
LITHOLOGICAL MAPPING OF OPHIOLITE COMPLEX WITH EMPHASIS ON 

CHROMITE AND MAGNESITE EXPLORATION USING REMOTE SENSING

TECHNIQUES

MOHSEN POURNAMDARI

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Remote Sensing)

Faculty of Geoinformation and Real Estate 

Universiti Teknologi Malaysia

JANUARY 2014



Ill

‘To my beloved wife and son"



iv

ACKNOW LEDGEM ENT

I would like to express my special appreciation and thanks to my supervisor 

Prof. Dr. Mazlan Bin Hashim, you have been a tremendous mentor for me. I would 

like to thank you for encouraging my research and for allowing me to grow as a 

research scientist. Your advice on both research as well as on my career have been 

invaluable. At the same time, I would like to extend my appreciation to Universiti 

Teknologi Malaysia for International Doctorate Fellowship (IDF) award.

A special thanks to my family. Words cannot express how grateful I am to 

my family. Your prayer for me was what sustained me thus far.

I would also like to thank my beloved wife, Zahra. Thank you for supporting 

me, and especially I cannot thank you enough for encouraging me throughout this 

experience. To my beloved son, Parham, I would like to express my thanks for being 

such a good boy always cheering me up. I will keep on trusting you for my future.



v

ABSTRACT

This research employed the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) data for 

lithological mapping and delineating of high potential chromite zone mineralization 

in ophiolite complexes. Abdasht, Soghan and Sikhoran chromite mining areas 

located in Sanandaj-Sirjan technically a part of the Esphandagheh ophiolite complex 

zone in Kerman province, southeastern of Iran have been selected for this research. 

In order to discriminate and to demarcate of the high potential chromite and 

magnesite rock zone, ASTER and Landsat TM bands properties have been utilized 

for running principal components analysis (PCA), band ratio (BR), minimum noise 

fraction (MNF), de-correlation stretch, log residual, spectral mapping methods and 

feature level fusion. A comparison between the image processing results with field 

investigation and primary geological map confirmed the concentration of chromite 

and magnesite mineralized zone associated with serpentinized dunite and 

hurzburgite. A new geological map showing high potential chromite zones and the 

boundary of lithological units was produced based on the interpretation of remote 

sensing data. The map can be used for geological exploration and mine engineering 

purposes. The data and methods used have emphasized high ability of the ASTER 

data to provide geological information for detecting chromite host rock such as 

serpentinized dunites and hurzburgite as well as lithological mapping at both district 

and regional scales. Additionally, Landsat TM data have also produced suitable 

results for lithological purposes on a regional scale. The approach used in this study 

is broadly applicable for exploring new chromite prospects and lithological mapping 

of the ophiolitic complexes especially in the arid and semi-arid regions of the earth.
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ABSTRAK

Penyelidikan ini membincangkan data Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) dan Landsat Thematic Mapper(TM) 

untuk pemetaan litologi dan menggambarkan zon mineral kromit berpotensi tinggi 

ofiolit kompleks. Abdasht, Soghan dan Sikhoran ialah kawasan perlombongan 

kromit terletak di Sanandaj-Sirjan yang secara teknikalnya merupakan sebahagian 

daripada zon Esphandagheh ofiolit kompleks di daerah Kerman, tenggara Iran telah 

dipilih untuk kajian ini. Untuk membezakan batu dan menentukan sempadan kromit 

berpotensi tinggi dan zon batu magnesit, ciri-ciri band ASTER dan Landsat TM telah 

digunakan untuk mengendalikan analisis komponen utama (PCA), nisbah band (BR), 

pecahan bunyi minimum (MNF), rentang dikorelasi, log sisa, kaedah pemetaan 

spektral dan lakuran paras ciri. Perbandingan antara keputusan pemprosesan imej 

dengan kerja lapangan dan peta geologi mengesahkan bahawa tumpuan kromit dan 

zon mineral magnesit berkaitan dengan serpentinized dunite dan hurzburgite. Peta 

geologi yang baharu telah menunjukkan zon kromit berpotensi tinggi dan sempadan 

unit-unit litologi telah dihasilkan berdasarkan tafsiran data penderiaan jarak jauh. 

Peta ini boleh digunakan untuk penerokaan geologi dan tujuan kejuruteraan 

perlombongan. Data dan metodologi yang digunakan telah menekankan tentang 

kemahiran tinggi data ASTER dalam menyediakan maklumat geologi untuk 

mengesan batuan kromit seperti serpentinized dunite dan hurzburgite serta peta 

litologi di kedua-dua daerah dan skala kawasan. Selain itu, data Landsat TM telah 

menghasilkan keputusan yang sesuai untuk tujuan litologikal di skala kawasan. 

Pendekatan dalam kajian ini secara umumnya dapat digunakan untuk meneroka 

prospek kromit baharu dan pemetaan litologi ofiolit kompleks terutamanya di 

kawasan gersang dan separa gersang bumi.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Remote Sensing technology applications have been widely used in various 

aspects of science such as geology, geography, archaeology and environmental 

studies. In recent years, geologists and mining engineers have used remote sensing 

technology in the exploration of minerals, new ore deposits, oil-exploration, 

lithological mapping and environmental geology. Mineral resources play a vital role 

in the economic development of countries. Due to extraordinary growing of demands 

for mineral, the depleted resources must be replaced with new resources.

Therefore, the remote sensing technology can increase the exploration of 

minerals and new ore deposits. It is suitable for collecting the data from large areas 

using advanced sensors, mounted on a satellite or aircraft systems. Remote sensing 

technologies play an important role in the early stages of ore exploration especially 

in arid and semi-arid areas, where the surface of the terrain is mostly bare or covered 

with little vegetation. Geological maps with their subsequent derivative are 

considered to be the most reliable geosciences information having immense 

economic and societal value.

In addition, a geological map is able to supply information about not only the 

dispensation and thickness of exclusive rock units but also shows
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relationship and structures, which provide insight to characteristic of mineral 

potential zones. In today's world, getting geological information are greatly 

supported by remote sensing data and methods that, have been done already. In 

addition, the traditional techniques for geological mapping have problems such as 

limited exposed outcrop, time and cost consuming. Ophiolite complexes belts located 

in continental crust are usually assumed markers of suture zones. The ophiolites are 

simply a part of the oceanic crust and the underlying mantle, which have been raised 

higher and set up an exhibition into the continental crust rocks.

Initially, the ophiolite complex was determined as a gathering of mafic and 

ultra-mafic rock units (Anonymous, 1972). Ophio is the Greek word for “snake” lite 

means “stone’’from the Greek lithos. From the lowest layers to the higher layers, the 

different sequence of ophiolie complex involved ultra-mafic rock units (lherzolite, 

harzburgite, dunite and gabbro), mafic rocks (sheeted dicks and pillow lavas) and 

associated rock units such as sedimentary and carbonate rocks.

In addition, the study of ophiolite complex is a great opportunity for 

understanding the amalgamation of early oceanic crust and continental crust 

processes (Shervais, 1993; Moore et al., 2008). The metamorphic rocks, which 

occurred in a particular place specifically under the harzburgite layers, have a 

thickness around 500 m and show a reversed metamorphism (Williams and Smyth, 

1973). It is proved that, this metamorphism happened during the uplifting and 

replacement of hot oceanic crust to continental crust or during the abduction process 

(Williams and Smyth, 1973; Casey and Dewey, 1984; Shervais, 1993).

Over the past years, the satellite data widely have been employed in mineral 

exploration and geology studies (Bishop et al., 2011; Carranza and Hall, 2002; 

Crowley et al., 1989; Kruse et al., 1999; Sultan et al., 1986). The Landsat thematic 

mapper (TM) and an enhanced thematic mapper (ETM+) including six spectral bands 

between the visible (VNIR), shortwave (SWIR) and involve one thermal infrared 

(TIR) portion of the electromagnetic spectrum are suitable for geology studies and 

exploration of new source of ore deposits. Using of Landsat satellite data began on 

Landsat 4 and then provides several developments over the MSS sensor such as
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increasing the radiometric, spatial and spectral resolution. And also the number of 

directors in each band increased.

The spatial resolution of VNIR, SWIR and TIR bands of Landsat TM are 30 

m and 120 m respectively. The last Landsat satellites launched at around 700 km in 

16 days revisit periods. The Landsat multi spectral scanner (MSS) and Landsat 

thematic mapper (TM) with seven spectral bands, have been employed for 

lithological mapping and geological studies in regional scale (Goetz and Rowan, 

1983; Goetz, 2009; Sultan et al., 1987; Tangestani and Moore, 2000; Kavak, 2005; 

Krohn et al., 1978; Raines, 1978; Kusky and Ramadan, 2002; Perry, 2004; Rajesh, 

2008; Sabins, 1996; Sabins, 1997).

Unprecedented opportunity for exploration geologist in order to explore 

ophiolite complex related to chromite and magnesite ore deposits with remote 

sensing data has been created with the launch of the Landsat TM launched by NASA 

in 1972 and the Advanced Space borne thermal Emission and Reflection Radiometer 

(ASTER) on 18 December 1999. Table 1.1 shows the characteristics of Landsat TM 

and some valuable applications of each.
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Table 1.1: Characteristic of Landsat TM satellite data

Landsat
4-5

W avelength 
Range (^m)

Applications Resolution
(m)

Band 1 0.45-0.52 (blue) Soil/ vegetation 
discrimination/bathymetry/coastal 

mapping-urban feature 
identification

30

Band 2 0.52-0.60 (green) Green vegetation 
mapping/cultural/urban feature 

identification

30

Band 3 0.63-0.69 (red) Vegetated vs. non vegetated and 
plant species discrimination 

(plant chlorophyll absorption) / 
cultural/urban feature 

identification

30

Band 4 0.76-0.90 (near 
IR)

Identification of plant/ vegetation 
type , health, and biomass 

content/water body delineation , 
soil moisture

30

Band 5 1.55-1.75 (Short 
Wave)

Sensitive to moisture in soil and 
vegetation/ discriminating snow 

and cloud covered area

30

Band 6 10.4-12.5 
(Thermal IR)

Vegetation stress and soil 
moisture discrimination related to 

thermal radiation/thermal 
mapping (urban water)

(120)*30

Band 7 2.08-2.35 (Short 
Wave IR)

Discrimination of mineral and 
rock types/sensitive to moisture 

content

30

* TM Band 6 was acquired at 120-meter resolution, but products processed before February 

25, 2010 are resample to 60-meter pixels. Products processed after February 25, 2010 are resample to 

30-meter pixels (Abdeen et al., 2001).

ASTER is a new sensor with improved abilities for geology studies and 

mineral exploration that was made by Japan’s METI and inaugurate by NASA on 

EOS/Terra platform. ASTER with 14 bands as a multi-spectral sensor, which is able 

to identify the reflected and emitted radiation from earth and the atmosphere. In 

addition, the ASTER has three kinds of bands including three visible (VNIR), six
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shortwave (SWIR) and five thermal (TIR) bands with 0.52 and 0.86 ^m and 15m 

spatial resolution, 1.6 to 2.43 ^m and 30m spatial resolution and 8.125-11.65 ^m 

wavelength and 90m resolution respectively (Yamaguchi et al., 1999; Abrams, 

2000).

The swath width of ASTER in every single scene (60^60 km) is 60 km that 

makes it suitable for lithological mapping in regional scale (Table1.2). One of the 

series of multi device typing NASA earth-observing system is Terra which, including 

science component and a data information system (EOSDIS). The type of Terra is 

polar orbiting and low tendency for long time observation land surface for study 

atmosphere, biosphere and oceans. The crosstalk correction algorithm and 

atmospheric correction have been pre-applied to the ASTER level 1B data (Iwasaki 

and Tonooka, 2005; Biggar et al., 2005; Mars and Rowan, 2010).

The six spectral bands of the ASTER shortwave infrared radiation subsystem 

were designed to measure reflected solar radiation in order to distinguish Al-OH, Fe, 

Mg-OH, Si-O-H, and CO3 absorption features (Abrams and Hook, 1995; Fujisada, 

1995). The use of ASTER multispectral data has increased in exploration and 

lithological mapping in recent years. Due to the spectral characteristics of the 

ASTER bands unique integral is very sensitive to mineralogy, particularly in the 

visible and the shortwave infrared region, the applicability of the diversity of image 

processing, "on demand " availability of data at low cost and broad coverage for 

mapping at the regional level.

The capabilities of ASTER satellite data are like other high spatial resolution 

satellite, these include: (a) climatology; (b) study of vegetation’s; (c) volcanic 

activities monitoring; (d) hazards monitoring; (e) hydrology; (f) geology and soils as 

well as (g) land cover change. This application is primarily due to the ability of the 

sensor, and based on the characteristics of the spectral signatures and other 

geological features related to the mineral ore deposits record (Ducart et al., 2006). 

Figure 1.1 shows similarities and differences between the spectral bands of ASTER 

and Landsat ETM+.



Figure 1.1 Comparison of spectral bands between ASTER and Landsat 7 (Abrams et al., 

2004)
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Table 1.2: The technical characteristics of ASTER data (Fujisada, 1995; Yamaguchi 
et al., 1999)

re
Sue

T3e«
P3

ege
i .  ,— ,

uea
i f i

'■3 'y
C5 «

s
«

e
.15 -I 

.2 a  osn

e
"es "es .“2
C  N  ajcg-,:̂  >

u
ST

VNIR 1

2

3N

3B

0.52-0.60

0.63-0.69

0.78-0.86

0.78-0.86

NE Ap < 0.5% < 4% 15
m 8 bits

SWIR 1.600-1.700

2.145-2.185

2.185-2.225

2.235-2.285

2.295-2.365

2.360-2.430

NE Ap < 0.5% 

NE Ap < 1.3%

NE Ap < 1.3%
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NE Ap < 1.0% 
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< 4% 30
m 8 bits

TIR 10
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90
m 12 bits

Stereo base-to-height ratio 0.6 (along-track)
Swath width 60 km
Total coverage in cross-track direction by pointing 232 km 
Coverage interval 16 days 
Altitude 705 km
MTF at Nyquist frequency 0.25 (cross-track) 0.20 (along-track)
Band to band registration Intra-telescope: 0.2 pixels Intra-telescope: 0.3 pixels
Peak power 726 w
Mass 406 kg
Peak data rate 89.2 Mbps
Band number 3N refers to the nadir pointing view, whereas 3B designates the 
backward pointing view.
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Research on ophiolite complexes have been done with traditional techniques 

in Iran. Lithological mapping of ophiolite complex in the normal range for a long 

time can be made difficult and expensive when looking at large areas where the field 

is also troublesome to access necessary. As a result, the rock units in ophiolite 

complex are often assigned to regional scales, resulting in maps; the lithological 

connections are widespread in many cases vague. The chromite ore deposit is one of 

the most significant minerals, which have been developed using satellite imagery in 

the last 15 years. Since ophiolites are an important part of the oceanic earth crust 

having many chromite deposits, they are suitable case studies to be considered in the 

area of remote sensing research.

The main goal of this research is to investigate about the relationship between 

lithology and structure of the rock units in the study area with emphasize on 

exploration of chromite and magnesite bearing mineralized zones and interpreting 

the information contained in various data sets can result in producing necessary 

information related to lithological map using remote sensing data. In this study, 

ophiolite complexes located in south of Iran were selected as a case study area. This 

area has not been studied using remote sensing techniques.

Satellite remote sensing methods are a tool for detailed geological analysis, 

especially in less accessible areas of the earth. Using remote sensing satellite data, 

for instance aerial photographs and satellite imagery are normally included in 

lithological mapping programs to get geological information, which is the best 

displayed by overhead perspectives. A number of researches have shown that, the 

remote sensing hyperspectral satellites data are able to map and explore the 

spectrally distinct mafic and ultra-mafic minerals, which are significant in different 

industries (Crowley et al., 1989; Crowley and Clark, 1992; Kruse et al., 1993; 

Boardman et al., 1995; Crosta et al., 2003; Cock et al., 1998; Kruse et al., 1999; 

Kruse et al., 2003; Kruse et al., 2003; Perry, 2007; Gersman et al., 2008; Bedini et 

al., 2009).



1.2 Statements of Problem

Ophiolites complex present an excellent opportunity for studying oceanic 

crust and can be the best candidate for mapping complex lithology using remote 

sensing satellite data. In addition, these rock formations are significant for 

exploration mineral resources, mainly for chromite and magnasite ore deposits. The 

current improvement of multi-spectral remote sensing devices, like ASTER and 

Landsat TM sensor, potentially suggest to geologists and mining engineers to employ 

remote sensing methods to reduce the cost and time-consuming for regional 

geological mapping and new source mineral exploration. Prior studies, which used 

traditional methods, are confronted with the follow problems in the study area:

• High diversity of mineral and rocks are observed in ophiolite complexes.

• Extensive and scattering scope of ophiolites complexes makes the process of 

study to be complicated.

• Ophiolitic regions are not easy to access because of geographical and 

geological positions.

These mentioned problems and characteristics of ophiolite complexes as an 

interesting part of the oceanic crust and use of traditional techniques for the study 

and exploration of chromite and magnesite shows that, the traditional methods are 

time and cost consuming. Current studies have focused on remote sensing techniques 

because of:

A) Accurate detection; B) Low cost and fast; C) Flexible and adaptable

Furthermore, existing methods are not able to show ophiolite complexes 

clearly and the fusion technique has not been used in prior studies. In addition, 

current methods cannot produce geological maps efficiently and in spite of having 

high potential magnesite and chromite areas. The Abdasht, Soghan and Sikhoran 

ophiolite complexes are selected as a case study in this investigation. At present, 

there is a outdated map and there is no detailed geological map for this area and there

9
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is no prior remote sensing studies regarding lithological mapping and the 

discrimination of high economic potential chromite bearing mineralized zones 

(Aboelkhair et al., 2010; Khan et al., 2007; Gad and Kuski, 2007; Amer et al., 2010; 

Rejendran et al., 2011; Pournamdari and Hashim, 2013).

1.3 Objective of the Study

The objectives of this research are:

a) To delineate the area of chromite and magnesite potential mineralized zone 

and host rock lithology using visible, short wave and thermal infrared bands 

of ASTER and Landsat TM;

b) To determine the most suitable image processing methods for lithological 

mapping and discriminating chromite and magnesite in high potential area;

c) To perform a comparative analysis on image processing methods using 

ASTER and Landsat TM for mapping ophiolite at regional and district scales;

d) To investigate the synergism of fused ASTER and Landsat TM for mapping 

ophiolite complex; and

e) To produce a detailed geological map of the study area using fused ASTER 

and Landsat TM data.

1.4 Research Questions

a) Can chromite potential mineralized zone related to host rock lithology be 

delineated using visible, short wave, thermal infrared bands of ASTER, and 

visible and short wave infrared bands of Landsat TM?
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b) Can optimal image processing methods be determined for lithological 

mapping, discriminating chromium and magnesium in a high potential area?

c) Is it possible to perform a comparative analysis of image processing methods 

between ASTER and Landsat TM for mapping affiliate at regional and 

district scales?

d) Is it suitable to investigate the synergism of fused ASTER and Landsat TM 

for the mapping ophiolite complex?

e) Which remote sensing techniques are the most appropriate to produce the 

detailed geological map of the study area based on ASTER and Landsat TM 

data?

1.5 Scope of the Study

This study focusses on digital image processing for lithological mapping of 

ophiolite complex and delineating of chromite and magnesite in a high potential 

mineral zone using ASTER and Landsat TM satellite data. In addition, the 

relationship of ophiolite complex zones and chromite ore deposit regions are 

identified in the all ASTER and Landsat TM regions of the electromagnetic spectrum 

(VNIR, SWIR and TIR). The principal components analysis (PCA), band ratioing 

(BR), minimum noise fraction (MNF), decorrelation stretch and log residual are used 

to study ophiolite complexes.

Furthermore, lithology and the characteristics of ophiolite complexes are 

determined using image processing methods like the spectral angle mapper (SAM), 

feature level fusion and mixture tuned matched filtering (MTMF) on the shortwave 

infrared radiation subsystem of ASTER and Landsat TM data. In addition, to 

determine of better color composite in the image the two different ways including: 

correlation coefficient and the optimum index factor (OIF) method have been
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examined. The ASTER and Landsat TM images of the study area are processed and 

analyzed using ENVI and ERDAS software.

Laboratory experiments including X-Ray diffraction (XRD) and analytical 

spectral devices (ASD) are applied to collect rock samples to analyze bulk 

mineralogy and reflectance spectral. In addition, spectral reflectance measurements 

carried out using an analytical spectral device (ASD), which records a reflectance 

spectrum across an overall spectral range of 325-2500 nm (nanometer) with a 10 nm 

individual bandwidth. The measurements carried out in the remote sensing laboratory 

of the faculty of geoinformation and real estate, Universiti Teknologi Malaysia 

(UTM) using a non-contact probe and a “built-in illumination” source.

In order to achieve all mentioned purposes, Abdasht, Soghan and Sikhoran 

ophiolite complex located in the southeastern of Iran in Kerman province have been 

selected. The study area has a semi-arid climate where most of the earth’s surface is 

well-exposed due to very sparse or bare due absence vegetation cover. The Abdasht 

ophiolite complex (56°46' 42" E, 28° 21' 05" N), Soghan ophiolite complex (56° 50' 

73" E 28° 21' 60"N) and Sikhoran ophiolite complex (56° 58' 55" E, 28° 26' 36" N) 

are 130 km, 160 km and 185 km, far from Baft city and located in the arid and semi- 

arid regions respectively (Geological Survey of Iran, 1973; Modarres and Silva, 

2007; Raziei et al., 2005). Figure 1.2 shows the locations of the study area.

These ophiolite complexes are a part of the Esfandagheh mafic and ultra- 

mafic complexes (Paleozoic), which have been located in Sanandaj-Sirjan 

tectonically zone. In order to study the ophiolite complex related to chromite and 

magnesite and to achieve the research objectives, the ASTER and Landsat TM image 

sets were selected that, cover all the three Abdasht, Soghan and Sikhoran ophiolite 

complexes.
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Figure 1.2 Location of study area



1.6 Novelty of the Study

In this section, the main differences between the current work and prior 

studies are elaborated. Based on the correlation coefficient results RGB images (7, 5, 

1) and (5, 4, 1) of Landsat TM and (7, 4, 1), (7, 2, 1) and (1, 2, 3) of ASTER data 

give better color composite to visual of different lithology in the study area. The 

result of decorrelation stretch for bands 1, 2, 3 of the ASTER showed that, this 

technique is suitable for exploration of the chromite ore deposit. Using a log residual 

algorithm on VNIR+SWIR bands of ASTER data demonstrate ophiolite complexes 

at regional scale much better than SWIR bands of ASTER data. The result of the 

spectral angle mapper and MTMF method on ASTER and Landsat TM portrayed the 

location of serpentine dunite as the source of the chromite ore deposit and 

distribution of colored melange complex in the study area.

In addition, the novel BR (4/1, 4/5, 4/7), the novel MNF (1, 2, 3) and the 

novel PCA (1, 2, 3) on ASTER data and the novel PCA (1, 3, 4), the novel MNF (1, 

2, 3) on Landsat TM data are able to determining ophiolite complex rock units much 

better than previous reported methods in the study area. This research, based on the 

characteristic of multispectral sensors such as ASTER and Landsat TM satellite data 

showed that, the use of the feature level fusion technique prepared the good 

opportunity to study ophiolite complexes and lithological mapping.

14

1.7 Summ ary

This chapter summarized the basis and principles of research including an 

overview of the research topic, research background, problems to be solved through 

the current research, research questions and objectives, research domain as well as 

research justification. The above mentioned sections are considered as an 

introduction, which clarifies the different parts of the research. Indeed, the most 

important issues related to the current research were briefly explained to help readers 

obtain an overall understanding of the research components.
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