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ABSTRACT

Determining position of a robot and knowing position of the required objects on 
the map in unknown environments such as underwater, other planets and the remaining 
areas of natural disasters has led to the development of efficient algorithms for 
Simultaneous Localization and Mapping (SLAM). The current solutions for solving 
the SLAM have some drawbacks. For example, the solutions based on Extended 
Kalman Filter (EKF) are faced with limitation in non-linear models and non-Gaussian 
errors which are causes for decrease of accuracy. The solutions based on particle filter 
are also suffering from high memory complexity and time complexity. One of the 
major approaches to solve the SLAM problem is the approach based on Evolutionary 
Algorithm (EA). The main advantage of the EA is that it can be used in search space 
which is too large to be used with high convergence while its disadvantage is high time 
and computational complexity. This thesis proposes two optimization models in 
solving SLAM problem namely Hybrid Optimization Model (HOM) and Lined-Based 
Genetic Algorithm Optimization Model (LBGAOM). These models do not have the 
limitations of EKF, memory complexity of particle filter, and disadvantages of EA in 
search space. When the results of HOM compared with original EA, it showed an 
increase of accuracy based on presented fitness function. The best fitness in original 
EA was 16.36 but in HOM has reached to 16.68. Both models applied a proposed new 
representation model. The representation model is designed and used to represent the 
robot and its environment and is based on occupancy grid and genetic algorithm. There 
are two types of representation models proposed in this thesis namely Layer 1 and 
Layer 2. For each layer, related fitness function is created to evaluate the accuracy of 
map in the model that was tested with some different parameters. The proposed HOM 
is designed based on genetic algorithm and particle filter by creating a new mutation 
model inspired by particle filter. The search space is reduced and only suitable space 
will be explored based on proposed functions. The proposed LBGAOM is a new 
optimization model based on extraction line from laser sensor data to increase the 
speed. In this model, search space in the map is a set of lines instead of pixel by pixel 
and it makes searching time faster. The evaluation of the proposed representation 
model shows that Layer 2 has better fitness value than Layer 1. The HOM has better 
performance compared to original GA Layer 1. The LBGAOM has decreased the 
search space compared to pixel based model. In conclusion, the proposed optimization 
models have good performance in solving the SLAM problem in terms of speed and 
accuracy.



vi

ABSTRAK

Menentukan posisi sesebuah robot dan mengetahui posisi objek yang 
dikehendaki di atas peta, di persekitaran yang tidak diketahui seperti di bawah paras 
laut, planet lain dan di lokasi bencana alam telah mendorong kepada pembangunan 
algorithma yang efisien bagi Pemetaan dan Penempatan Serentak (SLAM). 
Penyelesaian terkini bagi menyelesaikan SLAM mempunyai beberapa kelemahan. 
Antaranya adalah penyelesaian berdasarkan Penapis Kalman yang Dilanjutlcan (EKF) 
berhadapan dengan had yang terdapat dalam model bukan linear dan ralat bukan- 
Gaussion yang menjadi sebab untuk mengurangkan ketepatan. Penyelesaian 
berdasarkan saringan partikel berhadapan dengan masalah storan tinggi yang 
kompleks. Salah satu pendekatan utama untuk menyelesaikan permasalahan SLAM 
adalah pendekatan berdasarkan Algoritma Berevolusi (EA). Kelebihan utama EA 
adalah ianya boleh digunakan dalam ruang carian yang sangat besar dengan tumpuan 
yang tinggi manakala kelemahannya pula adalah dari segi masa yang lama dan 
pengkomputeran yang kompleks. Tesis ini mencadangkan dua model pengoptimuman 
dalam menyelesaikan permasalahan SLAM iaitu Model Pengoptimuman Hibrid 
(HOM) dan Model Pengoptimuman Algoritma Genetik Berasaskan Garisan 
(LBGAOM). Kedua-dua model tidak mempunyai had EKF, memori yang kompleks 
bagi saringan partikel dan kelemahan EA dalam ruang carian. . Apabila keputusan 
HOM dibandingkan dengan EA yang asal, ia menunjukkan ketepatan keputusan 
meningkat berdasarkan fungsi kecergasan yang dihitung. Kecergasan terbaik dalam 
EA asal adalah 16.36 tetapi dalam HOM telah mencapai ke 16.68. Kedua-dua model 
mencadangkan perwakilan model yang baru. Perwakilan model tersebut direka dan 
digunakan untuk mewakili robot dan persekitarannya, dan adalah berdasarkan 
penggunaan grid dan algoritma genetik. Terdapat dua jenis perwakilan model yang 
dicadangkan di dalam tesis ini iaitu Lapisan 1 dan Lapisan 2. Bagi setiap lapisan, 
fungsi padanan yang berkaitan dibina untuk menilai ketepatan peta bagi sesuatu model 
yang kemudiannya diuji menggunakan beberapa parameter yang berlainan. HOM yang 
dicadangkan, direka bentuk berdasarkan algoritma genetik dan saringan partikel 
dengan membina suatu model mutasi baru yang diilhamkan oleh saringan partikel. 
Ruang carian dikecilkan dan hanya ruang yang bersesuaian sahaja dijelajah 
berdasarkan fungsi-fungsi yang telah dicadangkan. LBGAOM yang dicadangkan 
adalah sebuah model pengoptimuman baru, berdasarkan garisan ekstrak dari data 
imbasan laser, bertujuan meningkatkan kelajuan. Dalam model ini, ruang carian dalam 
peta adalah satu set garisan dan bukannya piksel yang mana menjadikan masa carian 
lebih pantas. Penilaian model perwakilan yang dicadangkan, menunjukkan bahawa 
Lapisan 2 mempunyai nilai padanan yang lebih baik dari Lapisan 1. HOM mempunyai 
prestasi yang lebih baik berbanding Lapisan 1 GA yang asal. LBGAOM pula telah 
mengecilkan ruang carian berbanding model berasaskan piksel. Sebagai kesimpulan, 
model-model pengoptimuman yang telah dicadangkan memiliki prestasi yang baik 
dalam menyelesaikan permasalahan SLAM dari segi kelajuan dan ketepatan.
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CHAPTER 1

INTRODUCTION

1.1 Overview

With current technological advances in the science of robotics, we have seen 

robots built to work autonomously on other planets, under seas and oceans and other 

unknown environments. Considering that the robots do not have any information about 

the environment, they should have the ability to build an environment map on the move 

and to estimate its location on that map correctly.

Mapping is to obtain a model of the robot environment, and localization is to 

estimate the position of robot in obtained map. For building map, we need to 

acknowledge the location of robot and for localization we need to map (chicken and 

egg problem) so solving these problems simultaneously is reasonable: simultaneous 

localization and mapping (SLAM) (Thrun, 2003; Bailey, et al., 2006; Thrun, 2008).

Maps are often used for guidance and localization, thus for mapping, robots must 

be equipped with several sensors. Sensors that are commonly used for this work are 

sonar sensors to measure the distance, laser, radar, infrared, GPS, camera etc. 

(Karlsson, 2010). It should be noted that all sensors have at least a bit of measurement 

error and most sensors have a limited operating range. Because of these limitations, 

robots for building the map should move in the environment and use sophisticated
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methods (Thrun, 2003; Frese, 2006). In order to perform their duties, robot need to 

identify their surroundings and estimate their location with high precision. This action 

is called simultaneous localization and mapping (SLAM). Because robot do not have 

any information about environment that they have entered, they begin to construct a 

map and to find its location in that map using of its odometer and sensor data (Durrant- 

Whyte, et al., 2006).

It is natural that in such a case we are faced with a large search space. For exact 

performance of the robot and with reasonable speed, we need a solution that the robot 

can use to cover a large search space in shortest possible time and in the best way. 

Mapping has a long history. In the 80's and early 90’s, mapping was mostly divided in 

two categories: metric and topologic. One example of the first category is occupancy 

grid that represents the map with a network of some full as well as empty cells. The 

topologic maps represent the environment with a list of important locations that are 

connected by some arcs. These arcs contain information about how robot navigate 

between different locations (Thrun, et al., 1998; Thrun, 2003).

In simultaneous localization and mapping, the mobile robot captures data from 

the environment with own sensors, interprets this date and after building an appropriate 

map, determines its location in that map. Obtaining an unknown environment model 

must respond to three activities: mapping, localization and motion control. Mapping is 

shaping the collected data from robot sensors to the desired form. Localization is 

estimating the robot position and motion control answers this question; how to 

navigate the robot to favourite location or proposed path (Huang, et al., 2004; 

Dissanayake, et al., 2001).

Figure 1.1, shows the shared domain of these three activities. Active localization 

involves navigating the robot to special places in the map for enhancement of position 

estimation. Other methods use robot navigation in unknown environments and explore 

the environment. The central region of the figure shows an integrated strategy: SLAM 

and motion control.
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Figure 1.1 Activities that must be performed to obtain an accurate model of the 

environment (Makarenko, 2002).

Note that the robot should do the localization and mapping simultaneously, and 

should determine its path during the mapping. Typically the robot motion operation is 

called exploration. Although it is easy to move around a completely modelled 

environment, the explorer robots are face uncertainties and inefficient models. Thus 

each successful exploration process should have the ability to deal with unpredictable 

and unexpected situations, thus the issues in this case should be solved with heuristic 

solutions. The correct position estimation is necessary for data correct correlation. It 

means that we should determine if the measurements that have been done up to now 

match with our built map. So building maps are necessary for robot navigation in 

unknown environments, is needed for other activities such as localization, path 

planning, interaction with manipulators, and interaction with operator. As said before, 

this activity is called SLAM and it is a hard problem because the same, noisy sensor 

data must be used for both mapping and localization (Carrillo, et al., 2012; Blanco, et 

al., 2008). Sources of uncertainty in solving this problem can be divided in to two 

major categories:

1. The continuous uncertainties in the localization of the robot and the robot 

observations from environment (e.g., due to sensor noise, error in execution of 

commands in motors and manipulators, etc.)
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2. The synthetic problem of data association (e.g., landmark extractions, feature 

recognition, place labelling, etc.) in which a correspondence must be detected 

between sensor measurements and observed features in the map.

Most of current solutions for solving the SLAM problem consider only the first 

category of uncertainty, and assume that the data association problem will be solved 

when observations are integrated into the map (e.g., it is typical to assume that all 

landmarks can be identified uniquely). However, this assumption is doomed to fail 

sooner or later for modern robots activities in unknown environments (Kang, et al.,

2012). In brief, failure in data association will input error in localization, which can 

lead to catastrophic errors in the map. Otherwise, the robot must somehow doing the 

search in space of possible maps. So the SLAM problem can be defined as a global 

optimization problem in which the objective is to search the space of possible robot 

maps (Duckett, 2003; Pegden, et al., 1980; Kollar, et al., 2008).

1.2 Problem Background

SLAM is the process by which a mobile robot can build a map of an environment 

and at the same time use this map to compute its own location. The past decade has 

seen rapid and exciting progress in solving the SLAM problem together with many 

compelling implementations of SLAM methods. Two famous and useful methods are 

extended Kalman filter (EKF) and particle filter.

The Extended Kalman Filter (EKF) is one of the first probabilistic SLAM 

algorithms that solve the SLAM problem using a linearized Kalman filter and this is 

the most important drawback of EKF. It means that the EKF should transfer all non­

linear equations to a linear equation (for example with Taylor series). However, this 

method uses only uni-modal Gaussians to model non-Gaussian probability density 

function. Another disadvantage of EKF is O(N3) matrix inversion required for its 

calculations (Castellanos, et al., 2004; Paz, et al., 2006; Hui-Ping, et al., 2009).
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Position

Figure 1.2 Model extraction by robot based on features (doors) and transfer to 

uni-modal Gaussian diagram for use in EKF.

Another method for solving the SLAM problem is particle filter. Particle filter 

represents probability distribution as a set of discrete particles which occupy the state 

space. This method can represent multi-modal distributions.

I I
WWW** W W wm W w ww•m v t •• •• v t• • • • • # * # :  ••••"•z

Position

Figure 1.3 Model extraction by robot based on features (doors) and showing the 

number of particles in high probability places

Two problems with this method are that the number of particles grows 

exponentially with the dimensionality of the state space and high memory complexity 

(Thrun, 2002; Tornqvist, et al., 2009; Gustafsson, 2010).
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One of the major approaches to solve the SLAM problem is the approach based 

on evolutionary algorithm like Genetic Algorithm (GA). The proposed optimization 

model in this study is in the same category. GA is a class of search algorithm that 

inspired by the style evolution of living beings have arisen. The main advantage of the 

evolutionary algorithm is that these algorithms can be used to search space which is 

too large to be used with high convergence. A number of solutions are using the GA 

for solving the SLAM problem like Duckett solution, Begum solution or Shiry 

solution. Each of these solutions has some problems and drawbacks that are explained 

by detail in Chapter 2. Generally the main problem of solutions based on GA is 

connected to high computational complexity and time complexity (Begum, et al., 

2006; Begum, et al., 2007). GA has three kind of operators for keeping the diversity 

and variety which are selection, mutation and crossover. Each of these operators also 

have some kind or model of implementations like uniform and two point model for 

crossover operation or Roulette wheel and Q-tournament model for selection 

operation. Choosing the appreciate model for each operators is very effective in time 

and computational complexity based on desired optimization problem. So for increase 

the speed of GA and decrease the time and computational complexity of that, the new 

ideas and contributions should be applied in these operators or have contribution in 

procedure of GA based on fitness function and other parameters of GA. The most 

important operator is mutation because if the pattern of response doesn’t exists in 

initial population, the GA couldn’t coverage to optimal answer. In original mutation 

selection of a gen for mutation is completely random and this is one on the problems 

of mutation because there is not any control in selection of gen and it is completely 

random. So because this operation is not targeted, the searching time will be increased 

and the speed of GA will be decreased consequently (Duckett, 2003).

1.3 Problem Statement

As discussed in the previous section, two methods for solving the SLAM 

problem, EKF and particle filter, have faced some drawbacks. In EKF, the main 

problem connected to this method is working solely with linear systems and uni-modal
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Gaussians equations. In addition, for solving the aforementioned problem, EKF needs 

to convert non-linear equations to linear equations using for example Taylor series 

which causes additional errors to the system. In the particle filter, the main problem is 

the high memory and computation time required when increasing the number of 

particles. Although genetic algorithm demonstrates very good performance with large 

search spaces, it has some weaknesses and drawbacks such as computational and time 

complexity which result in low speed. There are two main causes of low speed in GA: 

the first is untargeted search involving replacement or adding a fixed value for 

mutation operation and the second is large search space. In brief, the problem can be 

stated as below:

“Low speed and accuracy in solutions based on Genetic Algorithm for  

solving the SLAM problem in mobile robots "

For study on solving the SLAM problem in mobile robots, a map representation 

as experimental setup and test bed is needed as preprocessing. Thus a new 

representation model based on Genetic Algorithm should first be designed and 

developed for implementation of new models and then comparison of the obtained 

results. For this propose, in each step the best values for GA parameters should be 

found (parameter tuning) for better comparison of original GA and hybrid optimization 

model.

The following research questions will be answered in this research:

I. How can a new representation model based on occupancy grid be 

modified for represent the robot and its environment?

II. How can the genetic algorithm be hybrid with particle filter by 

increasing the accuracy perspective?

III. How can reduce the search space in SLAM problem for increase the 

speed?
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1.4 Purpose of Study

To propose new optimization model in increase the speed and accuracy of 

SLAM problem using new hybrid of particle filter and GA algorithm for avoidance of 

random selection in mutation step.

To increase the speed of optimization model with a line based GA and a new 

representation of occupancy grid for decrease the search space.

1.5 Objectives

Objectives of this research are as follows:

1. To propose and design simulation model of new representation model of 

occupancy grid based on Genetic algorithm.

2. To develop a hybrid optimization model (HOM) of GA and Particle filter 

on the proposed representation model.

3. To develop a line based genetic algorithm optimization model (LBGAOM) 

on the proposed representation model.

1.6 Research Scope

In this study, the scope of the optimization model is mainly based on the 

following items:
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1. The proposed algorithm is based on raw data of robot odometer movement 

and received data from its laser sensors in a static environment which 

obstacles are static.

2. In the new representation model of occupancy grid, the map representation 

performance will be checked with presented fitness functions.

3. The hybrid optimization model (HOB) target is to investigate the increased 

convergence and speed.

4. The proposed LBGA optimization model is for working in indoor 

environments only.

5. The new optimization model will be implemented on some simulated maps 

and the accuracy of model will be evaluated with presented fitness 

functions.

6. MATLAB software and some related software are used for simulation.

1.7 Significance of Research

The significance of this project is to propose an enhanced optimization model 

for solving the simultaneous localization and mapping (SLAM) problem by covering 

the weaknesses of representation of occupancy grid. Another significance of this 

project is that the solutions based on Kalman filter are highly dependent on the motion 

model while in this study the presented optimization model is completely independent 

from motion model. Thus the benefit of this research is the increase in accuracy of 

SLAM algorithm and improved performance of occupancy grid for map 

representation. In detail, some significant algorithms are listed below:

1. Two new representation model of occupancy grid for using solving the 

SLAM problem are presented (Layer 1 and Layer 2) and two new fitness 

functions are designed and used for each model also.
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2. An hybrid optimization model (HOM) based on genetic algorithm and 

particle filter are presented and new chromosome model and desired 

fitness function for use in model are designed and presented also.

3. A Line-based genetic algorithm optimization model (LBGAOM) for 

reduce the search space and increase the speed is presented and new 

chromosome model and desired fitness function for use in model are 

designed and presented also.

1.8 Thesis Overview

This research consists of seven chapters. In Chapter 1 an introduction, problem 

background, problem statement, Purpose of Study, objectives, scope and significant of 

this research are presented.

In Chapter 2, some basic background about SLAM is presented then some 

mapping models and localization algorithms are presented. The effective parameters 

and existing methods and tools for solving the SLAM problem are introduced and 

compared. Finally the existing solutions based on each methods or hybrid of some 

methods are presented and compared.

In Chapter 3 methodology which is used in this research discussed.

In Chapter 4 a development of a new representation of occupancy grid based on 

GA and tune the parameters for comparison in other Chapters, is presented. In this 

chapter a new representation model with a new fitness function is presented which has 

best performance in increase the accuracy.

The Chapter 5 is about develop a hybrid model of genetic algorithm and particle 

filter for solving the problem of mutation operation in genetic algorithm with particle
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filter concept and avoidance of random selection and adding a fixed value to 

chromosome.

In Chapter 6 a line base genetic algorithm optimization model is develop for 

decrease the search space and increase the speed consequently. Finally, Chapter 7 is 

contained the conclusion and future work of this research
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