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Abstract
This paper proposes the correction of faulty sensors using a synthesis of the greedy sparse 

constrained optimization GSCO) technique. The failure of sensors can damage the radiation 
power pattern in terms of sidelobes and nulls. The synthesis problem can recover the 
wanted power pattern with reduced number of sensors into the background of greedy algo­
rithm and solved with orthogonal matching pursuit (OMP) technique. Numerical simulation 

examples of linear arrays are offered to demonstrate the effectiveness of getting the wanted 
power pattern with a reduced number of antenna sensors which is compared with the avail­

able techniques in terms of sidelobes level and number of nulls.

Introduction
This paper stresses on the problem o f failure correction in linear antenna arrays which has 

many applications in satellite and radar communication systems [0—5]. The possibility o f fail­

ure o f one or more sensors in the communication system can damage the radiation power pat­

tern in terms o f sidelobes, nulls and the communication become a dream. To get the wanted 

power pattern with the active number o f sensors is very important to continue the communi­

cation. The synthesis problem in antenna array is associated to find the weights and locations 

for the active sensors that produce a desired pattern. This technique focuses to get the wanted 

power pattern even in case o f failure o f antenna sensors. Detection and correction o f faulty 

patterns in antenna arrays have received increasing attention in the recent years [6- 22]. It is 

very important to detect the position o f faulty sensors. Once the position o f faulty sensors is 

detected [6- t6], such as from a small number o f far field measurements [6- 8], detection on 

the basis o f pattern [9], evolutionary algorithms [ 00—03] and compressed sensing techniques 

[04- 06], then the correction techniques applied to recover the desired pattern. The pattern 

recovery techniques include evolutionary algorithms such as cuckoo search algorithm [07—08], 

cultural algorithm with differential evolution [09], genetic algorithm with pattern search [20], 

firefly algorithm [20], grey w o lf optimizer along with interior point algorithm [22], particle
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swarm optimization for failed array compensation [23—24] and improved genetic algorithm 

[25]. For most o f them, the pattern is recovered by adjusting the active sensors by only control­

ling the excitation weights o f the antenna arrays. Such correction o f array failure can simply be

solved by the computational methods which is time consuming without reducing the number 

o f sensors. In addition, most correction techniques in the literature deal only with the active 

sensors and requires a large computation to adjust the remaining sensors in the array to get 

the desired radiation power pattern. Another possibility to get the desired pattern is the time 

modulated linear arrays [26], conjugate gradient technique [27] and some analytical technique 

[28] achieved the sidelobes level only but can not resolve the issue o f null placement and null 

depth level at the desired locations. Indeed, using nonuniform sensor spacings has more free­

doms and can reduce the number o f sensors to get the desired radiation power pattern. For 

the synthesis o f a nonuniformly spaced array with single-pattern, many practical methods 

have been proposed, such as a convex optimization [29], sequential convex optimization [30] 

matrix pencil [30], extended matrix pencil algorithm [32] and sparseness optimization algo­

rithms [33] are applied to get the desired pattern with reduced number o f sensors. The failure 

correction o f sensors by the greedy optimization algorithm is an interesting and efficient way 

to get the desired power pattern with the minimum number o f sensors.

In this paper, the failure correction problem is developed from the greedy sparseness con­

strained optimization (GSCO) point o f view. The objective is to develop the wanted pattern 

with the reduced number o f sensors. The existing techniques use the minimum L2 optimiza­

tion and resolve with global search optimization techniques which has mainly two problems. 

First, the global search optimization technique requires large computations and is time con­

suming, particularly for satellite communications. Secondly, the L2 norm minimization gives 

the approximate desired radiation power pattern, but does not guarantee with the reduced 

number o f sensors. In this study, an antenna array failure correction problem is studied from 

the GSCO technique which finds as few non-zero values which correspond to the active sen­

sors o f the array in the recovered radiation power pattern. Suppose an array o f N  sensors with 

uniform spacing and some sensors in the array become damaged. The sensors which fail is cor­

responding to having no location in the antenna array. Therefore, we can say that the array 

sensor positions is sparse, so the active sensors is fewer than the total number o f  sensors in the 

the array antenna. The main aim o f array failure correction is to get the desired pattern with 

minimum number o f sensors whose weight excitation is not equal to zero. Thus the failure 

correction problem is ensemble as an optimization problem and solved by GSCO technique. 

The proposed solution provides better radiation pattern in terms o f sidelobes and nulls than 

the existing methods with less number o f sensors. The organization o f the paper is planned as 

follows. Correction o f linear arrays with greedy sparseness constrained optimization technique 

is offered In Section II. In section III, some simulation results is offered to confirm the effec­

tiveness o f the recovered pattern with the proposed solution. Some concluding remarks with 

future directions are discussed in Section IV.

Linear array
Consider a non uniforrrm symmetrical linear array antenna consists o f N  number o f sensors 

as shown in Fig 0. The healthy array factor for this setup is given by [34—35],

where a, is the Chebyshev excitation weight o f the ith sensor positioned at d, and k is the wave 

number. It is supposed that the weight excitations o f the antenna array are conjugate

N

(0)
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Fig 1. Non uniform symmetrical linear array.

https://doi.org/10.1371/journal.pone.0189240.g001

symmetrical. For an even N  number o f sensors, the weight excitations can be written as fol­

lows,

(a,)* =  aN+1_, fo r  n =  1, 2 , . . .  .N =2 (2)

and for odd number o f sensors it can be written as follows,

aN/2 =  aN/‘2+1 (3)

Through this condition, the array factor is a real valued and can be written as follows,

A (0 )  =  2 rJ n n ate-jkdicose\ (4)

Eq (2) can be written as

s(ff) =  |g-;kdlCOSy e~ikd2cosy e-ikdN/2cos0j

A (6 )  =  2Re(s(y)a ) (5)

N/2

A (y )  =  E  aicos(kdicosff) (6)

N ow  i f  one or more sensors in the antenna array become damaged. The power pattern for 

this damage setup can be given by the following expression as follows

Ad (y)= XXX w e,jkdi c (7)
,=1
i=l,m,n,q

It is supposed that the sensor l = W nm  = w02,n = w03,q = w04 becomes damaged in the 

antenna array. One can clearly monitor from Fig 2 that due to the sensor failure, the radiation 

power pattern disturbs in terms o f sidelobes and nulls. The values o f sidelobes level and null 

depth level o f the initial and damaged array at different positions are given in Table 0. So, the

=1

T
ai |a1, a2, . . .  aN/2

=1
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Fig 2. Chebyshev array pattern of 20 number of sensors with damaged sensor ( w 11, w12, w13, w14). 

https://doi.org/10.1371/journal.pone.0189240.g002

main objective o f this work is to correct the failure pattern with the minimum number o f sen­

sors that has the same desired pattern as the Chebyshev pattern. The proposed methodology is 

based on the greedy sparseness constrained optimization (GSCO) technique to correct the fail­

ure pattern with the minimum number o f sensors.

Correction of array failure with greedy sparseness constrained 
optimization
This paper emphasis on the problem o f correcting the failure pattern with reduced number 

o f sensors in linear antenna array. The main objective is to get a recoverd array which has 

reduced number o f sensors while keeping the desired power pattern as that o f the original

Table 1. Comparison analysis for initial and damaged array.

Initial array parameter Damaged array parameter

Null positions at an angle 6 / SLL(dB) NDL(dB) Null positions SLL(dB ) NDL(dB)

2.1 -35.00 -70.00 -37.17 -29.69 -37.03

25.8 -35.00 -70.00 -36.83 -29.52 -36.48

36.9 -35.00 -70.00 -33.21 -28.87 -33.99

45.9 -35.00 -62.21 -32.86 -28.17 -32.63

53.7 -35.00 -60.35 -29.98 -26.62 -29.78

60.3 -35.00 -62.76 -26.32 -24.71 -26.31

66.9 -35.00 -70.00 -21.53 -21.29 -21.08

72.6 -35.00 -70.00
77.1 -35.00 -56.57

https://doi.org/10.1371/journal.pone.0189240.t001
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array. The cost function for the array failure correction can be defined as follows

Cost Fuction =  const.mm(Q) < min (8)

where A (9 )  is the original Chebyshev pattern at different directions, Q is the minimum num­

ber o f  sensors o f the recovered pattern, wi is the excitation weight o f the ith sensor o f the recov­

ered array at location d, while k = 2nlX is the wave number. The main goal is to recover the 

wanted pattern A (9 )  with the reduced number o f sensors under a cost function which gives 

minimum mean square error.

2

Greedy sparseness constrained optimization technique
In this section, we develop the array failure solution based on greedy sparseness constrained 

optimization (GSCO) technique. As we had seen the failure o f sensor, damage the radiation 

power pattern. The GSCO find as few non-zero values in a measurement matrix which repre­

sents the minimum number o f sensors in the array. Suppose that the antenna sensors are 

placed symmetrically along the x-axis with uniform spacing. As we had assumed the failure o f 

some sensors. N ow  there are two situations in the antenna array, one state radiating the waves 

while the other state is damaged which do not radiate. Eq (2) can be given in a matrix form as 

follows.

[A] =  M L (9)

-A(01) 3

1

M 2 ■ M 1, n ' ' W1 "

A(02)
=

M 2, 1 M 2,2 ■ ■ M 2 , n w2777

- A (d m ) . Mm, 1 Mm, 2 ■■ Mm, mxn wn

(10)

where the number o f samples is o f the power pattern is m and n is the reduced number o f sen­

sors required to get the wanted pattern. A  is m x  1 vector having the radiation power pattern 

in different directions, M  is m x n measurement matrix o f steering vectors having m <  n and 

w  is the n x  1 excitation weights o f the minimum number o f sensors required to get the desired 

pattern. Subsequently w has m nonzero values, the radiation vector A  = M w  is a linear combi­

nation o f m columns from M. To  recover the desired pattern, we want to find that which col­

umns o f M  contribute in the radiation vector A. In this technique the columns are picked in a 

greedy way. A t every iteration, the colum o f M  are choosen that is intensely correlated with the 

radiation vector A. Then deduct o ff its impact to A  and repeat on residual and after m repeti­

tions the proposed technique will recoverd the desired pattern.
G re e d y  OMP a l g o r i t h m  
I n p u t

• m x n M easurem ent s t e e r i n g  m a t r i x  M
• m x 1 R a d ia t i o n  v e c t o r  A
• w i s  e x c i t a t i o n  w e ig h ts  o f  th e  r e c o v e r e d  p a t t e r n

O u tp u t

P r o c e d u r e

w i s  an e s t im a t e  o f  th e  r e c o v e r e d  p a t t e r n  
am o f  th e  r a d i a t i o n  v e c t o r  A  
R e s id u a l  r m = A -a m

I n i t i a l i z e  th e  r e s i d u a l  r n A

nx1
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• S o lv e  a l e a s t  s q u a re  p r o b le m  t o  o b t a in  a new v e c t o r  x t 
m inx||Mx -  A||

• F in d  th e  new e s t im a t e  
at = MtXt
r t  = A  -  at

a rg

w =  x
min s . t .  ||A-Mw|| < s

where e  is the error. In Eq (1) we look to seek thereduced number o f non-zero weights exci­

tation w. Matching with the existing techniques resolved with L2 minimization, this paper per­

forms the array correction problem as greedy sparse optimization and convert the L2 norm to 

L t norms. The L2 norm is computationally expensive and requires a large time to get the 

desired pattern. On the other hand, the L t norm is convex and promotes sparsity in the solu­

tion and is computationally efficient. M oreover the L1 minimization gets the wanted pattern 

with the reduced number o f sensors.

Simulation results
In this section, simulation results are offered to confirm the efficiency o f the proposed (GSCO) 

technique for failure correction in array antennas.

Correction of failure with Chebyshev array
In this case, a Chebyshev (test array) uniform linear array o f 20 numbers o f sensors is consid­

ered to check the validity o f the proposed GSCO technique for failure correction. The sidelobes 

o f the test array is taken as -35 dB and Table 2 shows the excitation weights for the test array 

antenna. The Chebyshev radiation power pattern o f these weights is depicted in Fig 3 by the

Table 2. Excitation weights of Chebyshev, faulty and recovered pattern.

Element No Chebyshev weights N = 20 Faulty weights Recovered by GSCO

S/No a adam di /A Wi

1 1.0000 1.0000 0.50 1.00

2 0.9644 0.9644 1.31 0.93

3 0.8962 0.8962 2.12 0.81
4 0.8013 0.8013 2.93 0.64

5 0.6875 0.6875 3.74 0.45

6 0.5636 0.5636 4.55 0.31

7 0.4389 0.4389 5.36 0.26

8 0.3215 0.3215 6.17 0.09

9 0.2180 0.2180 6.17 0.09

10 0.1934 0.1934 5.36 0.26
11 0.1934 0.0000 4.55 0.31

12 0.2180 0.0000 3.74 0.45

13 0.3215 0.0000 2.93 0.64

14 0.4389 0.0000 2.12 0.81

15 0.5636 0.5636 1.31 0.93

16 0.6875 0.6875 0.50 1.00
17 0.8013 0.8013

18 0.8962 0.8962

19 0.9644 0.9644

20 1.0000 1.0000

https://doi.org/10.1371/journal.pone.0189240.t002
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80 100 
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Fig 3. Chebyshev pattern of 20 numbers of sensors recovered by GSCO technique.

https://doi.org/10.1371/journal.pone.0189240.g003

black solid lines. The damage o f sensors in the antenna array disturbs the entire pattern. Due 

to this damage, the communication becomes a dream. To  get the original pattern back with 

the minimum number o f array sensors is important, especially in radar and satellite communi­

cations. The damage sensor weight is represented by zero amplitude as given in Table 2. Fig 3 

shows the radiation pattern o f the Chebyshev, faulty and the pattern recovered by proposing 

greedy sparseness constrained optimization (GSCO) technique. From the simulation result, it 

is obvious that by the proposed technique, we received nearly the same pattern as the Cheby- 

shev pattern. In this simulation, the mean square error (MSE) is used as the difference between 

the desired Chebyshev pattern and the estimated pattern obtained by the proposed technique. 

In this scenario, we assumed that four sensors (w 11,w12,w13,w14) are damaged in an array o f 20 

sensors, i.e. 20% sensors are damaged. Due to this failure one cannot communicate. From Fig 

3 it is clear that we get nearly the desired pattern from 16 numbers o f sensors by the proposed

Table 3. Comparison analysis for initial, damaged and recovered array by GSCO.

Initial array Parameter Damaged array parameter Recovered by GSCO

Null positions at an angle 6 SLL(dB ) NDL(dB) Null positions SLL (dB) NDL(dB) SLL (dB) NDL(dB)

2.1 -35.00 -70.00 -37.17 -29.69 -37.03 -34.28 -70

25.8 -35.00 -70.00 -36.83 -29.52 -36.48 -33.72 -51.17

36.9 -35.00 -70.00 -33.21 -28.87 -33.99 -33.51 -45.28

45.9 -35.00 -62.21 -32.86 -28.17 -32.63 -33.51 -43.14

53.7 -35.00 -60.35 -29.98 -26.62 -29.78 -33.11 -50.02

60.3 -35.00 -62.76 -26.32 -24.71 -26.31 -33.72 -43.28

66.9 -35.00 -70.00 -21.53 -21.29 -21.08 -35.54 -63.98

72.6 -35.00 -70.00 -34.59 -50.34

77.1 -35.00 -56.57 -32.69 -50.85

https://doi.org/10.1371/journal.pone.0189240.t003
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Fig 4. Chebyshev pattern of 32 numbers of sensors recovered by GSCO technique.

https://dol.ora/10.1371/ioumai.Done.0189240.a004

method. So, the proposed method is very effective in case o f failure and one can get the desired 

pattern with minimum number o f sensors. The weights o f the recovered pattern obtained by 

the proposed method are given in Table 2. The proposed method recovers the desired pattern 

in terms o f sidelobes, null depth level and main beam width nearly the same as that o f the orig­

inal Chebyshev array. The MSE in this case is 2.1e-3 while the computation time for the recov­

ery o f the desired pattern is 2.7 s and require 97 number o f samples to get the desired pattern. 

The values o f sidelobes level, N D L  and nulls are palced at the desired angles by the proposed 

GSCO as depicted in Table 3. In the second case, we consider the Chebyshev array o f  32 num­

bers o f sensors, but this time, consider the failure o f six sensors w17,w18,w19,w20,w21,w22, due to 

which radiation pattern disturbs badly. From the results of Fig 4, it is clear that the desired pat­

tern is recovered by the proposed method from 26 numbers o f sensors. In this case, the MSE is 

2.7e-2. For the recovery o f the desired pattern, the proposed method require 105 number o f 

samples. From the simulation results it is clear that i f  the array size increases the MSE also 

increases. The computation time required to recover the pattern is 3.4 s. The weight and posi­

tions o f the recovered pattern obtained by the proposed GSCO are given in Table 4.

Correction of failure with Taylor pattern
In this example, a Taylor array o f 30 numbers o f sensors with sidelobes level -35 dB is taken as 

the test array. W e assumed that six numbers o f sensors w16,w17,w8,w9,w20,w21 get damaged in 

the array. Due to which the pattern disturbs severely. Its sidelobes level increases and nulls are 

damaged. In such critical situation, the communications become a dream. N ow  the main job 

is to recover the wanted pattern with reduced number o f sensors by adjusting the weights and 

distance in the antenna array. To  check the validity o f the proposed method, we assume the 

failure o f six sensors in an array o f 30 sensors, i.e. 20% sensors are damaged. As one can see in 

Fig 5, due to this failure the whole pattern disturbs. The require is to get the desired pattern
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Table 4. Excitation weights of Chebyshev, faulty and recovered pattern.

Element No Chebyshev weights N = 32 Faulty weights Recovered by GSCO technique

S/No a adam d^A Wi

1 1.0000 1.0000 0.45 1.0000

2 0.9863 0.9863 1.31 0.9714

3 0.9594 0.9594 2.12 0.9082

4 0.9202 0.9202 2.93 0.8375

5 0.8700 0.8700 3.74 0.7106

6 0.8103 0.8103 4.55 0.5810

7 0.7431 0.7431 5.36 0.4548

8 0.6703 0.6703 6.17 0.3610

9 0.5943 0.5943 6.61 0.2187

10 0.5170 0.5170 7.21 0.1971

11 0.4406 0.4406 7.73 0.1131
12 0.3669 0.3669 8.31 0.091

13 0.2976 0.2976 8.90 0.004

4 0.2341 0.2341 8.90 0.004

15 0.1774 0.1774 8.31 0.091

16 0.2503 0.2503 7.73 0.1131
17 0.2503 0. 0000 7.21 0.1971

18 0.1774 0.0000 6.61 0.2187

19 0.2341 0.0000 6.17 0.3610

20 0.2976 0.0000 5.36 0.4548
21 0.3669 0.0000 4.55 0.5810

22 0.4406 0.0000 3.74 0.7106

23 0.5170 0.5170 2.93 0.8375
24 0.5943 0.5943 2.12 0.9082

25 0.6703 0.6703 1.31 0.9714

26 0.7431 0.7431 0.45 1.0000

27 0.8103 0.8103

28 0.8700 0.8700

29 0.9202 0.9202

30 0.9594 0.9594

31 0.9863 0.9863

32 1.0000 1.0000

https://dol.ora/10.1371/iournai.pone.0189240.t004

from 24 numbers o f  sensors by the proposed GSCO technique. Table 5 shows the weights o f 

the Taylor pattern, damaged pattern and the weights and positions o f the recovered pattern by 

the proposed technique. The red dotted line in Fig 5 shows the pattern obtained by the pro­

posed GSCO technique. The MSE between the wanted and the estimated radiation pattern is 

3.02e-2. The recovered pattern is obtained from the 24 number o f sensors by the proposed 

method which require 20% less number o f sensors and get the same pattern as that o f the origi­

nal Taylor array.The same scenario o f 30 number o f sensors is taken for Chebyshev array with 

sidelobes level -35 dB. Again we consider the six number o f failures as that in Taylor array. 

From Fig 6, it is clear that due to six sensor failure, the pattern disturbs badly in terms o f side- 

lobes level, null depth level and nulls are shifted from their original positions. By applying the 

proposed GSCO method, the desired pattern is recovered from 24 number o f sensors which is 

depicted in Fig 6.
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Fig 5. Taylor pattern of 30 numbers of sensors with sidelobes -35 dB recovered by GSCO technique.

https://doi.ora/10.1371/journal.pone.CI18924CI.aCICI5

Correction of failure with large arrays
In order to check the validity o f the proposed GSCO technique for large arrays usually used in 

satellite and radar communications systems. A t the first instant, we consider a large linear 

array o f 100 numbers o f sensors o f Chebyshev pattern with sidelobes level -40 dB as shown in 

Fig 7 and assumed that 10 number o f sensors w5i,w52,w53,w54,w55,w56,w57,w58,w59,w6o are get­

ting damaged. As one can clearly observe that due to 10 sensor damage, the pattern get dam­

aged badly. By applying the proposed method, the pattern can be recovered from 90 numbers 

o f sensors. The recovered pattern shown in Fig 7 by the red dotted lines is approximately the 

same as that o f the original Chebyshe array. The MSE for the recovered pattern is 4e-2. The 

time taken for the recovery o f the desired is 9.3 s which is much less than the evolutionary 

computational techniques. The recovery o f the desired pattern by the proposed technique in 

short time shows its effectiveness.

In the second case, the Taylor pattern o f  100 numbers o f sensors with sidelobes level -40 dB 

is taken to check the validity o f the proposed technique which is depicted in Fig 8. N ow  we 

consider the failure o f  10 sensors w51,w52,w53,w54,w55,w56,w57,w58,w60,w61 at different posi­

tions. In antenna arrays, the position o f failure is very important. I f  the sensors get damaged 

near the center o f the array, then it disturbs the pattern badly as compared to the corner ele­

ment failure. The proposed method recovered the pattern in terms o f sidelobes, nulls and 

main beam width by adjusting the weights and positions o f the remaining sensors in the array. 

The recovered pattern is shown in Fig 8 by the red dotted line. In Fig 9, we have assumed the 

failure o f random number o f sensors w1,w3,w4,w7. One can clearly monitor that due to random 

failure the Chebyshev power pattern disturbs badly. By applying the proposed method, the 

desired pattern is recovered which is depicted in Fig 9 by the red dotted lines.
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Table 5. Excitation weights of Taylor pattern, faulty and recovered pattern.

Element No Taylor array weights N = 30 Faulty weights Recovered by GSCO

S/No a adam di /A Wi

1 1.0000 1.0000 0.53 1.000

2 0.9844 0.9844 1.34 0.9243

3 0.9538 0.9538 2.15 0.8521

4 0.9094 0.9094 2.95 0.8173

5 0.8527 0.8527 3.75 0.7482

6 0.7860 0.7860 4.55 0.6585

7 0.7115 0.7115 5.35 0.5763

8 0.6318 0.6318 6.15 0.4887

9 0.5495 0.5495 6.95 0.3641

10 0.4673 0.4673 7.75 0.2019
11 0.3874 0.3874 8.55 0.1985
12 0.3121 0.3121 9.35 0.1021

13 0.2430 0.2430 9.35 0.1021

4 0.1815 0.1815 8.55 0.1985

15 0.2402 0.2402 7.75 0.2019

16 0.2402 0.0000 6.95 0.3641

17 0.1815 0.0000 6.15 0.4887

18 0.2430 0.0000 5.35 0.5763

19 0.3121 0.0000 4.55 0.6585

20 0.3874 0.0000 3.75 0.7482
21 0.4673 0.0000 2.95 0.8173

22 0.5495 0.5495 2.15 0.8521

23 0.6318 0.6318 1.34 0.9243
24 0.7115 0.7115 0.53 1.000

25 0.7860 0.7860

26 0.8527 0.8527

27 0.9094 0.9094

28 0.9538 0.9538

29 0.9844 0.9844

30 1.0000 1.0000

https://doi.ora/10.1371/journal.Done.0189240.t005

Comparison with the existing techniques
The proposed technique, performance is compared with the existing technique [25—26]. The 

performance parameter for comparison is sidelobes level, null depth level, number o f nulls and 

the computational time. The proposed method recovered the desired pattern with minimum 

number o f sensors as compared to the existing techniques. In [25], sidelobes are recovered 

only by adjusting the remaining number o f sensors while [26] recovers the sidelobes and some 

null but not at the required positions. Moreover, it requires more computation to get the 

desired pattern. On the other hand, our proposed technique recovers the sidelobes, nulls at 

their desired locations and require less computation time. The comparative analysis o f existing 

and proposed technique are given in Table 6. By the proposed technique, we get the desired 

power pattern in terms o f sidelobes, number o f  nulls and null depth level with minimum num­

ber o f sensors. In Fig 10, we have compared the proposed method with the conventional 

method [25]. In this case assumed the failure o f (w2,w5,w6) sensors in an array o f 32 number o f
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60 80 100 120 
Theta in Degrees

Fig 6. Chebyshev pattern of 30 numbers of sensors with sidelobes -35 dB recovered by GSCO technique.

https://doi.ora/10.1371/journal.Done.0189240.a006

60 80 100 
Angle (Degrees)

Fig 7. Chebyshev pattern of 100 sensors with sidelobes -40 dB recovered by GSCO technique.

https://doi.ora/10.1371/journal.pone.0189240.a007

PLOS ONE | https://doi.org/10.1371/journal.pone.0189240 December 18, 2017 1 2 /1 8

https://doi.org/10.1371/journal.pone.0189240.g006
https://doi.org/10.1371/journal.pone.0189240.g007
https://doi.org/10.1371/journal.pone.0189240


Correction of faulty patterns

60 80 100 120 
Angle (Degrees)

Fig 8. Taylor pattern of 100 sensors with sidelobes -40 dB and n = 4 recovered by GSCO technique.

https://doi.ora/10.1371/journal.pone.0189240.a008

Fig 9. Chebyshev pattern of 32 number of sensors with random number of failure w 1, w 3, w 4, w 7 and sidelobes -40 dB 
recovered by GSCO technique.

https://doi.ora/10.1371/journal.pone.0189240.a009

PLOS ONE | https://doi.org/10.1371/journal.pone.0189240 December 18, 2017 1 3 /1 8

https://doi.org/10.1371/journal.pone.0189240.g008
https://doi.org/10.1371/journal.pone.0189240.g009
https://doi.org/10.1371/journal.pone.0189240


(©’ PLOS I one
*  *  1

Correction of faulty patterns

Table 6. Comparison with the existing techniques.

S/No Parameters of Pattern Proposed method Conventional method [25] Conventional method [26]

1 Number of sensor 32 32 32

2 Sidelobes level -34 dB -34 dB -30 dB

3 Null depth level -60 dB -45 dB -45 dB

4 Number of nulls recovered 29 6 14

5 Number of faulty sensors 6 3 2

6 Time 3.4 sec NA NA

7 MSE 2.7e-2 0.4 NA

8 Number of samples 105 NA NA

https://doi.ora/10.1371/journal.pone.0189240.t006

sensors. The convention method recovers the sidelobe level but can not solve the issues o f null 

placement at the desired locations. But our proposed method recovered the sidelobe level and 

null placement at the desired locations as shown in Fig 10. W e can steer the main beam direc­

tion i f  the desired user changes their direction. In this case the main beam is poininting in the 

direction o f wanted user at an angle o f 120 degeree along the direction o f nulls at the desired 

locations as depicted in Fig 11.

In this case, we have compared the error analysis and convergence rate analysis for different 

number o f sensors by the proposed greedy method and conventional method which is shown in 

Figs 12 and 13. Fig 13 shows the error versus minimum number o f sensors for the recovery o f the 

desired power pattern by the conventional [20] and proposed method. Our proposed method 

recovers the desired pattern with reduced number o f sensors as compared to conventional

80 100 120 
Theta in Degrees

Fig 10. Chebyshev pattern of the conventional [25] and proposed method with random number of failure (w2,w5,w6).

https://doi.ora/10.1371/journal.pone.0189240.a010
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Fig 11. Chebyshev pattern of the conventional [25] and proposed method with random number of failure (w2,w5,w6) 
and main beam pointing at an angle 6  = 120°.

https://doi.ora/10.1371/journal.pone.0189240.a011

6 7 8 9 10 11 12 13 14
Number of Iteration

Fig 12. Convengence of the conventional [20] and proposed method at different values of errors.

https://doi.ora/10.1371/journal.pone.0189240.a012
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Fig 13. Error versus minimum number of sensors by conventional [20] and Proposed method.

https://doi.ora/10.1371/journal.pone.0189240.a013

genetic algorithm [20]. The greedy algorithms require relatively less effort as compared to evolu­

tionary algorithms such as genetic algorithm etc. in terms o f error and convergence rate analysis. 

The estimate is reliable in terms o f sidelobes level, null depth level and nulls recovery o f the 

desired pattern. Fig 13 shows the error analysis by the proposed GSCO and conventional method. 

As can be seen from Fig 11, the proposed GSCO recovers the desired pattern with reduced num­

ber o f sensors in terms o f sidelobes level, null depth level and placement o f nulls at the desired 

locations.

Conclusion
In this paper, the array antenna failure correction problem is developed from the greedy 

sparseness constrained optimization (GSCO) technique. The available failure correction tech­

niques are based on the readjustment o f the active sensors in the array antenna to recover the 

desired pattern. But the proposed technique taking the advantage o f sparseness in terms o f sen­

sor location and the failure correction problem is ensemble as an optimization problem and 

solved by GSCO technique. The pattern recovered by the proposed technique has desired side- 

lobes level and number o f nulls require less simulation time as compared to the existing tech­

niques. Simulation results are offered to show the effectiveness o f linear array failure 

correction problem with GSCO. This method can be extended to circular arrays.
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