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ABSTRACT

Corrosion is a complex process influenced by the surrounding environment 
and operational systems which cannot be interpreted by deterministic approach as in 
the industry codes and standards. The advancement of structural inspection 
technologies and tools has produced a huge amount of corrosion data. 
Unfortunately, available corrosion data are still under-utilized. Complicated 
assessment code, and manual analysis which is tedious and error prone has 
overburdened pipeline operators. Moreover, the current practices produce a negative 
corrosion growth data defying the nature of corrosion progress, and consuming a lot 
of computational time during the reliability assessment. Therefore, this research 
proposes a computational based automated pipeline corrosion data assessment that 
provides complete assessment in terms of statistical and computational. The purpose 
is to improve the quality of corrosion data as well as performance of reliability 
simulation. To accomplish this, .Net framework and Hypertext Preprocessor (PHP) 
language is used for an automated matching procedure. The alleviation of 
deterministic value in corrosion data is gained by using statistical analysis. The 
corrosion growth rate prediction and comparison is utilized using an Artificial Neural 
Network (ANN) and Support Vector Machine (SVM) model. Artificial Chemical 
Reaction Optimization Algorithm (ACROA), Particle Swarm Optimization (PSO), 
and Differential Evolution (DE) model is used to improve the reliability simulation 
based on the matched and predicted corrosion data. A computational based 
automated pipeline corrosion data assessment is successfully experimented using 
multiple In-Line Inspection (ILI) data from the same pipeline structure. The 
corrosion data sampling produced by the automated matching is consistent compared 
to manual sampling with the advantage of timeliness and elimination of tedious 
process. The computational corrosion growth prediction manages to reduce 
uncertainties and negative rate in corrosion data with SVM prediction is superior 
compared to A ^N . The performance value of reliability simulation by ACROA 
outperformed the PSO and DE models which show an applicability of computational 
optimization models in pipeline reliability assessment. Contributions from this 
research are a step forward in the realization of computational structural reliability 
assessment.
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ABSTRAK

Kakisan adalah satu proses kompleks yang dipengaruhi oleh persekitaran dan 
sistem operasi yang tidak boleh ditafsirkan dengan pendekatan berketentuan seperti 
yang terkandung di dalam kod dan piawaian industri. Kemajuan dalam teknologi 
alatan dan pemeriksaan struktur telah menghasilkan sejumlah besar data kakisan. 
Walau bagaimanapun, data kakisan yang ada masih kurang digunakan. Kod penilaian 
yang kompleks, dan analisa manual yang rumit, terdedah kepada ralat telah 
membebankan pengendali talian paip. Selain itu, proses penganalisaan pertumbuhan 
data kakisan semasa, menghasilkan pertumbuhan kakisan negatif dan tidak mengikut 
pertumbuhan normal, selain mengambil masa yang lama dalam pengiraan dan 
penilaian kebolehpercayaan. Oleh itu, kajian ini mencadangkan satu sistem penilaian 
data kakisan talian paip pengkomputeran automatik yang menyediakan penilaian 
yang lengkap daripada segi statistik dan pengiraan. Tujuannya adalah untuk 
meningkatkan kualiti data kakisan dan prestasi simulasi kebolehpercayaan. Untuk 
mencapai hasrat ini, rangka kerja .Net dan bahasa pengaturcaraan Prapemproses 
Hiperteks (PHP) digunakan untuk prosedur sistem pemadanan automatik. 
Pengurangan nilai berketentuan dalam data kakisan diperolehi dengan menggunakan 
analisis statistik. Ramalan kadar pertumbuhan kakisan dan perbandingan hasilnya 
dilaksanakan menggunakan model Rangkaian Neural Buatan (A^ N) dan Mesin 
Vektor Sokongan (SVM). Model Algoritma Pengoptimuman Tindak Balas Kimia 
Buatan (ACROA), Pengoptimuman Kawanan Partikel (PSO), dan Evolusi Kebezaan 
(DE), digunakan untuk meningkatkan simulasi kebolehpercayaan berdasarkan 
kakisan data yang telah dipadan dan diramalkan. Penilaian data kakisan talian paip 
pengkomputeran automatik berjaya diuji menggunakan pelbagai set data kakisan dari 
struktur talian paip yang sama. Persampelan data kakisan yang dihasilkan oleh sistem 
automatik adalah selaras berbanding persampelan manual dengan kelebihan 
penjimatan masa dan meringkaskan proses. Pengiraan ramalan pertumbuhan kakisan 
berjaya mengurangkan ketidaktentuan dan kadar negatif dalam data kakisan dengan 
prestasi model SVM yang lebih baik berbanding ANN. Nilai prestasi simulasi 
kebolehpercayaan oleh ACROA adalah lebih baik berbanding dengan PSO dan DE, 
yang menunjukkan kebolehupayaan model perkomputeran untuk mengoptimumkan 
penilaian kebolehpercayaan talian paip. Sumbangan daripada kajian ini adalah satu 
langkah ke hadapan dalam merealisasikan penilaian kebolehpercayaan struktur 
pengkomputeran.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Oil and gas industry utilized pipelines as their main infrastructure to transport 

their goods. Millions of kilometres of pipelines are laid out across the globe either 

onshore or offshore cannot escape from deterioration over their lifetime of service. 

However, the number of accidents has also dramatically increased with the 

increasing number of operating pipelines (Hopkins, 1995; Paik, et al., 2004; Noor, 

2006; Chae et al., 2001; Dawson, 2004: Mohd and Paik, 2013; Mohd et al., 2014). 

Thus, a Pipeline Integrity Management (PIM) becomes an important research field in 

pipeline lifetime starting from its design, operation, maintenance and replacement. 

Pipeline can fail due to many factors including construction errors, material defects, 

operational errors, control system malfunctions, third parties excavations and 

corrosion. Data on pipelines accidents and their causes compiled by the U.S 

Department and Transportation’s Research and Special Program Administration, 

Office of Pipeline Safety (RSPA/OPS) shows that corrosion either external or 

internal is the most common cause of pipeline accidents with total percentage of 36.6 

percent (Li et al., 2009). Cost incur based on corrosion interpreted via repair, lost and 

contaminated product, environmental damage and possible human safety and health. 

Corrosion is a complex process influenced by surrounding environment and 

operational systems which cannot be interpreted by deterministic approach as in the
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industry codes and standards (Mustaffa, 2011). Hence, the Corrosion Management 

System (CMS) need to be reviewed with an alternative solution on assessing its 

condition (Zhang, 2014). The main focus of this study is to identify, apply and judge 

the suitability of the computational methods in evaluating the pipeline reliability of 

offshore pipeline subjected to internal corrosion. The analysis involves in every stage 

of assessment will entirely based on the in-line inspection (ILI) data collected at 

different time interval of the pipelines.

1.2 Research Motivation

Previous studies show the incapability of the deterministic or industry code 

methods in dealing with ILI data are infeasible economically and practically. The 

limitation was mostly hinders by the uncertainties that occur in every stage of CDA. 

Eventhough exist a standards design and codes to provide guidance on the design, 

standards, constructions and operations of pipelines, the use of codes need to be 

customized to suit the operation of different environment and conditions (Alkazraji, 

2008). Moreover, previous reliability model develop is based on experimental works 

using a controlled parameters which not the case of real applications. Therefore, 

motivation of this reasearch is to study and model the reliability of the pipeline from 

the inspection data (metal loss or ILI data) including the uncertainties govern by it.

The specific motivation leads to this research is simplified as follows:

1) Identification of internal corrosion as one of the major factors that leads 

to pipeline failure. This triggers an extensive inspection process that 

generates a huge number of ILI data (metal loss) that is still under 

utilized. This fact has been proved by Mustafffa (2011), Yahaya (2000), 

Noor (2006), and Mohd and Paik (2013). Futhermore, using ILI data 

from repeated inspection on a single pipeline can determine the corrosion 

rate of it (Desjardin, 2002).



2) The complexity and time consuming data analysis process tends to 

overburden the operators involved and may result in poor planning and 

maintenance scheduling. Often the operators focused the research on 

reliability assessment rather than the preceding data modelling and 

analysis which tend to affect the overall result of pipeline condition 

prediction.

3) Traditional analysis process provides insufficient information to be use 

for reliability assessment which leads to inaccurate result due to 

insignificant variables (Noor, 2006; Mustaffa, 2011).

4) Pipeline codes and standards: Confusion on adoption of different codes 

and standards by different countries for guidance in design, construction 

and operation of pipelines (Alkazraji, 2008). Most of the early design 

standards were prepared via experimental and/or numerical works, which 

might differ for different condition and operating practice. Further, the 

variables and parameters in the laboratory works are manipulated 

depending on the needs of studies that not represent a real application. 

Therefore, discrepencies aspects remain unsolved issues among pipeline 

operators.

5) Implementation o f  new computational reliability methods vs deterministic 

methods fo r  structure assessment: The use of reliability based 

computational methods is not to replace the current assessment 

(deterministic methods), rather it will provide an alternative benchmarks 

for IRM process. It is less favourable when knowledge about it is still not 

well understood among industries.

It is important to notice that the new computational method in CDA is by 

means of complimentary or alternative rather than replacing the current practice. 

The proposed model is hope to provide a more variation and solution towards IRM 

management and pipeline integrity preservation.



In Reliability Based Corrosion Management Systems (RB-CMS) three main 

parts related to reliability studies is necessary to complete the CMS cycle namely; 

inspection process, assessment process, and mitigation process (Zhang, 2014; 

Desjardin, 2002; Noor, 2006). The inspection process of the oil and gas pipeline 

related to corrosion will produce defect data which known as in-line inspection (ILI) 

data. Meanwhile in assessment process, a defect will go through an analysis process 

or known as Corrosion Defect Assessment (CDA). Result from this process is used 

for Mitigation of Defect (MoD) by means of coating, inhibitors, or even replacement 

towards pipeline sustainable and effective inspection, repair, and maintenance 

scheme (IRM). The execution of RB-CMS sequential process is repeated several 

times dependings on the results from the engineering process until end of the pipeline 

lifetime. The challenge is how to build a system capable of processing a data and 

turn it into knowledge in the context of managing pipeline integrity (Wiegele et al., 

2004). The importance of CDA in producing an acceptable result was governed by 

the uncertainties inherits from the interpretation of the ILI, modelling of the 

corrosion progress and the simulation of its reliability. Thus, the problems in this 

study centered its discussion on two major problems.

First, the ILI data are in low quality due to uncertainties and use of simplistic 

approaches in interpreting the corrosion growth (Mustaffa, 2011; Kariyawasam and 

Wang, 2012). Due to advancement of pipeline inspection technology, abundance of 

ILI data was available. Unfortunately, it is still under-utilize and this was agreed by 

Lecchi (2011), Perich et al. (2003), Kamrunnahar et al. (2005), Clouston and Smith 

(2004), Clausard (2006), Noor (2006), Det Norske Veritas (1999), B31G (1991), and 

Chouchaoui and Pick (1994). It has been acknowledged that the current practice of 

pipeline integrity assessment is lack proper guidelines focusing on issues related to 

data quantification (sampling and data analysis), as well as the intelligent reliability 

analysis due to the abovementioned research problems (Zio, 2009; Niu et al., 2010; 

Kuniewski et al., 2008; Noor, 2006; Mustaffa, 2011). This problem occurred due to:

4

1.3 Problem Background
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1) Uncertaitnties in ILI data: Particularly for corrosion inspection, the ILI 

tools such as Magnetic flux leakage (MFL) has also been considered as 

source of uncertainties (Maes and Salama, 2008; Zhang, 2014, 

Kariyawasam and Wang, 2011; Mustaffa, 2011).

2) Based on (Kuniewski et al., 2008; Kamrunnahar et al., 2005), imprecise 

corrosion data sampling was due to the limited resolution of inspection 

tools, imperfect measurement of defect dimension, pipeline material 

properties operational load and the rate of corrosion growth result in 

uncertain description of the pipeline condition. As been suggested by 

Kuniewski et al., 2008 and Noor, 2006, besides the manual procedure on 

processing the sample data, the sampling size is not accurately fit a 

current analysis. For example the manual feature matching process is a 

time consuming, inconsistent and might be vulnerable to human error. 

Since the diagnosis and interpretation of the corrosion effects depends 

solely on the experience and the capability of the engineers and inspection 

personnel.

3) The complexity o f  statistical analysis often views as a too academic by 

plant engineers and inspection personnel distance themselves from this 

kind of method. Although a standard exists for the statistical analysis of 

laboratory corrosion test data, no such standard exists for the analysis of 

inspection data relating to corrosion measurement (HSE, 2002; Mohd and 

Paik, 2013).

Secondly, a reliability assessment for both offshore and land based structures 

becoming important especially in risk-based inspection and maintenance planning 

(Lecchi, 2011; Zio, 2009; Faber and Straub, 2001; Nakken and Valrsgaard, 1995). 

For the assessment of structural condition, much attention is focus on the 

conventional method or industrial practice being tested by a number of authors (Shu 

et. al., 2009; Melchers and Jeffrey, 2007). Their results show that these approaches
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are too rigid in estimating the current and future states of an existing structure. This 

was due to factors such as:

1) The simulation-based statistical analysis tends to be time consuming and 

requires a high level o f  expertise to complete the task. Typically a much 

higher level of accuracy is required both for predictions of structural 

safety and for predictions of likely future corrosion (Lecchi, 2011). Thus, 

a model to speed up the performance of simulation is much needed. With 

that, computational models for reliability assessment come into the 

picture.

2) Uncertainties in modelling, whereby the current implementation used a 

predefined safety factor or limit states that might differ from one pipeline 

from the others thus the modelling did not present the real condition of 

the assess pipeline (Mustaffa, 2011). Moreover, a deterministic and 

statistical model is a model-driven method compared to computational 

which is a data-driven method.

The above discussion is summarized and illustrated in Figure 1.1. The flow of 

CDA research problem and their causes is outline. The successful implementation of 

RB-CMS depends on CDA to give an insight of the condition of current operating 

pipeline. The decision from this would benefit the whole process of IRM and at the 

same time help the pipeline operator preserving their resources and hinder from 

catastropics event.
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Figure 1.1: Taxonomy on research motivation
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To compensate the shortcomings of the sampling and matching methods an 

automated matching procedure and a structured statistical method is use to handle the 

timeliness and accuracies of the task involved. Instead of relying on experimental 

data, a large amount of inspection data from real structures will give a better insight 

and accurate information in corrosion assessment. The source of uncertainty inherent 

in the in-line inspection data and its significance in the context of corrosion 

reliability analysis was discussed. Implementation of computational model gives 

significance result for corrosion prediction as compared to the strategy of 

deterministic techniques. Therefore, prediction based on computational models 

supported by the available ILI data for comparison provides alternative measures in 

pipeline maintenance decision.

1.4 Problem Statem ent

The absence of inspection data quantification standard and predictive 

corrosion modelling for maintenance of offshore pipeline may cause some 

difficulties (Lechhi, 2011; M. Kamrunnahar et al., 2005; Clouston and Smith, 2004; 

Yahaya, 1999; Clausard, 2006; Perich et al., 2003). In the context of corrosion 

management, the essence of this approach is to combine important pipeline parameter 

based on in-line inspection data within a computational reliability assessment model 

for probability of failure estimation. A key element in this analysis approach is 

explicit consideration of all significant forms of uncertainty, including the 

uncertainties inherent in the data obtained from in-line inspection. It is hope that this 

alternative reliability-based process can provide the basis for an industry-accepted 

approach and an assessment method to manage pipeline integrity with respect to 

corrosion.

Thus, the following issues will be considered in order to solve the problem:



1) How to design an automated application for matching a repeated ILI data in a 

timely manner and consistency?

2) How to measure the statistical relationship among the defect parameter?

3) How to predict the corrosion growth variable before proceeding to its 

reliability assessment?

4) How to design and model an explicit LSF for reliability based model in order 

to predict the pipeline probability of failure base on ILI data?

5) How to model the computational method to enhance the reliability 

computational performance?

9

1.5 Research Objectives

Providing the above problem statement, the research objectives are:

1) To develop an automated matching system and ILI data quantification 

analysis to improve the data quality for reliability assessment.

2) To develop a corrosion rate model using computational methods for 

improving the uncertainties in corrosion rate prediction.

3) To develop computational model for improving the simulation based 

reliability performance of ILI data.



The following scopes and limitations have been made mainly due to lack of 

data in developing deterioration models in this study:

1) The development of the corrosion related models are totally based on the 

physical evidence from metal loss volume.

2) The effects of material properties, operational condition, and 

environmental parameters upon corrosion growth are not considered.

3) The data involved a repeated and random inspection data detailing the 

volume of metal loss.

4) ANN and SVM are used as non-linear model to predict the corrosion 

growth.

5) Three types of engineering structures transporting crude oil pipelines is 

chosen involving three different sample set of metal loss data are used to 

validate the quality and performance of proposed application and model.

6) An optimization of reliability simulation adopting an ACROA, PSO, and 

DE are used to enhance the performance of reliability assessment process.

7) The inspection data for internal pipeline inspection provided by various 

inspection vendors such as Petronas, Exxon Mobile, BP Amoco and 

Rosen from Year 1990 until Year 2001.

10

1.6 Research Scopes



The significance of this study is two-folds: computational and structural 

aspects. From computational aspect, the proposed method is intended to improve the 

precision of pipeline reliability assessment from ILI data with inherent inspections 

uncertainties. It serves as an automated system for tedious and time consuming task 

of experimental prediction. Thus minimizing the variants and correcting the negative 

rates from the ILI data. Furthermore, the computational reliability simulation 

improved the simulation performance in terms of simulation time as compared to the 

previous works using Monte Carlo simulation. From structural assessment aspects, 

the integrity prediction embodies reliability assessment information that provide 

details insight into the states of the structure such as prediction of corrosion rates 

(Cosham, 2001; Valor, 2003), deriving an explicit LSF (Mustaffa, 2011), and 

prediction of the failure probabilities (Noor, 2006; Mustaffa, 2011). In assessing 

structure integrity, combination of this knowledge provides an option to improve the 

procedure of the assessment as well as optimizing the large volume of inspection 

data available. Furthermore, the proposed statistical analysis and computational 

modelling will allow the pipeline operator to design a proper inspection programs 

and maintenance. For example, in maintenance planning and decision making, a 

reliability and integrity assessment contributes to minimize the operating structure 

cost. List of publication produced by this study is listed in Appendix A.
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1.7 Research Significance

1.8 Summ ary

This chapter gives an overview of the research conducted in this study. The 

explanations include overview of the research area, research motivation, problem 

background, problem statement, objectives, limitations, and contributions of the 

study. This thesis is organized into seven chapters. A brief description on the content 

of each chapter as follows: Chapter 1 defines the challenges, problems, objectives, 

scopes and significance of the study. Chapter 2 reviews the main subjects of interest,
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which are automated matching system and ILI data quantification, computational 

based model for corrosion rate prediction, rigidity of current code practices, limit 

states functions concepts, and reliability assessment model. Chapter 3 presents the 

design of the computational reliability assessment model that support the objectives 

of the study; this includes data sources instrumentations and analyses. Chapter 4 

details the sampling and analysis of ILI data, and development of that is resilient 

towards uncertainties parameters. The analysis results is validated using chi square 

method, regression analysis and comparison against real ILI data obtain from 

inspection. Chapter 5 describes the prediction of corrosion growth variables for 

selected pipeline that addresses the problem of negative corrosion growth as well as 

uncertainties inherent in inspection data. The ANN-CGM and SVM-CGM is used to 

model the corrosion growth rate and a performance comparison is made. Chapter 6 

simulates a reliability of pipeline conditions represented by computational 

optimization methods ACROA, PSO and DE to overcome simulation performance 

problem face by the current method. Chapter 7 draws a general conclusion of the 

accomplished results and presents the findings of the study as well as 

recommendations for future study.
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