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ABSTRACT 

Biomechanics of bone has drawn major concern in research due to social and 

economic demand. In real life, trabecular bone is subjected to multiaxial 
stresses during routine physiological loading. Fatigue failure of the bone 
accounts for various clinical implications, thus studies and research to better 
understand the fatigue failure of the bone are needed. The overall aim of this 

study is to investigate the effect of torsional loading towards trabecular behaviour 

under compression in both monotonic and fatigue loading. Samples from femoral 

bovine trabecular bone were subjected to a series of monotonic and cyclic tests. 

Hill’s criterion was selected to determine the five combined stress ratio of 

compressive to shear stress for fatigue test. For finite element simulation, effect of 

morphology and orientation were investigated to predict fatigue life and plastic 

strain. The ultimate stress of the trabecular bone in monotonic compression and 

torsion were 14.22 and 8.95 MPa, respectively. In monotonic multiaxial 

loading, the ultimate stress was reduced to 2.5 MPa in compression and 3.8 MPa 

in torsion. Under fatigue compression, an endurance limit was found 

approximately at 25 % of ultimate compressive stress. Under multiaxial fatigue, the 

ability of the sample to retain shear stiffness with increased number of cycles is 

strongly correlated to the stress ratio. Fatigue life reduction was significant when the 

maximum shear stress is at least 24 % of the maximum compression stress. From the 

computational analysis, it was demonstrated that lower bone volume 

fraction (BV/TV), trabecular thickness (Tb.Th), and connectivity density (Conn.D) 

resulted in lower number of cycles to failure, regardless to the loading conditions. 

However, the number of cycles to failure was found to be negatively correlated to the 

value of structural model index (SMI). Off-axis orientation effect on the fatigue 

life of the trabecular bone was demonstrated the worst in horizontal trabecular 

bone model. In conclusion, the effect of torsional loading onto the mechanical 

behaviour of bovine trabecular bone was demonstrated throughout this study. It is 

apparent that torsional forces are the major factor that needs to be considered since 

these can lead to fatigue fractures. This research is expected to improve the 
knowledge base for the development of trabecular bone analogous materials.



vi 

 

 

 

 

 

Penyelidikan biomekanik tulang telah mendapat perhatian luas disebabkan 

oleh tuntutan sosial dan ekonomi. Secara keseluruhannya, pengajian ini bertujuan 

untuk menyiasat kesan beban kilasan terhadap kelakuan tulang trabekular di bawah 

mampatan beban monotonik dan kelesuan. Sampel daripada tulang trabekular dari 

paha sapi telah dikenakan satu siri ujikaji monotonik dan kitaran. Kriteria Hill telah 

dipilih untuk menentukan lima nisbah kombinasi tekanan untuk ujian kelesuan. 

Untuk simulasi unsur terhingga, kesan morfologi dan orientasi telah disiasat untuk 

meramalkan hayat lesu dan keterikan plastik. Tekanan maksimum tulang trabekular 

dalam mampatan dan kilasan monotonik adalah masing-masing 14.22 dan 8.95 MPa. 

Dalam tekanan monotonik pelbagai paksi, tekanan maksimum telah berkurang 

kepada 2.5 MPa untuk mampatan dan 3.8 MPa untuk kilasan. Di bawah mampatan 

lesu, had kelesuan adalah lebih kurang 25 peratus dari tekanan mampatan 

maksimum. Di bawah kelesuan pelbagai paksi, kebolehupayaan sampel untuk 

menanggung kericihan dengan peningkatan bilangan kitaran adalah sangat 

dipengaruhi oleh nisbah tekanan. Penurunan hayat lesu adalah jelas apabila daya 

ricih maksimum pada sekurang-kurangnya 24 peratus dari tekanan mampatan 

maksimum. Dari analisis komputer telah menunjukkan bahawa nilai pecahan isipadu 

tulang (BV/TV), tebal trabekular (Tb.Th), dan ketumpatan sambungan (Conn.D) 

yang rendah mengakibatkan bilangan kitaran kegagalan yang rendah. Walau 

bagaimanapun, bilangan kitaran kegagalan adalah berkadar negative dengan nilai 

index struktur model (SMI). Kesan orientasi di luar paksi terhadap hayat lesu tulang 

trabekular telah ditunjukkan paling teruk dalam model tulang trabekular arah 

melintang. Kesimpulannya, kesan bebanan kilasan terhadap kelakuan mekanikal 

tulang trabekular sapi telah ditunjukkan dalam pengajian ini. Ianya jelas bahawa 

daya kilasan merupakan faktor utama yang harus diberi perhatian kerana 

menyumbang kepada fraktur kelesuan. 
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 CHAPTER 1

 

 

 

INTRODUCTION 

1.1 Background of the Study 

For over 30 years biomechanics research has been widely explored with 

special interest is sending forth on the influence of trabecular bone towards 

weakening and failure of whole bone, and how the stimulating remodelling process 

helps in retaining the bone strength [1]. Clear understanding of the biomechanics of 

bone is well related in diagnosis and treatment of medical issues such as 

osteoporosis, bone fracture, bone remodelling, and implant system. Biomechanics of 

bone has drawn major concern in research due to social and economic demand [2]. 

Proper understanding of bone mechanics is required to tackle various medical issues. 

The mechanical behaviour of bone related to its architecture will improve clinical 

practise in diagnosing osteoporosis. Further evaluation on damage evolution in bone 

will provide information on dimmed principles of mechanobiology. From here, 

development of implants can be enhanced while prostheses design and systems will 

be able to function usefully. On top of that, treatment necessary for defects or 

complex fractures which usually involve patients at old ages can be developed. At 

instant, there are interesting alternatives have been proposed in order to tackle issues 

with bone defects [3, 4], however without prior profound knowledge on the bone 

itself, these approaches remain speculative. 
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Failure in most loaded engineering structures has been characterized as 

fatigue-induced [5]. Fatigue can be defined as the weakening of a material resulted 

from repetitive applied stresses or strains. Stephens et al. (2000) [6] highlighted six 

key words from ASTM International (American Society for Testing and Materials) 

definition of fatigue which imply the process of fatigue in a material, i.e. progressive, 

localized, permanent, fluctuating, cracks, and fractures. In general, this process 

involves the nucleation and growth of cracks to final fracture. Fatigue failure in bone 

has been found to be resulted from worsened deposition or mineralisation of bone 

matrix, or the unrepaired microdamage accumulation from daily repetitive loads 

which increase bone fragility [7, 8]. Such failure, while most presented in elderly 

patients, is also associated with stress fractures [9] in younger people with increase 

load beyond the bone capacity to remodel. Fatigue failure in bone starts with 

microcracks initiation, in which occur in regions of high strain and accumulate with 

increased number of cycles or increased strain. These cracks are often repaired 

during the remodelling process. However, failed microcracks grow and propagate as 

a result of interlamellar stresses generated at its tip. As the bone stiffness declines, 

damage is accumulated rapidly and ultimate failure of the structure occurs as fatigue 

progresses faster than the rate of remodelling. Despite the known capability of 

remodelling process to limit bone fragility and to prevent failure caused by 

microdamage, under-capacity of this process – or lagging response towards elevated 

load puts the associated bone at risk of sudden fracture. Furthermore, remodelling 

induction capacity is diminished with age [10].  

As fatigue failure in bones contribute to significant clinical implications, 

studies and investigations to better comprehend fatigue failure in bones are required. 

Factors affecting fatigue strength of bone include the loading mechanism, frequency, 

strain rate, age, anatomic site, stiffness, density and temperature, as well as the 

microstructure of the bone [11]. With advancement of technology, direct quantitative 

morphological analysis on three-dimensional (3D) reconstructions is made possible 

with micro-computed tomography (micro-CT). The morphological indices included 

volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation 

(Tb.Sp), and trabecular number (Tb.N). As material testing on highly 

inhomogeneous structures like the trabecular bone is quite complicated and no 
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standard for the experimental conditions are given in terms of sample size, loading 

rate, loading mode, and surrounding media, results from literature are also 

diversified. Some of the variations in mechanical data may be ascribed to 

experimental effects, introduced by ignoring the structural anisotropy, the proper 

boundary conditions (e.g. end artefact errors) [12, 13] and size effects [14]. But there 

is also a natural heterogeneity which complicates the analysis of trabecular bone and 

large variation in between samples properties may scattered the results in mechanical 

interpretation especially in bone mechanic study such as creep or fatigue [15].  

Progressive collapses of the vertebrae [16] and loosening of implants [17] 

have been associated to the damage and creep strain which attracts interest in 

understanding the associated failure. The number of cycles to failure of the trabecular 

is in direct relationship with the volume fraction, fabric, and applied stress [18]. 

Lifetime of the trabecular has also been recognised to be influenced by loading 

direction [19]. Current fatigue assessment on trabecular bone is limited to uniaxial 

compression. While physiological and traumatic loading are multiaxial in nature, 

uniaxial assessment limits the reliability of the yielded information. To the author’s 

knowledge, none of the reported works in the literature has ever quantified the 

behaviour of the trabecular under multiaxial fatigue. Therefore, the outcomes of this 

present work is hope to shed lights on a few aspects involved in the failure of the 

trabecular under combined fatigue compression-torsion and contribute information 

for future development.   

1.2 Problem Statement  

Bone fracture [20, 21], age-related fragility fractures [8], and implants 

loosening [17] have been found to be originated by fatigue damage. However, 

fatigue behaviour of trabecular bone has received only few attentions [18, 22-27]. 

Even so, these studies are conducted under uniaxial compressive loading, in which 

may badly align with in vivo physiological off-axis loading directions [28, 29]. This 



4 

off-axis loading is influenced by trabecular microarchitectural properties, which are 

also attributed to osteoporosis. Osteoporosis promote bone fragility and increase the 

bone’s susceptibility to fracture, which has been reported to strike at trabecular bone 

dominant sites such as hip, spine, and wrist. As the lifespan increases, assessment on 

bone failure risk becomes more significant. Current practice in osteoporosis 

assessment determines failure risk of bone by measuring the bone mineral density 

(BMD). This method however leaves out other contributing factors to the strength of 

bone such as the morphological information. Furthermore, the feverish lifestyle of 

older people nowadays has also increase the need of implants and prostheses. 

Implant loosening has been associated as one of the factor of failure in total hip 

replacement surgery [30-32] which is associated to the reduction of mechanical 

competency of the immediate adjacent trabecular [33-35]. As the cost of second 

surgical procedure is reported to be three times as expensive as the preliminary ones 

[36], factors such as changes in the trabecular quality with age and osseous-

integration process must be well assessed to get the replacement done right the first 

time [30, 37]. Furthermore, implant systems may also alter the local loading 

conditions (Figure 1.1). However, research efforts in this area require participation of 

joined expertise, given the complexity of the problems. Thus, understanding the 

fatigue properties of bone may provide information on osteoporotic bone behaviour 

toward normal physiological loading and its associated diagnosis and treatment, as 

well as improve implant systems in terms of material selection, placement, and etc.  

Bone is subjected to multiaxial stresses and strains in vivo [9, 38-40] while 

less to none known multiaxial fatigue evaluation on trabecular bone has ever be 

done. Uniaxial loading alone is insufficient to provide the necessary information in 

bone failure prediction as different failure mode is observed to that of under 

multiaxial loading. Multiaxial loading demonstrates mixed-mode failure where the 

damage propagated from one mode (tension) to another (shear). In bioengineering, 

multiaxial criterion provide better understanding on the relationship of the trabecular 

tissue structure and its physiology in which will improved implant system and 

development of bone analogue [41]. Therefore, current work may comprise the 

following research questions; 
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 Why previously reported mechanical evaluation failed to describe well of the 

trabecular bone failure? 

 What is the influence of torsional loading on the behaviour of trabecular bone 

under compressive fatigue and monotonic loading? 

 How do the morphology, anatomical site, and orientation affect the trabecular 

behaviour under multiaxial fatigue loading? 

 

Figure 1.1 Fracture and treatment of an injured femur. (a) Spiral fracture of long 

femoral bone and separated femoral head, (b) treatment of the femoral fracture after 

operation, and (c) stress distribution of femoral implant and screws. 

1.3 Objectives 

Human bone deformed in terms of its microstructural and ultrastructural 

features with age [8, 42, 43]. In vivo, physiological loading subjected to the bone 

change microstructural response and thus alter the failure behaviour, stress or strain 

magnitude as well as loading mode. As the assessments on bone failure under 

physiological condition with relevant multiaxial loading are scarcely done, damage 

mechanism of bone, particularly the trabecular structure, remain poorly understood. 

Furthermore, a strong experimental base is in need to accommodate current advanced 

numerical models application [44, 45] and theoretical model for deformation 
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processes. Thus, the overall aim of this study is to investigate the effect of torsional 

loading towards trabecular behaviour under compression in both monotonic and 

fatigue loading. The specific objectives of the study are; 

1. to investigate the effect of superimposed torsional loading onto the 

monotonic compressive properties of bovine trabecular bone, 

2. to evaluate the torsional loading effects onto the fatigue compressive 

behaviour of bovine trabecular bone, and 

3. to simulate compressive fatigue life and investigate the effect of 

morphological parameters and sample orientation. 

1.4 Scope of Study 

Sample of trabecular bone in this study has been gathered and extracted from 

bovine proximal femur from mediolateral femoral condyles, neck of femur and 

greater trochanter. This study is divided into two important parts: experiment and 

computational simulation. The scope of the present study can be summarised as 

follows; 

i. Sample used was extracted from bovine (cow) bone which used in 

femoral head, neck, and medial-lateral condyles.  

ii. Micro-computed tomography (µ-CT) scanned of sample. 

iii. Monotonic test: Pure compression, pure torsion, and combined 

compression-torsion test. 

iv. Fatigue test: Pure compression, pure torsion, and combined 

compression-torsion test with five different stress ratios. 

v. Software used for morphology measurement: Image J. 

vi. Software used for 3D reconstruction: Mimics 10.01 and AMIRA 4.0. 

vii. Software used for finite element analysis: COMSOL Multiphysics 

3.4. 

viii. Parameter study of the effect of morphology and orientation (vertical, 

45 degree, and horizontal) 
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The study focuses on the effects of multiaxial and torsional loading imposed 

on trabecular bone structure that probably represent realistic condition adapted 

during normal physiological loading. Evaluation is associated more into compression 

fatigue behaviour of trabecular bone. However, details study on the fracture 

behaviour is not included. Torsional analysis in both monotonic and fatigue part were 

also excluded.  

1.5 Significances and Original Contributions of This Study 

Both cortical and trabecular bone have been investigated in terms of their 

mechanical properties and behaviour upon loading [11, 18, 23-25, 39, 43, 46]. Even 

though current study investigates trabecular bone exclusively, the mechanics of both 

types of bones share relevant properties that are complementary to each other. A 

close relationship in between age-related fragility fractures and stress fracture among 

youngsters is worth of notice. Microdamage in bone with normal routine can be 

repaired approximately at the same rate as the accumulation of damage, thus 

fractures can be avoided. However, with elevated loading as in athletes and army 

routine, bone microdamage accumulates at higher rate than normal remodelling 

capacity and often results in failure. As the fracture mechanics of stress fracture are 

very similar to that of osteoporosis, it is believed that much of the subject presented 

in current study can contribute to both medical issues and help in improving 

diagnostic and treatment aspects of the bone related diseases. 

Fatigue progressive failure in trabecular bone has been associated with the 

loosening of implants [47] and other non-traumatic fractures. Complex loading 

conditions may be presented in vivo, thus multiaxial criteria for trabecular bone is of 

significant interest. Furthermore, traumatic injuries usually induce off-axis loading. 

Therefore, present work focused on quantification of the trabecular behaviour under 

multiaxial fatigue to improve validity and accuracy of the trabecular failure 

prediction, which was failed to be presented by previous uniaxial assessment. From 
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here, the effect of torsional loading onto the fatigue compression properties of the 

trabecular is presented. The study was extended to numerical analyses of 

microarchitectural parameters and loading orientation by finite element (FE). 

1.6 Thesis Structure and Organization 

This thesis is composed of seven chapters (Figure 1.2). Chapter 1 is an 

introduction, which consists of research background, scope of research, objectives of 

the study, research significance, problems statement, and organisation of the thesis. 

Chapter 2 is the literature review. The reviews included are from literatures of the 

recent twenty years, in which critically assessed to support the aforementioned 

research objectives. Chapter 3 presents the methodology in general from the 

procedure for sample preparation to data analyses. However, specific methodology 

for a particular experimental or computational evaluation is presented separately in 

its associated section. Elaborated assessment for monotonic response of the 

trabecular samples are delivered in Chapter 4. This chapter is divided into three 

sections; the monotonic assessment of trabecular samples under compression and 

torsion, the effects of superimposed torsional loading on monotonic compression 

evaluation, and the effects of combined monotonic compression-torsion on the 

samples properties. The main subject of research interest is presented in Chapter 5 

which divided into several sections of fatigue assessment. The assessment starts with 

uniaxial fatigue evaluation, follows by the trabecular response towards superimposed 

torsion on fatigue compression. This chapter ends with combined compression-

torsion fatigue evaluation. In Chapter 6, the computational simulation analyses are 

presented. The first section demonstrates the trabecular response towards loading 

mode based on the anatomical sites and morphological indices. Then, the study is 

extended to clarify the effects of samples orientation and fatigue life assessment 

which compares the prediction for uniaxial and that of multiaxial loading. At last, 

Chapter 7 describes general conclusion drew from the whole study, discusses 

limitations of this study and recommendation for improvement in future works. 
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Figure 1.2 Thesis organisation roadmap.
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