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ABSTRACT 

 

 

 

Since plastic surgery have increasingly become common in today’s society, 
existing face recognition systems have to deal with its effect on the features that 
characterizes a person’s facial identity.  Its consequences on face recognition task are 
that the face images of an individual can turn out to be distinct and may tend towards 
resembling a different individual. Current research efforts mostly employ the 
intensity or texture based descriptors.  However, with changes in skin-texture as a 
result of plastic surgery, the intensity or texture based descriptors may prove 
deficient since they enhance the texture differences between the pre-surgery and 
post-surgery images of the same individual. In this thesis, the effect of plastic surgery 
on facial features is modelled using affine operators. On the basis of the near-shape 
preserving property of the combination of the operators, the following assumption is 
made: The edge information is minimally influenced by plastic surgery. In order to 
exploit this information in real-world scenarios, it requires that face images be evenly 
illuminated. However, an evenly illuminated face image is far from reality on 
applying existing illumination normalization techniques. Thus, a new illumination 
normalization technique termed the rgb-Gamma Encoding (rgbGE) is proposed in 
this thesis.  The rgbGE uses a fusion process to combine colour normalization and 
gamma correction, which are independently adapted to the face image from a new 
perspective. Subsequently, a new descriptor, namely the Local Edge Gradient Gabor 
Magnitude (LEGGM), is proposed.  The LEGGM descriptor exploits the edge 
information to obtain intrinsic structural patterns of the face, which are ordinarily 
hidden in the original face pattern. These patterns are further embedded in the face 
pattern to obtain the complete face structural information.  Then, Gabor encoding 
process is performed in order to accentuate the discriminative information of the 
complete face structural pattern.  The resulting information is then learned using 
subspace learning models for effective representation of faces. Extensive 
experimental analysis of the designed face recognition method in terms of robustness 
and efficiency is presented with the aid of publicly available plastic surgery data set 
and other data sets of different cases of facial variation. The recognition 
performances of the designed face recognition method on the data sets show 
competitive and superior results over contemporary methods. Using a heterogeneous 
data set that typifies a real-world scenario, robustness against many cases of face 
variation is also shown with recognition performances above 90%. 

 



 

 
 
 
 
 

ABSTRAK 

 

 

 

Pembedahan plastik telah menjadi suatu kebiasaan yang semakin meningkat 
dalam masyarakat hari ini. Oleh itu sistem pengecaman wajah juga harus mampu 
menangani perubahan ke atas ciri-ciri yang boleh menentukan identiti wajah 
seseorang. Ini menjadikan tugas pengecaman wajah lebih sukar kerana imej wajah 
individu boleh menjadi berbeza dan mungkin cenderung ke arah menyerupai 
individu yang lain. Usaha penyelidikan terkini kebanyakannya menggunakan 
pemerihal berasaskan keamatan atau tekstur. Walau bagaimanapun dengan 
perubahan tekstur kulit akibat pembedahan plastik, pemerihal berasaskan tekstur 
tidak lagi bersesuaian kerana ia meningkatkan perbezaan tekstur diantara imej wajah 
sebelum dan selepas pembedahan bagi individu yang sama.  Dalam tesis ini, kesan 
pembedahan plastik pada ciri-ciri wajah dimodelkan menggunakan pengendali afin. 
Berasaskan ciri-ciri pemilikan separa-konformal daripada gabungan pengendali, 
andaian berikut telah dibuat: Pembedahan plastik hanya mempengaruhi secara 
minima maklumat pinggir sesuatu wajah. Bagi mengeksploitasikan andaian ini dalam 
senario dunia sebenar, imej wajah perlu diterangi dengan kecerahan yang sama rata. 
Walau bagaimanapun, untuk mendapat imej wajah dengan kecerahan yang sama rata 
adalah tidak realitistik. Oleh itu, teknik normalisasi pencahayaan baru dipanggil 
pengekodan rgb-gamma (rgbGE) dicadangkan. Teknik rgbGE ini menggunakan 
proses lakuran dengan menggabungkan normalisasi warna dan pembetulan gamma, 
yang secara bebas disesuaikan dengan imej wajah dari perspektif yang baru. 
Seterusnya pemerihal baru yang dinamakan magnitud kecerunan pinggir setempat 
Gabor (LEGGM) dicadangkan. Pemerihal LEGGM mengeksploitasi maklumat 
pinggir wajah dalam mendapatkan struktur corak intrinsik wajah yang lazimnya 
tersembunyi dalam corak wajah asal. Corak tersebut kemudiannya dibenamkan 
dalam corak wajah untuk mendapatkan maklumat lengkap struktur corak wajah. 
Selanjutnya proses pengekodan Gabor dilakukan untuk menyerlahkan maklumat 
diskriminatif struktur corak wajah yang lengkap. Maklumat yang terhasil dipelajari 
menggunakan model pembelajaran sub-ruang untuk mendapatkan perwakilan wajah 
yang berkesan. Analisis eksperimen yang terperinci tentang keteguhan dan 
kecekapan kaedah yang dicadangkan disahkan dengan bantuan set data umum 
pembedahan plastik dan set data yang dilabel secara bebas. Prestasi pengecaman bagi 
kaedah pengecaman wajah yang dicadangkan menunjukkan keputusan yang sangat 
baik dan kompetitif berbanding dengan kaedah kontemporari yang lain. 
Menggunakan set data yang melambangkan senario dunia sebenar, prestasi 
keteguhan berdasarkan pelbagai variasi wajah juga menunjukkan ketepatan 
pengecaman melebihi 90%. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 
 

The human mind has an intuitive ability to effortlessly analyse, process and 

store information about a face for the purposes of identification and authentication.  

Studies in the fields of cognitive science, psychology and perception, point to the 

visual cortex as being a major contributor to the recognition ability of the human 

mind.  The visual cortex interprets a face to being composed of series of shapes, 

which are processed piece-wisely on horizontal level [1].  To recognize an 

individual, all the parts of the face that are individually processed, are put together to 

make sense of a person’s identity.  Studies [1]-[2] have shown that there is no limit to 

the visual processing capability of human’s, because even in situations where certain 

features are not sufficiently available, that is, they might be altered, camouflaged or 

disguised, a high degree of recognition can still be achieved.  Several years of 

extensive research efforts have been geared towards developing machines with visual 

processing capabilities that can emulate the recognition capability of the human 

visual system.  However, there is yet to be such very effective biometric system that 

can be deployed effectively as the human visual system.   

 
 

Typically, machines use captured still or video images in the recognition 

process.  Hence, depending on the application scenario several factors can come to 

play in the formation of the images, which will incidentally affect the recognition 
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capability of the machine.  Such factors can be regarded as scene-centric conditions 

and appearance-centric conditions.  Examples of the scene-centric conditions are 

illumination, pose and scale.  The appearance-centric conditions include the 

reversible conditions such as expression, disguise and make-up, and the irreversible 

conditions such as aging and plastic surgery.  

  
 
Now let us look at how the above mentioned conditions come to play in the 

recognition capabilities of machines that are deployed in various application 

domains.  These domains include transaction authorization, social welfare and 

security.  

 

1. Transaction Authorisation.  The unreliability and unpredictability of 

password protection have in recent time motivated the use of physical access 

control systems.  Most enterprise computers incorporate the face biometric 

for identity authentication.  For the identity of the system user to be 

determined, there should be existing facial information of the individual in 

the system.  As such, the identity of the user that is carrying out the 

transaction will be matched to his/her enrolled image in the system in order to 

ascertain if the person is who he/she claims to be.  This is a case of one-to-

one verification.  There are a number of potential applications in this domain, 

some of which are automated teller machines in banking, single-sign-on to 

multiple networked services, access to encrypted documents, issuing of 

national and international identification passports, voters registration, and so 

on.  In these application scenarios it is possible to control the effect of scene-

centric and reversible appearance-centric conditions on the captured image 

and subsequently the recognition system.  However, it is obvious that the 

irreversible appearance-centric conditions cannot be controlled easily by any 

common standard. 

 

2. Social Welfare.  Face recognition is increasingly being integrated into social 

media applications and personal devices.  The automatic easy tag feature of 

most applications such as Facebook, Google and iPhones use the face 

recognition in order to suggest to the user persons who they might likely want 
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to tag to an image.  Other applications are the face identification smart logon 

feature of most personal devices such as the personal PC/laptop, mobile 

phones, and modern home authentication devices.  Imagine you are 

requesting to login into your mobile device and you are unable to gain access 

to your device simply because the environment under which your image is 

captured is not properly illuminated.  Other scene-centric conditions and the 

appearance-centric conditions can as well affect the recognition capability of 

the device.  This is so since the mobile user may not be able to control the 

conditions in the various environment within which he finds himself. 

 

3. Security.  Under this domain there are several potential applications of face 

recognition some of which are law enforcement, forensic, surveillance, and 

border/airport control.  The recognition scenario under this domain is the task 

of identifying a new enrolled face sample that is compared against an entire 

collection of previously enrolled face images of different persons’.  The 

identification task is a one-to-many phenomenon that can be used to link or 

ensure that the enrolled sample is not laying claim to more than one identity.  

The process of registering a user face image in this domain can range from 

controlled to uncontrolled.  This is to say that the formation of the face 

images of a person can be of different scenes, therefore it can be subject to 

scene-centric conditions.  Also, as the face images of individuals are 

constantly updated, the appearance-centric conditions can be a factor in the 

image formation.   

 
 

Having put forward a clear explanation of the meaning of scene-centric 

conditions and appearance-centric conditions together with how they can impact on 

face recognition performance under different application domains, the individual 

conditions that are categorized as the scene-centric and the appearance-centric 

conditions will in some places in this thesis where their individual meaning is not 

significant be collectively referred to as unconstrained conditions.  

 
 
Recognition systems, particularly for the face, has seen many years of 

research progress in addressing scenarios where variance in natural scene images, 
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and unconstrained conditions such as pose, scale, expressions, aging, and 

illumination [3]-[10] are involved in image formation.  Likewise, numerous 

algorithms, techniques and methods have for over the years been developed and 

implemented in existing face recognition systems in order to be able to address these 

challenges.  However, common to the application domains discussed earlier is the 

irreversible-appearance changing conditions, which cannot be controlled by adopting 

any physical measures in face image capture.  Therefore, the need for face 

recognition systems that is robust against the irreversible facial appearance changing 

condition such as the plastic surgery is crucial for real-world face recognition 

application domains. 

 

 

 

1.2 Problem Background 

 
 

Facial appearance changes as a result of plastic surgery can manifest itself in 

the form of textural variations, and geometrical variations in the size and the relative 

position of the facial features.  The challenges plastic surgery poses to face 

recognition systems can be classified as being twofold, intra-person dissimilarity and 

inter-person similarity.  The facial appearances of an individual can become different 

after undergoing plastic surgery procedures (intra-person dissimilarity), but can also 

tend towards the appearance of a different individual (inter-person similarity).  

Before formulating the problem that this thesis addresses, let us first go through the 

contributions made so far by previous researchers on the recognition of faces after 

plastic surgery.  

 
 
Singh et al. [11] pioneering work on the implication of plastic surgery in face 

recognition, where the global-based face representation approaches were found to not 

be hardy against plastic surgery problem, have laid the foundation for the emerging 

approaches/methods developed so far for addressing the challenges posed by plastic 

surgery on existing face recognition systems.  In very recent time the recognition of 

faces that have undergone plastic surgery has seen the use of intensity/texture based 

facial descriptors [12]-[22].  While the approaches in these literatures show 
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considerable improvement in recognition accuracy compared to the accuracies 

reported in [11] there is still a considerable amount of work to be done to mitigate 

the influences the irreversible appearance-centric conditions caused by plastic 

surgery have on face recognition systems.  This is for the fact that the approaches 

presented in the literatures show to indicate a misconception of the effect plastic 

surgery procedures actually have on facial features.  In Figure 1.1 some pre-surgery 

and post-surgery sample faces are shown, which in the later part of this section will 

be used to demonstrate how the effects of plastic surgery procedures have been 

misconstrued in the previous studies.  

 
 

 

 

 
                                            (a1)                                     (a2) 

 
                                            (b1)                                       (b2) 

Figure 1.1 Pre-surgery (a1-b1) and post-surgery (a2-b2)  images of different 

person faces after the surgery procedure that changes overall facial appearance 
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The progress so far in the literatures [12]-[22] is made with the use of 

intensity based or texture based descriptors such as Gabor and/or local binary pattern 

(LBP) for the recognition of surgically altered faces.  Despite the use of 

texture/intensity based facial descriptors, the variations in face appearance caused by 

plastic surgery are addressed in these literatures from a perspective that includes the 

selection of facial component features that will eventually be described with any of 

the intensity or texture based facial descriptor algorithms.  The feature selection 

processes are basically adopted differently by various researchers in order to 

minimize facial variations due to plastic surgery. The approaches adopted can be 

summarized here as facial region selection approaches [12]-[13], [14], [19], [21], 

[22], facial region/full face frontal selection approaches [15]-[16], [20] and granular 

selection approaches [17]-[18].  

 
 

The region selection, facial region/full face frontal selection and granular-

selection approaches are on the concept of locating several local facial parts, which 

are then described using a facial descriptor.  Each processed region contributes to a 

classifier decision, which is further fused with that of other features for establishing 

an identity.  For the region selection approach, the facial regions located can be 

adapted to the sizes of the facial regions [12]-[13], [14], [22] or located at fixed 

intervals across the image [19], [21].  These region selection approaches are 

demonstrated in Figure 1.2 and Figure 1.3, respectively. 

 
 

 

Figure 1.2 Example of region selection of facial component based approach for 

pre-surgery and post-surgery face images 
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 Using facial regions that are adapted to the sizes of the facial features such as 

left-eye, right-eye, nose and mouth, Marsico et al. [12], [13] described each 

individual region from their intensity level.  By employing the partitioned iterated 

function system (PIFS) each facial part region is processed using their intensity 

information, which are coded and reconstructed to form feature vectors for 

recognition.  They also showed that other variation factors asides plastic surgery can 

also be recognition challenges.  Aggarwal et al. [14] selected facial regions that 

include the eyes, nose, eyebrow and mouth, which are cropped and characterized 

using the principal component analysis (PCA).  Feng et al. [22] likewise selected 

facial regions that are adapted to the sizes of the facial features.  Their facial features 

included eye, nose, lip and skin, where each region containing these features is 

described using Gabor and grey- level co-occurrence matrix (GLCM). These facial 

descriptors are likely to enhance on the texture details of the face image.  

 
 

 
(a) 

  
(b) 

Figure 1.3 Example of region selection based on fixed sizes of facial component 

for pre-surgery and post-surgery face images 
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On locating at fixed intervals across the image, Liu et al. [19] divided the 

face into 2-by-8 patches, each containing certain features of interest.  These regions 

(in the form of patches) were then individually described using Gabor.  On the other 

hand, Sun et al [21] divided the face into 8-by-8 patches.  Then each patch is 

independently described using the LBP and Gabor.  To demonstrate the 

consequences of both types of region selection approach in handling facial variations 

between the face images of an individual, a point-match from a region in the pre-

surgery face image is drawn to a corresponding point on the post-surgery image.  

This is shown in Figure 1.4. 

 
 

 
 (a)                              (b) 

Figure 1.4 A close observation of the correspondence between points on a pre-

surgery image (a) and post-surgery image (b) 

 
 
The correspondence between points on the pre-surgery image and post-

surgery image show that any matching algorithm collected at those points is likely to 

output mismatch.  The post-surgery image (right) show great transformation in 

comparison to the pre-surgery image (left).  A transformation which included 

geometrical (size and the relative position of the facial features) and textural 

transformations can be observed.  Take a closer look at the jaw, mouth, and skin, a 

striking impression is that the pre-surgery image belongs to an older person while the 

post-surgery image is for a younger female individual.  The observation made with 
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this example illustration in Figure 1.4 is likewise suffered by approaches that also 

select facial region/full-frontal features [15]-[16], [20] and granular region selection 

[17]-[18].  

 
 
Lakshmiprabha et al. [15] combined the periocular region, which comprises 

of the left-eye and right-eye, with the full-frontal face.  Then, the periocular region 

and the full frontal face are described using Gabor and LBP.  In an extended work 

[16] they used a shape local binary texture (SLBT) descriptor to independently 

describe the selected periocular region and the full frontal face image.  Jillela et al. 

[20] likewise selected the full frontal face image and the periocular region.  But the 

periocular region is obtained from the three colour channels of the face image.  These 

regions are described using the scale-invariant feature transform (SIFT) and LBP 

descriptors.  

 
 
The granular selection approach utilized by Bhatt et al. [17]-[18] divides the 

face into non-overlapping parts at different levels of information extraction.  An 

example of the face image divided using a granular-based facial region selection 

approach is shown in Figure 1.5.  Each facial region granularly selected is described 

independently using the extended uniform circular local binary patterns (EUCLBP) 

and scale invariant feature transform (SIFT). 

 
 
In the respective facial image components granular based selection [17]-[18] 

that is demonstrated in Figure 1.5, it is obvious that variation problem still exist. The 

facial region/full-frontal feature [15]-[16], [20] is not demonstrated because it is a 

combination of full frontal image and the divided parts. Having ascertained what is 

implied by misconception of the effect of plastic surgery on facial features in existing 

works, it can be categorically stated that the challenges plastic surgery procedures 

poses do not lie within the cut section of the images. This is for the fact that textural 

and geometrical differences still exist within the region selected as demonstrated on a 

closer look in Figure 1.4. Thus, the effects of plastic surgery on facial features have 

to be well defined in order to design descriptor algorithms that can effectively 

address facial appearance variation problem caused by plastic surgery. 
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(a1) (a2) 

  
(b1) (b2) 

Figure 1.5 Example pre-surgery and post-surgery face images. The granular 

images (a1, a2) are horizontal granules, and (b1, b2) vertical granules 

 

 

 

1.3 Problem Statement 

 
 

A close look at the methods used by previous contributors [12]-[22] point 

towards a common approach where the intensity/texture based descriptors is 

employed in the recognition process.  However, an important factor in the design of 

descriptors for surgically altered face images is the fundamentals of plastic surgery 

procedures.  Medically, a number of the plastic surgery procedures, namely; 

Blepharoplasty, Dermabrasion, skin peeling, brow lift, cheek implant, fore-head lift, 

Liposhaving, and Rhytidectomy directly impact on the facial soft tissue (skin-

texture).  With changes in skin-texture as the major variations on face images of a 
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person that have undergone plastic surgery, the intensity/texture-based descriptors 

fall short since they enhance the texture differences of the face images of an 

individual who have undergone plastic surgery.  Hence, face recognition systems that 

utilize intensity/texture information might not be hardy against faces altered by 

plastic surgery procedures.   

 
 
Comment 1: A plausible solution to the aforementioned problem is to exploit 

“the face information that is not likely to be affected by plastic surgery”.  This frame 

of reference serves as a platform for constructing robust and efficient feature 

descriptors that are intensity/texture insensitive for the recognition of surgically 

altered face images. 

 
 
This thesis addresses the concern of finding and presenting face information 

that is insensitive to the effect plastic surgery procedures poses on facial features, 

and employs such information in designing a new facial descriptor. 

 
 
Also, since face images are formed by multiple interacting factors related to 

the conditions within which the images where captured, solving the irreversible 

appearance-centric problem such as plastic surgery without considering for instance, 

the illumination problem that constitutes a major challenge to facial descriptors, 

might hinder effective representation of facial features.  Numerous illumination pre-

processing techniques have been presented over the years to mitigate the influence of 

lighting variation in face images.  However, a number of the pre-processing 

techniques diminish the intrinsic shape characteristics in the face image when further 

processed, while a number of the methods cause the increase in the difference margin 

in the face images of an individual due to over exaggeration of facial information. 

 
 
Comment 2: To address this problem the ability to take into cognizance the 

resultant output of illumination pre-processing is required in the design of robust 

face recognition systems so as not to alter the distinctive and yet discriminative 

facial features. 
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This thesis also addresses the issue of illumination challenge posed to feature 

extraction process in the recognition system. 

 
 

In order to proffer solutions to the challenges that this thesis addresses, the 

following research questions are presented in such a manner that brings to light the 

objectives of this thesis; 

 

i. What constitutes information minimally influenced by plastic surgery 

procedures?  

ii. How can such facial information be determined and exploited for recognizing 

surgically altered face images? 

iii. What is the technique for addressing non-uniform illumination problem that 

do not diminish the facial information determined from (ii) and does not 

introduce separability between face images of a subject? 

iv. What is the approach for developing a descriptor that encodes the 

intensity/texture insensitive facial information without compromising the 

ability to discriminate between different face classes? 

v. Does the transformation of feature vectors, which belong to the class of 

heavy-tailed distribution, from high-dimensional space to low-dimensional 

space influence on their discriminative capabilities and how does it vary 

across different subspace transformation models? 

 

 

 

1.4 Research Goal   

 
 

To develop new facial shape and appearance descriptor that exploits edge 

information as the facial information minimally influenced by plastic surgery 

procedures. This is to be able to recognize faces in uncontrolled face recognition 

environment, where facial variation factors such as plastic surgery and illumination 

amongst other facial variation factors exist. To this end, face representation and 

illumination normalization modules are unified in a framework for face recognition. 
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1.5 Research Objectives 

 
 

i. To define the facial information minimally influenced by plastic surgery 

procedures, and design a framework that integrates coherently new modules for 

recognizing plastic surgery altered faces in real-world face recognition system.  

ii. To develop and propose new illumination normalization technique that 

addresses non-uniform illumination problem.   

iii. To develop and propose new facial shape and appearance descriptor namely, 

local edge gradient Gabor magnitude (LEGGM) that is intensity/texture 

insensitive for intrinsic facial structural pattern characterization. And design a 

method of subspace learning from LEGGM for face representation. 

iv. To investigate and compare the capabilities of various linear subspace methods 

such as principal component analysis plus linear discriminant analysis (PCA 

plus LDA), supervised locality preserving projection (sLPP) and locality 

sensitive discriminant analysis (LSDA) in capturing the discriminative 

information of the LEGGM pattern in the reduced space. 

 

 

 

1.6 Scope of the Thesis 

 
 
 While considerable interest in face recognition has been geared towards 

addressing facial expression, pose, and illumination variation problems in face 

recognition systems, the non-reversible appearance variation problem caused by 

plastic surgery have barely been accounted for in such systems. Therefore, the thesis 

aim is to effectively characterize the distinctive facial information of a person by 

exploiting facial information that is minimally affected by plastic surgery. Based on 

the theoretical and practical findings etched into mathematical arguments, the edge 

information is defined to present such information.  However, the edge information 

might be restricted to a great extent by the presence of the shear property when it is 

predominant as part of the affine transformations mimicking plastic surgery effect.  
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The proposed and developed illumination normalization technique in this 

thesis addresses the influence of uneven illumination and specular highlight due to 

illumination direction, but no consideration for the ambient component of the light 

source is made in this thesis.   

 

 

In order to emphasize on the effectiveness of the proposed face descriptor 

algorithm to uniquely characterize the intrinsic and yet discriminative features of 

different person’s face images, the non-parametric nearest neighbour classifier is 

adopted for classification task.  For the most part, it can be argued that the nearest 

neighbour (NN) is best suited as a baseline algorithm because it does not depend on 

the information about the data distribution and so its efficiency is solely dependent 

on how well the face representation step is able to discriminate a person from another 

[23]. A certain parameter k can as well be specified for the NN, such that comparison 

can only be within small clusters (k-NN) of sample data. By specifying k, the 

comparison within small clusters of sample data can improve the decision of the NN 

classifier. Furthermore, on the usage of parametric classifiers, which uses the 

underlying distribution of the data, better classifier performance is envisaged. 

However, classifier performance is not within the scope of this thesis.  

 

 

The validity of the developed methods, algorithms and the general framework 

presented in this thesis are tested on computer simulation in which face image 

examples that match real life face recognition scenarios are used.  The experiment is 

firstly confined primarily to the recognition of faces across different challenging 

plastic surgery procedures. The term plastic surgery is used in this thesis to refer to 

the aesthetic (beauty) related plastic surgery. The thesis does not consider cases 

where there are overall or complete transformations, which are medically referred to 

as the reconstructive plastic surgery. However, there is no such face recognition 

system that exists only of persons who have undergone plastic surgery. In the real-

world face recognition systems, it is common for faces to be captured from different 

pose (viewing angle), or of having different expressions. This means that in 

capturing of faces in face recognition scenarios, the system is very much unaware of 

the presence of persons who have undergone facial plastic surgery. Since this work is 
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on face recognition and not on matching persons who have undergone plastic surgery 

with their pre-surgery images, it is therefore imperative to depict the scenario where 

all the facial variation factors can individually exists or come into play during the 

image formation process. The faces into consideration are real faces of persons 

typified in existing data sets used in the literature.  These face images were captured 

as still images, hence, there is no effect of motion in the images.  

 

 

 

1.7 Significance of the Research 

 
 

In this section, the theoretical as well as the practical significance of this 

study are discussed. 

 
 
The previous contributors in this field of study focus mainly on selecting 

facial component features [12]-[22] as a means of mitigating the effects of plastic 

surgery.  Added to the selection of the facial component features is the use of 

intensity/texture based descriptors to describe each individual facial component part. 

These descriptors might be hardy against texture variations in the recognition of 

faces that have undergone plastic surgery.  Therefore, to fill this gap, a theoretical 

basis from mathematical standpoint that points towards plastic surgery-insensitive 

features is derived.  However, this discovery is medically inspired.  The theoretical 

discovery can bring about a new perspective in the design of algorithms for 

describing faces altered by surgery.  Also, this discovery can benefit a number of 

research disciplines as discussed as follows:  

 

 Image understanding: it can be applied in defining the medical effects of 

plastic surgery and relate it to picture elements of digital images.  

 Computational modelling: it can be beneficial in adding plastic surgery-

related transformations to a captured image to generate series of images 

showing several cases of plastic surgery. 
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 Recognition: it can serve as a means of defining insensitive to facial 

distortion features for other cases of appearance distortions such as aging.  

 
 
Drawing on the derived theory, this thesis develops a descriptor for 

characterizing the insensitive to plastic surgery effect features in faces that have been 

subjected to plastic surgery transformation. 

 
 

Due to the constantly unfolding global crisis that can threaten the life of large 

amount of persons at a split of seconds, the security of citizens of every country has 

never been more heightened.  The ability of terrorist to conceal identity using plastic 

surgery in order to bypass security and cause havoc to life and property cannot be 

ruled out.  Therefore, to be able to explore a more practical scenario, unlike the 

previous studies where emphasis are only on the recognition of surgery images, this 

thesis includes other variation factors in order to mimic typical application domains.  

In this regards, this thesis designs a framework that integrates feature representation 

and illumination compensation for face recognition.  Consequently, an illumination 

normalization technique that fits to the designed framework that circumvents the 

influences that poorly illuminated images will have in effectively describing a face 

image by its intrinsic structural patterns is develop.  

 
 

More also, since plastic surgery is becoming a house hold name, it is not only 

a security related problem.  A person of genuine identity can be denied access to a 

property or falsely accused of being a suspect to a crime.  In essence, this study is 

relevant in a broader sense to real-world face recognition systems in airports, 

automated banking, surveillance, law enforcement, and office access systems. This is 

to effectively recognize faces despite being altered by surgery procedures.  
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1.8 Thesis Structure 

 
 

The organization of this thesis is given in this section. The rest of the chapters 

in this thesis begin with brief section that highlights the aims of each chapter, and 

ends with a section that summarizes the ideas presented in the chapters. Each chapter 

is developed to be self-contained, but there exists cohesion among the chapters in 

order to ensure the free flow of presentation and understanding of the thesis content.  

It should also be borne in mind that in the course of this thesis, mathematical 

notations and definitions are introduced at various points where it is deem such 

action will give better cohesion and understanding to this work.  

 
 
In Chapter 2, an in-depth review of literatures that gradually goes from face 

recognition in general to previous work on face recognition for plastic surgery 

images is presented. Since face recognition on the topic of plastic surgery is still an 

emerging research area with very little literatures, the review covers existing 

illumination compensation methods and face representation methods from the 

general face recognition point-of-view.  Subsequently, a detailed review that brings 

to light the various approaches that has so far been used in the recognition of 

surgically altered face images is presented.  For each of the review sections, a 

discussion is presented in such a way that points the reader to the limitations of 

existing methods and the need for the proposed methods. Furthermore, from a 

medical stand point, the various plastic surgery procedures and a brief discussions on 

each of them is presented in such a way that brings to understanding what is modified 

on account of the surgery procedure  

 
 

In Chapter 3, the thesis methodology is presented where a unified framework 

that incorporates two modules of newly proposed and developed methods: 

illumination pre-processing and face representation for the recognition of surgically 

altered face images is proposed and designed.  In the bid to achieve efficiency for the 

framework, an operator based model that brings to light the technical difficulty in 

recognising face images that have undergone plastic surgery is used to model and 

analyse the various types of plastic surgery procedural effects.  The outcome of the 
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analysis forms the motivation and foundation for the development of the new 

approaches presented in Chapter 4 and 5. 

 
 

In Chapter 4, the illumination normalization technique which is a new 

approach for addressing the influence of illumination for effective detection of 

features is proposed and presented.  The problem of uneven illumination and 

specularities are addressed in this chapter without any estimation of distribution of 

the illumination on each illuminated object.  

 

 

In Chapter 5, a new facial shape and appearance descriptor namely, local 

edge gradient Gabor magnitude (LEGGM) pattern is presented.  The proposed 

descriptor is a variant of Gabor descriptor, but encodes facial shape and appearance.  

However, unlike the conventional Gabor descriptor, which is limited by its encoding 

in the grey-level domain, the proposed LEGGM is able to overcome this limitation 

and provide effective facial pattern characterization.  As a variant of Gabor 

descriptor, the LEGGM exist in high-dimensional space, which effects on classifier 

performance.  To overcome this problem and for increased classifier performance, 

various linear subspace learning models such as principal component analysis plus 

linear discriminant analysis (PCA plus LDA), supervised locality preserving 

projection (sLPP) and locality sensitive discriminant analysis (LSDA) are employed 

for learning LEGGM data.  

 
 

In Chapter 6, the implementation and evaluation of the performance of the 

face recognition framework from chapter 3, which integrates the newly proposed and 

designed modules from the preceding chapters 4 and 5, is presented with supporting 

discussions of the results obtained.  The comparative experiments conducted in this 

chapter are confined primarily to face recognition across different challenging plastic 

surgery procedures using publicly available plastic surgery data set [11].  However, 

extended experiments on other publicly available data sets such as Georgia tech face 

(GT) data set [24] and labelled faces in the wild (LFW) data set [25] are also 

presented.  
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Finally, in Chapter 7, the thesis contributions and key findings are 

summarized and the directions for which the current work can be extended are 

presented.  
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