls that are associated with password 

authentication, ongoing research is focused on biometric authentication mechanisms 

that can be used with mobile phones. Previous studies (Sesa-Nogueras and Faundez-

Zanuy, 2012; El-Abed et al, 2010; Jain and Kumar, 2010; Shanmugapriya and 

Padmavathi, 2011; Karnan et al, 2011) have reported that biometric-based person 

recognition is a good alternative to overcome the difficulties of password 

authentication. Biometric authentication is an authentication mechanism that uses 

human behavioral or physiological characteristics that are measurable, to define and 

represent the identity of a user. 

Human physiological biometrics are the physical human body characteristics 

that uniquely identify a person, these include fingerprints, retina and human face 

(Bours, 2012). Such biometrics are known to offer a consistent performance, 

however, they are also known to have a common disadvantage of being non-

standardized and costly (Ngugi et al, 2011). In addition physical biometrics are 



 5 

difficult and intrusive for collectability, Low degree of user acceptability (Jain and 

Kumar, 2010). Banerjee and Woodard (2012), reported that the use of biometrics 

such as face, fingerprints and signature requires additional tools to acquire the 

biometric which leads to an increase in costs. 

In contrast, behavioral biometrics authentication rely upon a person's actions 

or habits to uniquely identify that person. Behavioral biometrics authentication may 

include signature recognition, mouse dynamics, touch gesture and keystroke 

dynamics. Behavioral biometrics can be an alternative to physical biometrics, 

therefore address some of the earlier pitfalls of physical biometrics.  In addition, 

behavioral biometrics are easily implementable since they can be implemented at the 

software level (Yampolskiy and Govindaraju, 2010). These biometrics can be 

unobtrusive and easily collected, without the user's knowledge (Bours, 2012). In 

addition, collection of data about the behavioral biometrics does not often require 

any special hardware and therefore it is cost effective (Jamil and Khan, 2011). 

Traditional biometric methods include fingerprints, face or voice recognition 

have been used in mobile devices for user authentication. However, face or voice 

recognition have an issue not very well suited in every situation. The authentication 

method must be able to cope with very different environments for example relatively 

dark or noisy. In addition, Fingerprints rely on specific scanners which are not 

available on every smartphones today. Furthermore, embedding fingerprint sensors 

into touch screens behind gorilla glass is challenging, and has not been demonstrated 

(Wang et al, 2015). In the other hand, another traditional biometric method is 

keystroke authentication. keystroke authentication used traditional keyboards could 

only provide temporal information for example time interval between keystroke and 

time interval of a key being pressed (Trojahn and Ortmeier, 2013). 

Touch screen like most popular input devices like the keyboard and mouse, 

can easily be used to recognize a person by extracting the features and use them 

through analyzing input patterns. In as such much as touch screen based devices use 

the touch screen as the basic input platform that facilitates interaction between the 

device and the user, there is very little knowledge about how this interaction can be 
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related to a specific user. Trojahn and Ortmeier (2013) said that touch screen mobile 

devices can provide very specific data of finger pressure, finger size or (relative) 

position where a touch has been hit. In addition, some features from the touch screen 

authentication method can be used because of the capacitive display. 

With the increased popularity of touchscreen mobile phones, touch gesture 

behavior is increasingly becoming important in comparison to its counterpart the 

keystroke behavior, since almost all smartphones use the touch screen as the main 

input method (Meng et al, 2013). A gesture based authentication system would make 

it more difficult for a shoulder surfer to replay the password, even if he observes the 

entire gesture. Subtleties like force, speed, flexibility, pressure, and individual 

anatomical differences would prevent the casual observer of the password (Niu and 

Chen, 2012). 

Many touch gesture behavioral biometrics authentication schemes have been 

produced for smartphones authentication. Burgbacher et al (2014), proposed 

authentication scheme for smartphones and other touch screen-based devices that 

combine behavioral biometrics from the fingertip movement on touch screens. They 

developed an android application which collects behavior features from the touch 

screen such as a sequence of x and y positions representing the location of the finger 

touch, and a timestamp for each location. The proposed authentication scheme and 

recognition algorithms are assessed by 42 users with 90% accuracy. The weakness of 

their proposed authentication scheme is concerning the small session number in 

which the data was collected. Because the data from a single subject was obtained in 

only one session may have influenced the performance of the system.  In addition, 

one way to improve the proposed scheme could be to involve more features such as 

the fingertip pressure and finger size.  

Veniamin Ginodman et al (2014) presented an authentication scheme based 

on behavioural biometric, consisting of two gesture touch screen related features 

such as speed and time. They implemented an extraction application system for these 

features using a touch screen mobile phone, running Android operating system of a 

Google/HTC Nexus One phone. In their evaluation, they used three classifiers 
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algorithms to classify their touch data namely Naive Bayes (NBayes), decision tree 

and k-nearest neighbour (IBK). However, the WEKA platform tool was used for data 

extraction to avoid any implementation bias. The evaluation was conducted using 50 

participants with Android phones. Their study evaluation results show that their 

proposed authentication mechanism positively affects the performance of 

authentication by having good authentication accuracy with an average FAR of 

7.74% and an average FRR of 6.65%. The accuracy of authentication can further be 

improved by adding more appropriate classifiers, such as bagging classifier or 

random forest classifier and also consider other touch gesture related features like the 

touch distance. 

Xu et al (2014) suggested a touch-based authentication framework to 

authenticate user. The authentication proceeds in a passive way while the user 

performs her normal touch operations.  As a first attempt, they investigated the 

underlying fundamentals of touch operations as biometrics. In other words, they 

evaluated whether the data features are distinctive among various users and they 

manage to achieve 8.67% average equal error rate. They have conducted a real-world 

experiment involving over 30 users. They collected four types of touch features 

which are x and y coordinates, time, size, pressure, and saves their touch data 

sequences for further analysis. There is a quite implementation issue of their touch-

based authentication framework. Examples design a user-friendly mechanism to 

obtain data samples for training purpose rather than runs silently as a smartphone 

background service. 

Li et al (2013) proposed gesture biometric-based system to achieve 

authentication for smartphones using users‘ finger movements. They carried out all 

our data collections and experiments on Motorola Droid phones involving 75 users. 

The data collections will gather the four types of touch features which position, 

pressure, distance, time and saves their touch data sequences for further analysis. 

Experiments show that their system is efficient on smartphones and achieves good 

79.74% accuracy. In order to improve the accuracy result, more touch features could 

be extracted. 
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Wolff (2013) looked at the different sensors provided by mobile phones, and 

show that data collected from these sensors can distinguish mobile users by 

analyzing the user‘s interaction with the device. He extracted additional features, 

inducing the direction of a gesture, the end point, the distance between the beginning 

and end of a gesture, the gesture speed, and the lateral variance on a gesture. He was 

able to correctly identify the user with 83% accuracy. The weakness of his work is 

having small number of user to test and evaluate the scheme. A larger scale study 

incorporating more users is needed in order to realize a more accurate authentication 

mechanism that can identify them based on data of their touch gesture biometric. 

Meng et al (2013) utilized accurate user authentication mechanism which a 

behavioral feature set that is related to touch dynamics. Results from this experiment 

show that the neural network classifier is accurate enough to authenticate a variety of 

users; however, there was an error rate of 7.8% on the selected features used in that 

experiment. They suggested that using other classifiers, involving more participants 

and also gather more data on touch gesture biometrics, may help in even getting a 

more accurate and efficient mechanism. 

In their behavioural biometrics touch screen study, Kolly et al (2012) 

investigated whether they could differentiate users based on their behaviour on the 

touch screen. To accomplish that objective, they collected data on touch events for 5 

users; and realized that they could identify a user with an accuracy of 80% there 

about. The data collected was on basic touch properties like pressure, time and 

position. The weakness of his work is having a small number of users to test and 

evaluate the scheme. As such, a large scale study that incorporates more users is 

preferred such that more data can be collected, hence realize a more accurate 

mechanism to identify users based on data from their touch gesture behavior 

biometric. 

Although, several researches have been conducted on touch gesture 

behavioral biometrics authentication, there are still some issues that can be 

highlighted. The main issue is to enhance authentication accuracy (Burgbacher et al, 

2014; Li et al, 2013; Wolff, 2013; Kolly et al, 2012). In order to enhance the 
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authentication accuracy, using more several known machine learning algorithms 

(e.g., Naive Bayes, decision tree) for classification and features selection algorithm. 

The second issue is extracting few touch features from individual touches, such as 

touch duration and touch direction which is not enough to distinctive among various 

users (Sitova et al, 2015; Xu et al, 2014; Meng et al, 2013; Trojahn and Ortmeier, 

2013). It can extract all possible touch gesture features, such as fingertip pressure 

and finger size to distinctive among various users. Finally, conducted experiment 

with small number of user to test and evaluate the authentication scheme (Angulo 

and Wästlund, 2012; De Luca et al, 2012; Kolly et al, 2012; Wolff, 2013).  

The aim of touch gesture is to develop scheme that enhance the 

authentication accuracy and performance of determination users based on their touch 

gesture behavioral biometrics. From the existing works, scheme (Angulo and 

Wästlund, 2012; De Luca et al, 2012; Kolly et al, 2012; Wolff, 2013) collected and 

tested their methods in small group of users and advice to include more users and 

larger sample size in order to make a more robust determination on the ability to 

identify users. This research develop a scheme to extract and study more touch 

gesture features and tested in large group of user by using multiple classification 

techniques, hence this will increase the accuracy with good performance 

authentication.  

1.3 Problem Statement 

Many biometric methods exist today and finding the best suitable one for 

access control on mobile phones is not easy. Touch gesture behavioural biometrics 

used as an alternative solution to existing traditional biometric mechanism that 

utilize fingerprints, facial impressions, keystroke dynamics authentication or voice 

recognition which present several pitfalls as earlier discussed. Several schemes 

namely : (Meng and wong, 2014), (Burgbacher et al, 2014), (Veniamin Ginodman et 

al, 2014), (Xu et al, 2014), (Li et al, 2013), (Min, 2014), (Murmuria et al, 2015), 

(Shih et al, 2015), (Buduru and Yau, 2015), (Feng et al, 2014) and (Qiao et al, 2015) 

have been proposed in recent years on touch gesture behavioral biometrics 
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authentication. While these touch gesture features they used in their schemes have 

shown potential and provided promising results, there is still space for extracting and 

analyzing new touch features from individual touches to substantially improve 

authentication accuracy. 

In fact, the touch gesture features used in their schemes are speed, time, 

position, and finger size and finger pressure. However, extracting few touch features 

from individual touches is not enough to distinctive among various users accurately. 

Therefore, in order to secure mobile devices and protect users‘ data, it is very crucial 

to enhance user authentication scheme for mobile phones. One fundamental mobile 

security problem is user authentication, and if not executed correctly, leaves the 

mobile user vulnerable to harm like impersonation or unauthorized access. 

The key idea is to combine the features that can be extracted from mobile 

sensors when human finger touch mobile screen with an extended features by 

preforming mathematics calculations. The best features subset choosed based on 

performing different feature selection algorithms which aims to speed classification 

algorithms and enhance authentication accuracy. Several machine learning classifier 

used to authenticate users this is due to the fact that the performance of a classifier 

may be fluctuant in terms of different training datasets. For instance, an algorithm 

may achieve a very good authentication result regarding a set of user inputs, but its 

performance may drop quickly for another set of user inputs (Veniamin Ginodman et 

al,2014). This strategy is crucial to perform high-accuracy user authentication, 

outperforming all the prior touch gesture behavioral biometric authentication 

sachems for mobile devices.  

1.4 Research Questions 

This research aims to determine whether it can distinguish users based on 

their touch dynamics using a behavioural feature set related to those dynamics to 

help realize an accurate user authentication mechanism on mobile devices. In order 

to achieve that aim, the following research questions were addressed: 
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i. What are the current user authentication systems and schemes for touch 

gesture-based behavioral biometrics that are used on mobile phones?  

 

ii. What are the touch features have been used in previous studies and how the 

previous studies extract the features? 

 

 

iii. How can the touch gesture-based behavioral biometrics schemes be improved 

to distinguish users based on their touch dynamics and also obtain enhanced 

authentication accuracy?  

1.5 Research Objectives  

In order to answer the research questions stated above, the research objectives 

were identified as follows:  

i. To identify and extract finger touch features for touch gesture-based 

behavioral biometrics authentications scheme on mobile phones. 

 

ii. To develop five different features selection algorithms and six different 

classification algorithm based on the extracted features. 

 

iii. To develop touch gesture-based behavioral biometrics scheme and 

determine its authentication accuracy on user‘s touch dynamics.  

1.6 Scope of Study 

The main aim of this research is to design and develop a touch gesture-based 

behavioral biometrics scheme, which helps to enhance user authentication required 

for mobile devices. Therefore, this study was limited to the following research scope: 
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i. The study was delimited to the data acquisition, feature extracting, 

features selection and classification process of behavioral biometrics. 

There were four biometrics performance requirements (false reject rate, 

false accept rate, equal error rate and accuracy) used to evaluate and 

target the enhancement of behavioral biometrics authentication. 

ii. The proposed scheme controls the user activities by providing a guideline 

during the data collection process in such way the features will be 

extracted. The extracted features were normalized by scaling its values 

using the Min-Max normalization technique, to that they are within a 

certain specified range. 

iii. The touch-gesture behavioral biometric authentication data was collected 

from students and staff of the Universiti Teknologi Malaysia and were 

duly informed about the purpose of this work. 

iv. The implementation of feature extraction and the graphical user interface 

are done using Java Eclipse with an Android phone. SQLite database was 

used to store data for the extracted features. Testing, data analysis and 

evaluation were done using WEKA machine learning toolkit (WEKA 

tool).  

1.7 Significance of the Study 

The outcomes of this research would greatly contribute to behavioural 

biometric authentication schemes for mobile devices. The significance of this 

research are: 

i. It established scheme based on touch gestures authentication in order to 

secure against shoulder surfers, even those with video cameras, 

because it is hard to estimate the force and timing of gestures correctly 

solely with brute force. 

 

ii. Touch gestures authentication scheme helps to improve the security of 

password-based authentication. Touch gestures authentication scheme 
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confirm the authorized user based on his finger touch features, which is 

providing an additional security level of verification. Even if the touch 

gesture is revealed by unauthorized user, the difficulty of breaking the 

authentication is increased.  

 

iii. It identifies and understands the extracted features from finger contacted 

the touch screen, it started to record and save the trace by recording raw 

touch finger movement features.  

 

iv. Another important implication of this scheme extend beyond touch 

gesture authentication; it might be applied to any biometric source such as 

keystroke dynamics, signature or gait.  

 

v. Touch gestures authentication scheme introduce dataset captured from 84 

subjects over six sessions. This dataset will be available to researchers to 

facilitate progress in this field. 

 

vi. The implication of this scheme is that unlike the existing schemes, our 

scheme used five different feature selection algorithms to choose the most 

significant feature subset. This was a process to speed classification 

algorithms, enhance prediction accuracy and comprehensibility. 

 

1.8 Thesis Organization 

This thesis is divided into seven chapters. Chapter one introduces the problem 

area which is problem background and problem statement. From the problem 

statement, the objectives of this research specified to be achieved. Furthermore, the 

research scope is stated and determined. Chapter two begins by reviewing the 

popularity of mobile device along with the increasing reliance upon them establish in 

the security of the mobile device. It is also presenting a generic biometric schemes, 

the performance measurement and evaluation. Touch gesture behavioral biometrics 
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were chosen due to their various advantages that can provide protection security. It 

concluded with a review of the existing touch gesture behavioral biometrics. 

Chapter three describes research procedures and research phases (literature 

review phase, data collection phase, enrolment phase, and authentication phase). 

Chapter four presents the systematic literature review for feature identification and 

extraction. It also provides a brief review of previous studies for touch features used 

in their schemes. Chapter five elaborates the five different features selection 

algorithms and six different classification algorithms. It illustrates technical and 

practical performance evaluation of the proposed scheme. 

Chapter six provides the analysis and discussion of the results. A number of 

experimental studies into the analyzing and testing linguistic features using a pattern 

classification method based upon six different classification algorithms. Furthermore, 

a comparative study between the algorithm proposed in this research and other touch 

gesture behavioral biometrics techniques for authentication is also presented and 

discussed. Chapter seven presents review and the main conclusions from the 

research. It identifies the main methods used and discusses their implications in the 

research. It discusses the contributions of this research as well the recommendation 

and future works. 

1.9 Summary 

This chapter firstly has discussed the problem background in order to 

demonstrate the current state of knowledge in the field, and identify the gap in the 

concerned study. Then, the problem statement has been formulated based on the gap 

that has figured out. After that, the chapter had covered relevant research questions, 

which needed to be answered in this research. Afterward, research objectives, 

research scope and research significance have determined. Finally, the chapter 

concluded with research significance and thesis organization. The next chapter will 

investigate, study and analyze the related works in the same field of this research are. 
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