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A simulation-based product diffusion forecasting 
method using geometric Brownian motion and 
spline interpolation
Najmeh Madadi1*, Azanizawati Ma’aram1 and Kuan Yew Wong1

Abstract: This study addresses the problem of stochasticity in forecasting diffusion 
of a new product with scarce historical data. Demand uncertainties are calibrated 
using a geometric Brownian motion (GBM) process. The spline interpolation (SI) 
method and curve fitting process have been utilized to obtain parameters of the 
constructed GBM-based differential equation over the product’s life cycle (PLC). The 
constructed stochastic differential equation is coded as the forecast model and is 
simulated using MATLAB. The results are several sample demand paths generated 
from simulation of the forecast model. To evaluate the forecasting performance of 
the proposed method it is compared with Holt’s model, using actual data from the 
semiconductor industry. The comparison results confirm the applicability of the pro-
posed method in the semiconductor industry. The method can be helpful for policy-
makers who require the prediction of uncertain demand over a time horizon, such 
as decisions associated with aggregate production planning, capacity planning, and 
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supply chain network design. Especially for the semiconductor industry with inten-
sive capital investment the proposed approach can be useful for making decisions 
associated with capacity allocation and expansion.

Subjects: Operations Research; Mathematics & Statistics for Engineers; Engineering 
 Management; Customer Relationship Management (CRM); Supply Chain Management

Keywords: demand forecast; stochastic differential equation; simulation; uncertainties; 
GBM; interpolation

1. Introduction
Nowadays, the success of innovative industries relies on how they encounter certain challenges and 
arrange activities in order to meet customer requirements. In such situations, accurate forecasting 
of product demand and its diffusion into the market are very crucial in providing sufficient amounts 
of required resources at the right time and the right place. As pointed out by Chien, Chen, and Peng 
(2010) demand forecasting provides a basis for strategic decisions, such as technology selection, 
tool purchasing, outsourcing, and capacity expansion.

For new products, demand forecasting acts as a foundation for all supply chain planning activities 
(Chopra & Meindl, 2007). Companies are interested in higher accuracy levels of demand forecasting 
due to its direct effect on future profit (Cheng, Chen, & Wu, 2009). Sales managers of many innova-
tive products attempt to understand new product diffusion by moving toward using certain analysis 
tools and acquiring professional knowledge. Based on Scitovski and Meler (2002), diffusion is defined 
as the process through which an innovation is accepted by the market. The theory of diffusion has 
shaped a scientific basis for studying the Product Life Cycle (PLC) phenomenon. The focus of many 
developed diffusion models is around the development and evolution of the associated PLC curve 
(Mahajan, Muller, & Bass, 1990). Knowing the product diffusion characteristics and PLC features 
helps firms develop appropriate contingency plans in order to respond to possible future changes in 
market demand. Therefore, the dynamic and uncertain nature of demand through the PLC, particu-
larly for newly innovated products, deserves more attention.

The shape of the PLC as a model of product diffusion is, to a great extent, affected by a multitude 
of variables (Scitovski & Meler, 2002). Qin and Nembhard (2012) suggested there are two general 
modeling approaches for formulating product diffusion through the PLC, namely the Bass model and 
the geometric Brownian motion (GBM) model. The standard Bass model operates entirely on a mac-
ro-variable level in the total number of adopters and non-adopters (Chen & Chen, 2007). On the 
other hand, several stochastic diffusion models have been suggested that utilize the GBM process to 
incorporate influential factors that may not always be transparent. Although the developed GBM-
based models are meant to capture the uncertainty of demand, they may fail to address the inher-
ent dynamism and possible fundamental changes in the PLC. The reason can be the fact that a 
constant drift rate of demand (considered in most relevant studies conducted) is not able to reflect 
the complexity associated with the growth of demand through the PLC. In a new study, Qin and 
Nembhard (2012) tried to deal with this matter by considering a linear model for demand drift. 
However, for products with different growth paces on the PLC, a linear growth pattern may not ad-
dress the complex behavior of demand. This concern intensifies when dealing with demand fore-
casting of a new or pre-launched product, which has no data or a short history of sales (demand). 
Regarding these types of products, Lee, Kim, Park, and Kang (2014) suggested a machine learning 
and statistical-based approach utilizing the Bass model. However, their study mostly focused on 
estimating the deterministic parameters of the Bass model and failed to reflect on the possible sto-
chastic nature of demand. To be summarized, there are three main shortcomings in the extant lit-
erature which are to be addressed by this study. First, the available forecasting models do not 
address new products in pre-launch phases which are suffering from short history of sales data. 
Second, the existent forecasting methods need involvement of uncertainty causing the drift from 
the standard bell-shaped PLC pattern which is mostly considered in the extant literature. Finally, the 
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third shortcoming is referred to the lack of an analytical approach to see how moving from linear 
growth to upper degree polynomials can affect the accuracy of forecast results? To fill the aforemen-
tioned gaps, the aims of this study are to:

•  Suggest a pre-launch forecasting method for a new product with scarce or no historical data.

•  Address possible uncertainties in demand and generate possible trajectories of future demand.

•  Show the effect of considering different growth patterns on the accuracy of the proposed fore-
casting method.

The scope of this study is limited to the semiconductor industry. Nonetheless, the proposed ap-
proach may benefit all managers, practitioners, and researchers who strive to predict demand in 
uncertain and dynamic environments for new or pre-launched products. This study is organized over 
different sections. The following section provides a review of relevant literature. The applied meth-
odology is presented in Section 3. The results and performance evaluation of the method are dis-
cussed in Section 4. Section 5 expresses the sensitivity analysis performed. Section 6 provides 
information about managerial implications of the proposed method, and Section 7 is dedicated to 
the conclusions of this study.

2. Literature review
This section comprises a review of the most related literature. The Bass model and its limitations is 
discussed in the first part and in the second part, the review covers some previous literature on the 
area of demand forecasting in uncertain environments.

2.1. The Bass model and its limitations
Since the introduction of the Bass model in 1969, it has been used for diffusion forecasting in many 
areas including industrial technologies, retail services, agriculture, education, pharmaceuticals, and 
consumer durable goods markets (Mahajan et al., 1990). The main concept of the Bass model is 
founded on the premise that the probability of a buyer purchasing a product is influenced by the 
number of previous consumers. The model is generated from the probability that a purchase will 
occur at time t, assuming that it has not happened before. Thus,

 

The above is the basic proposition that forms the foundation of the Bass model, where f(t) is the 
density function representing the probability of purchase by a potential consumer, F(t) is the fraction 
corresponding to the cumulative consumers at time t (Mahajan et al., 1990) and p and q are the Bass 
model parameters. Therefore, the cumulative number of purchasers (adopters) over time can be 
obtained by solving the resulting nonlinear differential equation, where the values of the Bass model 
parameters, i.e. p and q, are available. Initially, the observational data of adoption rates for several 
consumer durable goods were fitted to the Bass model to obtain the cumulative S-shaped curve as-
sociated with the number of adopters up to a desired time (Laciana & Oteiza-Aguirre, 2014). 
However, since 1980, several estimation procedures have been proposed for estimating the Bass 
model parameters (Peres, Muller, & Mahajan, 2010). For instance, Schmittlein and Mahajan (1982) 
employed the maximum likelihood estimation method to estimate the parameters of the Bass 
 model. Scitovski and Meler (2002) suggested a method for Bass model parameter estimation using 
the finite-difference method and the moving least squares method, in which the analytical solution 
of the differential equation associated with the cumulative number of adopters, is not required.

Although the Bass model is simple to use, its application is limited to similar known products 
(Laciana & Oteiza-Aguirre, 2014). In general, there are some matters that limit the application of the 
Bass model, such as the possibility of multiple purchases by an adopter (purchaser) being ignored or 
the lack of reflective marketing strategies or competitive structures in the model (Chen & Chen, 

(1)
f (t)[

1 − F(t)
] = p + qF(t)
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2007). The latter deficiency has led to the proposal of various expansions of the Bass model. The 
expanded models are intended to reflect the increasing complexity of new products’ diffusion on the 
market caused by various influential factors. For instance, in 1990 Jain and Rao incorporated the 
price factor and proposed an expansion of the Bass model assuming the population of eventual 
purchasers as a function of price (Jain & Rao, 1990). In 1994, a generalized version of the Bass model 
called the generalized Bass model was developed to incorporate two decision variables, i.e. price and 
advertisment costs, into the diffusion model (Bass, Krishnan, & Jain, 1994). Cheng et al. (2009) used 
a trend-weight fuzzy time-series model to model growth diffusion. In a different study, Chien et al. 
(2010) considered product life cycle and applied technology diffusion theories in the proposed 
 model. Laciana and Oteiza-Aguirre (2014) proposed a model for the diffusion of several products 
competing on a common market (Potts model). They showed how the topological changes in a 
 social network influence the adoption process.

The Bass diffusion model has been expanded to be applied for different scopes. For instance, Chen 
and Chen (2007) applied the system dynamics method to the Bass model to be utilized for multi-
period forecasting purposes. They also incorporated factors such as advertising, pricing and market 
competitors, assuming they have impact on the probability of purchase and consequently, on the 
coefficients of the Bass model. Another expansion of the Bass model was presented in a study per-
formed by Peres et al. (2010). The model incorporates generic cross-country influence and was con-
structed based on the fact that the success of an innovation in one country is perceived as a signal 
by consumers in other countries who perceive lower levels of risk associated with consuming the 
new product.

Given the above descriptions along with Table 1, it can be concluded that the framework proposed 
by Bass in 1969 constitutes the main string of proposed diffusion models in the literature. However, 
most of the suggested analytical diffusion models are not able to address the entire complexity, 
dynamism, feedback loops and impact of factors that are not always transparent (Qin & Nembhard, 
2012). Generally, as mentioned by Chen and Chen (2007), demand management requires complete 

Table 1. Examples of models constructed for predicting product diffusion
Author(s) and 
year

Forecasting 
methodology

Stochastic or 
deterministic

Influential 
factors 
considered

Base of the 
model

Schmittlein and 
Mahajan (1982)

Maximum likelihood 
estimation 

Deterministic No additional factors Bass 

Scitovski and Meler 
(2002)

Finite difference 
method and the 
moving least squares 
method for data 
smoothing

Deterministic No additional factors Bass 

Chen and Chen 
(2007)

System dynamics Deterministic Pricing, advertising, 
market competitors

Bass 

Cheng et al. (2009) Fuzzy logic relevant 
approach

Deterministic No factor A trend-weighted 
fuzzy time-series 

Chien et al. (2010) Nonlinear least 
squares method

Deterministic Seasonal factors, 
market growth rate, 
price, repeat 
purchases and 
technological 
substitution

Bass 

Laciana and 
Oteiza-Aguirre (2014)

Small world networks 
approach and 
simulation

 Stochastic The introduction of 
an additional 
parameter 
(temperature) for the 
quantification of the 
uncertainty in the 
decision process

Ising model of 
statistical mechanics 
(Potts model)
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understanding of all factors that impact product diffusion rate. Ignoring the uncertain behavior of 
demand that originates from known or unknown influential factors has important managerial impli-
cations and may result in imprecise and erroneous capital investment decisions (Mahajan et al., 
1990). This study is an attempt to address this gap and propose a demand forecasting method in 
which the stochastic behavior of demand and its drift through the PLC is taken into consideration. In 
2004, Bass emphasized this drift should be considered as important as the classical PLC pattern 
(Bass, 2004).

2.2. Dealing with uncertainties in demand forecasting
Although some literature exists in response to the issue of demand forecasting in uncertain environ-
ment, the studies conducted in this area are quite limited. Scitovski and Meler (2002) tried to model 
uncertainty using an error factor with normal distribution with zero mean and constant variance 
over the entire time horizon. However, the constant variance assumed in the constructed model 
does not reflect the fact that as time elapses from the point of prediction, uncertainty would in-
crease (Qin & Nembhard, 2012). Furthermore, in the majority of studies conducted, the uncertainty 
in demand is calibrated by generating random data as representative of the uncertain demand in 
the corresponding time period. The disadvantage of this approach is in ignoring the dynamism and 
pattern of demand growth through the PLC. To consider both dynamic growth and possible stochas-
ticity in future demand, this study suggests a methodology for generating sufficient demand paths 
as representatives of possible demand trajectories through the PLC. To do so, the GBM model is ap-
plied. GBM is a renowned model that has been frequently employed to represent the movement and 
variability of stock prices. It is a mathematical model with applications in different areas, such as 
supply chain management, biology, physics, economy, financial engineering and stochastic calculus 
(Hsu & Wu, 2011). For instance, Marathe and Ryan (2005) analyzed four data-sets in the energy, 
transportation, and telecommunication sectors and found that using electric power exhibits a good 
fit to the GBM model. In the supply chain management area, GBM has found a place as well. Table 2 
represents some applications of GBM in supply chain management. The application of GBM in deal-
ing with demand uncertainties has been justified in some previous literature. Based on Yao, Jiang, 
Young, and Talluri (2010), GBM is a good first approximation for uncertainties. Chou, Cheng, Yang, 
and Liang (2007) described GBM as a mathematical tool with the capability of calibrating demand 
volatility very reasonably and accurately. In a study by Qin and Nembhard (2012) the stochastic 
nature of the diffusion process was considered as a GBM process with a linear expected growth rate. 
The GBM model has also been applied in a recent study by Chou, Sung, Lin, and Jahn (2014) to gener-
ate sample paths of demand in the semiconductor manufacturing industry.

Table 2. Some applications of GBM in the supply chain field
Author(s) and 
year

PLC 
consideration 
(Dynamic 
demand growth)

Demand growth Area of 
application

Status of 
historical/
analogous data

Chou et al. (2014) No Different scenarios 
and constant drift 
parameter levels

Capacity planning Available

Chou et al. (2007) No Constant growth rate 
for different 
scenarios

Capacity planning Available

Benavides et al. 
(1999)

No __ Capacity planning Available

Qin and Nembhard 
(2012)

Yes Linear growth Forecasting diffusion Available

This study Yes Nonlinear growth Forecasting diffusion Unavailable
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The review of the applications of GBM in dealing with uncertainty reveals that most studies have 
been conducted under the condition of historical or analogous data availability. In other words, in 
those studies, the role of available historical data for measuring the drift of stochastic demand over 
the PLC is highly significant (e.g. Qin & Nembhard, 2012). Consequently, a number of analogical ap-
proaches have followed, based on the assumption that a new product will behave as an analogous 
product or will represent attributes of several current products on the market (Seol, Park, Lee, & 
Yoon, 2012). However, as pointed out by Lee et al. (2014), due to the lack of a clear standard related 
to benchmark selection purposes, analogous products are usually selected with shallow procedures, 
causing impractical prediction results with some challenges in real-world situations. Lee et al. (2014) 
responded to this problem themselves using managerial-based information and by proposing a sta-
tistical and machine learning algorithm. The study focused on estimating the deterministic param-
eters of the proposed Bass-based model and ignored the demand behavior complexity caused by 
demand uncertainties. In this study, an attempt is made to involve the unavailability of historical or 
analogous data to fill the gap of previously mentioned literature. Therefore, unlike some similar 
studies, model construction is not based on the deterministic Bass model. In addition, more empha-
sis is placed on estimating the dynamic growth of demand over the PLC as well as reflecting the 
uncertain nature of demand. Therefore, we can claim that this study addresses both subjects of 
dynamism and stochastic nature of demand for products with rare historical or analogous sales 
(demand) data.

3. Research methodology
The steps taken in performing the proposed forecasting method are represented in Figure 1. A brief 
explanation about the procedure is given in the next section. Additional explanations and details of 
each step in the procedure as applied on data from the semiconductor industry are provided in 
Section 3.2.

Figure 1. Overall procedure.

Collecting managerial-judgment 

based information about future 

sales

Data interpolation and 

demand / PLC curve 

formulation

Assigning the best-fit function to the 

growth of demand 

Construction of the associated 

stochastic differential equation using 

GBM

Problems of stochasticity, 

dynamism and short history of 

data in forecasting future demand

Simulation of the obtained GBM-based 

stochastic differential equation and 

generating the required demand paths 

Performance evaluation of the proposed 

forecasting method 

Goodness of fit parameters 
analysis

The magnitude of uncertainty
(found in the previous step)

MATLAB software

Case study
(Semiconductor industry sales data) 

Cubic spline interpolation

Curve fitting 

approach

Demand growth 
function  

(drift function)

Error analysis

Holt’s method
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3.1. Overall procedure
The aim of this study is to propose a statistical and simulation-based method for forecasting the 
demand of a product with rare historical sales data in an uncertain and dynamic environment. An 
instance of this method’s application is in demand forecasting of an immature product with short or 
no history of sales data. Following sections provide detailed information about the procedure taken 
in performing this research.

3.1.1. Collecting managerial-based qualitative data
As demonstrated in Figure 1, the procedure begins with collecting qualitative managerial informa-
tion about the future sales. The information is translated into at least four data points on the PLC 
curve. Each data point represents a coordinate (x, y) with x representing time period and y repre-
senting predicted future sales by the managerial board.

3.1.2. Interpolation of the future sales data predicted by the managerial board
The next step is to interpolate the data points translated from qualitative managerial information 
about the future sales. The aim is to generate a general formulation of demand by spline interpola-
tion (SI) of the data points. Once the general function of demand is formulated, the growth function 
is generated based on the data obtained from the relative increment of demand. Since a product 
may experience different growth during different time intervals, considering a constant growth rate 
throughout the entire PLC will not explain the complex behavior of stochastic and uncertain demand. 
Although utilizing piecewise functions can address this problem to some extent, preserving smooth-
ness at the knots is a concern. One way to address this matter is to connect sequential points in such 
a way that the overall curve passing through all the points remains continuous and appears smooth. 
The SI method helps obtain such a curve that preserves smoothness at the knots (Neill, 2002).

In mathematics, a spline is a numeric function that is defined by a number of piecewise polyno-
mial functions. This function has a sufficiently high degree of smoothness at the points where two 
polynomial pieces are connected. The SI method has been applied in many fields and industries so 
far. It originated from a tool applied by engineers to make smooth curves that pass through certain 
points. The spline includes some weights bound to a flat surface at connection points. A smooth 
curve is then generated by bending a flexible strip upon each of the weights (Neill, 2002). Here, the 
same concept is considered when referring to a mathematical spline. The difference is that this 
study deals with numerical data instead of the points and also coefficients of a polynomial instead 
of the weights. These polynomial coefficients interpolate the numerical data and bend the curve to 
pass through each data, preserving continuity without having any drifting and irregular behavior.

3.1.3. Formulation of demand growth during the PLC
The output of the interpolation process provides key insight for understanding the trend of the PLC 
curve and consequently the growth rate of future demand. In this step, using statistical approaches, 
a mathematical function that best represents the growth rate of demand is formulated. In order to 
obtain more accurate results, there should be no limitation on the degree of the growth rate func-
tion. In constructing the prediction model, different polynomials with various degrees and complexi-
ties will be tested in order to find the best-fit growth rate function. In the next section, it will be 
shown that utilizing a growth rate function with better goodness-of-fit parameter values results in 
higher accuracy of the proposed prediction model. In this regard, sensitivity analysis is performed to 
demonstrate the effect of different growth rate functions on the accuracy of results.

3.1.4. Construction of stochastic differential equation as the forecast model
According to a study conducted by Qin and Nembhard (Qin & Nembhard, 2012), a GBM process ena-
bles the formulation of uncertainty in demand over the PLC as shown in Equation (2).

 

where dWt = �

√
dt leads to Equation (3).

(2)dDt = Dt�tdt + Dt�dWt
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where ɛ = N(0, 1). The term Dt��
√
dt demonstrates the magnitude of uncertainty and μt is the 

growth rate function through which the complexity in demand behavior is reflected. The magnitude 
of uncertainty is calibrated by parameter σ as the root square mean error (RSME) of the best-fit func-
tion found for μt.

With the values obtained from interpolating the managerial judgment-based data, the growth 
rate in each time period t can be attained using Equation (4).

 

in which n is the number of time periods that constitutes the PLC duration. Then the best-fit function 
of demand growth �

t
 is found and utilized in Equation (4). Substituting the RSME value in parameter � 

is the final step in formulating the targeted stochastic differential equation presented in Equation (3).

3.1.5. Simulation of the constructed forecast model
MATLAB (R2015b) software is used to simulate the resulted stochastic differential equation model 
and generate various possible demand paths. The following section gives additional information 
about the different steps taken in constructing and simulating the model.

3.2. Illustrative example
In the relevant literature, it is assumed that in the semiconductor industry, the stochastic movement 
of demand over time is similar to the GBM process (Benavides, Duley, & Johnson, 1999; Qin & 
Nembhard, 2010). Global semiconductor industry’s sales data between the years 1997 and 2014 is 
also applied in this study to better elucidate the proposed method. Furthermore, the same data are 
applied for evaluating the performance of the proposed methodology and are described in the fol-
lowing sections. It is worth mentioning that sales data are considered in this study as a close estima-
tion of demand in different time periods.

3.2.1. Spline interpolation
Six records of semiconductor industry’s sales data were selected to be utilized as input data to the 
SI process (see Table 3). Note that for cubic spline interpolation at least four points must be consid-
ered (Neill, 2002).

The SI method provides the general trend of the PLC curve and in order to obtain the targeted 
demand function, the following equation is applied.

(3)dDt = Dt�tdt + Dt� �

√
dt

(4)�
(
ti
)
=
D
(
ti+1

)
− D

(
ti
)

D
(
ti
) , i = 1,… ,n.

Table 3. Management-judgment-based information for future demand
Period (t) Expected demand
1 45

6 77

12 150

18 227

24 300

27 336
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where Di(t) for i = 1 to 5 is the third-degree curve fitted to each two sequential points produced based 
on the following formula:

 

MATLAB (R2015b) was used to obtain the coefficients corresponding to each fitted polynomial 
Di(t) for i = 1,… , 5 as shown in Table 4. More explanations on the algebraic procedure of cubic SI 
are given in a study conducted by Neill in 2002 (Neill, 2002).

Finally, Equation (7) suggests a unique Lagrangian-based polynomial that best fits the PLC curve.

 

where

 

Figure 2 shows polynomial D(t) obtained from Equation (7) vs. the actual sales data. As can be 
observed from this figure, the interpolated plot gives clear insight into the trend of sales (demand) 
during the considered time horizon.

(5)D(t) =

⎧
⎪⎪⎨⎪⎪⎩

D
1
(t) 1 ≤ t < 6

D
2
(t) 6 ≤ t < 12

D
3
(t) 12 ≤ t < 18

D
4
(t) 18 ≤ t < 24

D
5
(t) 24 ≤ t ≤ 27

(6)Di(t) = ai(t − ti)
3 + bi(t − ti)

2 + ci(t − ti) + di for i = 1 to 5

(7)D(t) =

5∑
i=1

li(t)Di(t),

(8)li(t) =

n∏
j=1, i≠j

t − tj
/
ti − tj

for i = 1 to 5

Figure 2. Interpolated curve vs. 
actual sales data.

Table 4. Coefficients corresponding to the piecewise spline interpolated polynomials
ai bi ci di

i = 1 −0.0331 1.0534 1.95967 45

i = 2 −0.0331 0.5573 10.0135 77

i = 3 −0.0019 −0.0380 13.1292 150

i = 4 0.0036 −0.0719 12.4698 227

i = 5 0.0036 −0.0078 11.9915 300
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3.2.2. Finding the best fitted curve to the demand growth
Parts 1–5 of Figure 3 show the growth rate function fitted to the growth data obtained from  
Equation (4). Although greater complexity would be involved for approximation purposes when 

Figure 3. Fitting different 
polynomials to the growth rate 
data.

Fitted polynomial:
f(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = -0.004005  (-0.005004, -0.003006)
p2 = 0.135  (0.1196, 0.1504)

Goodness of fit:
SSE: 0.00822
R-square: 0.7405
Adjusted R-square: 0.7297
RMSE: 0.01851

3.1. Linear
Fitted polynomial:
f(x) = p1*x^2 + p2*x + p3
Coefficients (with 95% confidence bounds):
p1 = -0.00009627 (-0.0002433, 5.076e-05)
p2 = -0.001406  (-0.005496, 0.002684)
p3 = 0.1229  (0.09893, 0.1469)

Goodness of fit:
SSE: 0.007613
R-square: 0.7597
Adjusted R-square: 0.7388
RMSE: 0.01819

3.2. 2nd degree polynomial

Fitted polynomial:
f(x) = p1*x^3 + p2*x^2 + p3*x + p4
Coefficients (with 95% confidence bounds):
p1 = 0.00004247 (2.917e-05, 5.578e-05)
p2 = -0.001816  (-0.002362, -0.00127)
p3 = 0.01752  (0.01112, 0.02393)
p4 = 0.07633  (0.05598, 0.09669)

Goodness of fit:
SSE: 0.002545
R-square: 0.9197
Adjusted R-square: 0.9087
RMSE: 0.01076

3.3. 3rd degree polynomial
Fitted polynomial:
f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + 
p5
Coefficients (with 95% confidence bounds):
p1 = -0.000004349 (-5.095e-06, -3.604e-06)
p2 = 0.0002773  (0.0002368, 0.0003179)
p3 = -0.005946  (-0.006682, -0.005211)
p4 = 0.04343  (0.03841, 0.04844)
p5 = 0.03547  (0.02529, 0.04565 )

Goodness of fit:
SSE: 0.0003178
R-square: 0.99
Adjusted R-square: 0.9881
RMSE: 0.00389

3.4. 4th degree polynomial

Fitted polynomial:
f(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 
+ p5*x + p6
Coefficients (with 95% confidence bounds):
p1 = 0.0000002522 (2.31e-07, 2.734e-07)
p2 = -0.00002137 (-2.281e-05, -1.994e-05)
p3 = 0.0006901  (0.0006546, 0.0007256)
p4 = -0.01025  (-0.01064, -0.009867)
p5 = 0.06136  (0.0596, 0.06313)
p6 = 0.01506  (0.01253, 0.01759)

Goodness of fit:
SSE: 1.001e-05
R-square: 0.9997
Adjusted R-square: 0.9996
RMSE: 0.00070753.5. 5th degree polynomial
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using higher order polynomials (Wang, Yang, Ding, & Wang, 2010), an attempt should be made to 
find the best-fit growth function. Figure 3 shows different approximations for the growth function 
(see Equation (4)) with the corresponding root mean square error (RMSE) values (see Equation (9)). 
A comparison of the values obtained for the RMSE parameter justifies the selection of the 5th degree 
polynomial as it exhibits the best goodness-of-fit values. It is worth noting that in the GBM-based 
prediction model (Equation (3)), the magnitude of uncertainty is calibrated by parameter σ, whose 
value is set based on the RMSE parameter value obtained from the best fitted function of growth. For 
the case under study and as demonstrated in Figure 3, the 5th degree polynomial indicates better fit 
with a value of 0.0007075 for the RMSE parameter.

3.2.3. Simulation of the possible demand paths (as possible scenarios)
To generate possible events of demand through the PLC, a simulation-based approach is followed in 
this section. Given the best fitted function to the demand growth as well as the value obtained for 
parameter �, the targeted stochastic differential equation is made based on Equation (3). The simu-
lation algorithm was coded in MATLAB R2015b to generate 100 demand paths.

Figure 4 is an illustration of the 100 demand paths generated with five different values of param-
eter � set based on values obtained for RMSE (see Equation (9)) in curve fitting process. The figure 
clearly demonstrates an increase in volatility of the demand paths as the value of parameter σ in-
creases. An analysis of the standard deviation of 100 simulated paths for each value of σ shows that, 
an increase in the value of σ leads to higher volatility in the 100 simulated paths (see Figure 4.6).

Figure 4. The effect of 
considering different degrees 
of growth rate polynomials 
on the volatility of simulated 
paths.
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4. Performance evaluation of the proposed method
The expected path of demand obtained from average of 100 simulated demand paths is considered 
as the predicted diffusion through the PLC. According to Chopra and Meindl (2007), the tracking 
signal (TS), as the ratio of bias and mean absolute deviation (MAD), can reveal any bias in the values 
predicted by a forecasting method. If TS is under -6, it is a signal that the forecasting method under-
estimates the demand and if it is found to be over 6, it is a sign that the forecasting method overes-
timates the demand. To evaluate the performance of the proposed method, the value of TS for time 
period t, as given in Equation (10), is calculated and represented in Figure 5. The results demonstrate 
the unbiased prediction of the forecasting method between the years 2001 and 2014, as there is no 
value outside the above-mentioned range.

 

in which

 

(9)RMSE =

√√√√1∕n

n∑
t=1

E2t

(10)TSt =
biast
MADt

(11)MADn = 1∕n

n∑
t=1

||Et||,

Figure 6. Performance 
comparison of the proposed 
method with Holt’s model.
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And

 

To obtain further insight into the performance of the proposed method, a conventional prediction 
method, Holt’s method, was also applied on the same data from the semiconductor industry. A com-
parison was made between the results from the average of 100 simulated paths and the values pre-
dicted by Holt’s method (Figure 6). The figure also provides a comparison of the outputs obtained from 
utilizing these two methods and the real sale values within the time horizon comprising 27 years from 
1988 to 2014. Evidently, both models predicted the sale values relatively close to each other, which 
confirm the applicability of the proposed method with respect to Holt’s conventional forecasting meth-
od. In addition, a comparison was done for two significant measures of forecast error, namely MAD 
and RMSE. To do so, the same error measures were calculated based on the average path obtained 
from the outputs of the proposed method (simulated paths). Figure 7 demonstrates this comparison.

It should be noted that to perform demand forecasting using Holt’s method, some historical data 
are required. Furthermore, the data should be dynamically updated after observing the demand of 
each time period. As a result, Holt’s method does not provide the sequences of demand values as-
signed to the desired time horizon consisting of several time periods. Therefore, the proposed meth-
od outperforms Holt’s model when the aim is to predict a sequence of demand values for a time 
horizon comprising several periods. Figure 6 also reveals the fact that Holt’s model cannot capture 
the complexity of demand behavior stemming from the volatility in the semiconductor field. The 
same problem arises when using the average of 100 simulated paths. Therefore, generating several 
different demand paths based on the GBM process as described earlier, can address the problem 
caused by demand uncertainty. This is because it is a valuable input in proposing a feasible and op-
timal plan for all generated demand paths as representatives of scenarios of possible demand 
trends during the considered time horizon.

(12)Et = forecasted demand − actual demand

Figure 8. Comparison of MAD 
measures for different values 
of σ.
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5. Sensitivity analysis
In this section, sensitivity analysis is performed on parameter σ to thoroughly understand its effect on 
the accuracy of the proposed forecasting method. To quantify this effect, some measures of forecast 
error including MAD and mean squared error (MSE) are analyzed, where the following equation holds:

 

The results of the performed error analysis are demonstrated in Figures 8 and 9, respectively. The fig-
ures indicate an increase in the value of both error measures as the value of σ is increased. Note that 
the value of σ changes based on different RMSE values found from curve fitting to the growth rate data.

6. Managerial implications
The suggested procedure is helpful for sales managers to gain insight into possible challenges that 
may arise when dealing with an uncertain future market, particularly when the source of uncertainty 
is unknown and there is insufficient past information available. The proposed method also gives valu-
able input for developing more accurate and practical contingency plans in areas with more vulner-
ability caused by uncertainties in demand, as the method proposes a scenario aggregation approach 
by utilizing path-based scenarios (Kall & Wallace, 1994). The method can be helpful for policy-makers 
who require the prediction of uncertain demand over a time horizon, such as decisions associated 
with aggregate production planning, capacity planning, and supply chain network design. Especially 
for the semiconductor industry with intensive capital investment (Chien et al., 2010), the proposed 
approach can be useful for making decisions associated with capacity allocation and expansion.

7. Conclusion
Through this study, a forecast method was suggested for capturing both the dynamism and sto-
chasticity of future demand in the semiconductor industry. The proposed method aims to address 
the problem stemming from unavailability of historical data in predicting future demand trends, by 
utilizing the SI approach. In addition, uncertainties in future demand were calibrated using the GBM 
process. It was shown that utilizing non-linear polynomials for demand growth function improves 
forecasting accuracy, since they can reflect the actual demand growth rate over different PLC inter-
vals. The proposed GBM-based forecast model permits involving possible uncertainty in predicting 
future demand. The outputs of the proposed forecast model are several demand paths whose vola-
tility represents future demand uncertainty. The performance of the proposed method was tested 
against Holt’s model by performing forecast error analysis. Comparisons of values obtained for two 
significant measures of forecast error, namely MSE and MAD, confirmed the capability of the pro-
posed method in demand forecasting in the semiconductor manufacturing field. The method con-
tributes well to developing strategic plans in dynamic and uncertain markets when a robust scenario 
analysis is required. The method facilitates the generation of high numbers of demand scenarios, 
leading to more practical and accurate plans, particularly in the case of stochastic programming.

(13)MSE = 1∕n

n∑
t=1

E2t

Figure 9. Comparison of MSE 
measures for different values 
of σ.
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