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Graphical abstract 
 

 

Abstract 
 

Plant extracts as corrosion inhibitors have been extensively investigated and are 

found as an alternative to synthetic organic compounds. The corrosion inhibition 

of mild steel in 1 M HCl by 15 compounds comprising of five phenylpropanoids 

from Alpinia galanga and other related compounds was explored experimentally 

using potentiodynamic polarisation procedures. The inhibition efficiencies 

determined experimentally for the various inhibitors were used in the Quantitative 

Structure-Activity Relationship (QSAR) study with their molecular descriptors 

calculated using Dragon software. Penalised multiple linear regression (PMLR) was 

adopted as the method of variable selection using elastic net penalty. The elastic 

net results show low mean-squared error of the training set (MSEtrain) of 0.121 and 

test set (MSEtest) of 0.131. The model obtained can be applied to predict the 

corrosion inhibition efficiencies of related organic compounds. Results also reveal 

that the PMLR based on elastic net penalty is effective in dealing with high 

dimensional data.   

 

Keywords: Corrosion inhibitor, potentiodynamic polarisation, phenylpropanoids, 

Alpinia galanga, high dimensional QSAR, penalised multiple linear regression 

(PMLR) 
 

 

Abstrak 
 

Ekstrak tumbuhan untuk digunakan sebagai perencat kakisan telah dikaji secara 

meluas kerana ia boleh menggantikan sebatian organik sintetik. Perencatan 

kakisan terhadap keluli lembut di dalam 1 M HCl oleh 15 sebatian yang 

mengandungi lima fenilpropanoid daripada Alpina galanga dan sebatian 

berkaitan lain dikaji secara eksperimen menggunakan kaedah polarisasi 

potentiodinamik. Kecekapan perencatan yang ditentukan secara eksperimen 

bagi pelbagai perencat digunakan dalam kajian hubungan kuantitatif struktur-

aktiviti (QSAR) dengan pemerihal molekul mereka dikira menggunakan perisian 

Dragon. Regresi linear berganda terdenda (PMLR) dipilih sebagai kaedah 

pemilihan pemboleh ubah menggunakan denda jaringan elastik.  Keputusan 

jaringan elastic menunjukkan ralat purata ganda dua set latihan (MSEtrain) adalah 

0.121 dan set ujian (MSEtest) 0.131. Model yang diperolehi boleh digunakan untuk 

menganggar kecekapan perencatan kakisan sebatian organik berkaitan. 
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Keputusan juga menunjukkan PMLR berdasarkan denda jaringan elestik adalah 

berkesan apabila berurusan dengan data dimensi tinggi. 

 

Kata kunci: Perencat kakisan, polarisasi potensiodinamik, fenilpropanoid, Alpina 

galanga, QSAR dimensi tinggi, regresi linear berganda terdenda (PMLR) 
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1.0  INTRODUCTION 
 

Metals and alloys of metals are extensively used in 

many engineering applications in various 

environments including acidic, alkaline and neutral 

environments because of their excellent combination 

of properties. But a metal or metal alloy becomes 

unstable or corrodes even in its normal environments. 

Thus, corrosion and means to control it is a major 

concern in the industries and efforts should be 

geared up to mitigate or minimise it as much as 

possible.  Corrosion is sinister in its behaviour and may 

not be immediately obvious. 

Any attempt to ignore its threats or delay its control 

will result in production losses, equipment failures, 

impaired safety and problematic effluents. Corrosion 

is a ubiquitous and a global technological challenge 

and a factor in every chemical process plant.  

There are quite a few methods adopted in the 

control and prevention of corrosion, amongst which 

the usage of corrosion inhibitor is prominent. A 

corrosion inhibitor is a substance that is added to a 

corrosive medium to slow down or prevent the 

metals from reacting with the medium.  In the acidic 

medium, various types of inhibitors have been used 

for mild steel. Records have shown that most metallic 

corrosion inhibitors are usually synthetic organic 

compounds consisting of aromatic rings or 

heterocyclic atoms such as nitrogen, oxygen, sulphur 

and phosphorus, or compounds having multiple 

bonds in their molecule through which adsorption 

takes place on the metal or mild steel surface [1-7].  

In their work, [1] showed that certain 

physicochemical properties influence inhibitor 

adsorption unto the metal surface. These inhibitor 

properties include not only the functional groups and 

the electron density around the donor atom, but also 

its π -orbital character as well as its electronic 

structure [3].  

Quantitative structure activity relationship (QSAR) 

as a computational modelling technique has found 

an application in many chemistry disciplines [8-10]. 

Investigations of inhibitor efficiencies of compounds 

have been carried out both experimentally and 

theoretically [11]. Tremendous success in the use of 

QSAR for corrosion inhibition studies has been 

recorded [12, 13].  However, despite its wide area of 

application, it is yet to be applied to study corrosion 

inhibition of natural plant products. Its use will help to 

identify the roles of plant constituents towards 

corrosion inhibition with a view to optimising plant 

constituents as corrosion inhibitors. This work will 

further help to generate more effective inhibitors 

within the class of compounds under investigation.  

Besides the high prediction power, high prediction 

reliability is essential to a good QSAR model [13, 14]. 

Traditionally, the quantum chemical calculations are 

employed to calculate the molecular descriptors. In 

addition, different softwares that generate molecular 

descriptors for QSAR analysis include Molconn-Z, 

ADAPT, MOLGEN-QSPR, CODESSA and Dragon [15, 

16]. Dragon software has extensive applications in 

QSAR and scientific studies. The Dragon software 

version 6.0 calculates a number of 4885 molecular 

descriptors [17]. 

In corrosion studies, only few number of inhibitor 

compounds are available in quantities, sufficient 

enough for corrosion experiments and it is also found 

that the molecular descriptors calculated are very 

large and they cause a high dimensional problem.  

The high dimensionality problem in QSAR modelling in 

which the number of molecular descriptors, p, 

surpasses the number of investigated compounds, n, 

remains one of the challenges facing the researchers 

[18-20]. Statistical problems associated with 

modelling high-dimensional QSAR include model 

overfitting and multicollinearity [21]. The conventional 

statistical methods such as multiple linear regression 

(MLR) cannot eliminate the issues of overfitting and 

multicollinearity. In recent times, penalised regression 

methods have been employed to perform variable 

selection and estimation simultaneously. 

In any high dimensional data, variable selection is 

the main objective. The aim of selecting optimal 

subset of molecular descriptors is to reduce the 

descriptors to those that contain relevant 

information, and thereby to improve QSAR 

modelling. This should be observed in terms of 

predictive performance (by decreasing the effect of 

multicollinearity) and in interpretability (to prevent 

overfitting). A procedure called penalisation, which is 

always used for variable selection in high dimensional 

data, attaches a penalty term  P   to the ordinary 

least squares (OLS) to get a better estimate of the 

prediction error to avoid overfitting and 

multicollinearity.  

In this work, an experimental study of corrosion 

inhibition of 15 compounds comprising of five 

phenylpropanoids from Alpinia galanga and related 

compounds was carried out on mild steel in 1 M HCl 

solution using potentiodynamic polarisation method. 
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The experimental results obtained were employed to 

develop QSAR for the inhibitors using the structural 

based descriptors calculated by the Dragon 

software. A large number of molecular descriptors 

with high dimensionality were obtained.  The high 

dimensional data give more information to develop 

improved models. However, the enormous data pose 

a big challenge to the classical variable selection 

methods to deal with. The variable selection 

procedures that can deal with all descriptors and 

their multicollinearity are employed.  The elastic net 

penalty was therefore used to develop QSAR of five 

phenylpropanoids from A. galanga and other 

related compounds derivable from natural products 

as inhibitors for the control of mild corrosion in acid 

medium. 

The phenylpropanoids are a diverse class of plant-

derived organic compounds. The following 

phenylpropanoids namely; 1'-acetoxychavicol 

acetate, methyl eugenol, eugenol acetate, eugenol 

and 4-hydroxycinnamic acid have been previously 

isolated from the rhizome of A. galanga [22, 23]. 

Several of the reported biological activities 

(antioxidative, antibacterial, antifungal, antiallergic, 

etc.) of A. galanga are attributed to the 

phenylpropanoids. The plant-derived 

phenylpropanoids (PPPs) are composed of the 

largest class of secondary metabolites formed by the 

higher plants. They constitute the parent molecules 

for the biosynthesis of several plant polyphenols of 

structural and functional diversity such as the simple 

esters and phenolic acids, flavonoids, isoflavonoids, 

coumarins, curcuminoids, stilbenes, lignans, etc. [24].  

The observations portrayed in this work can be 

used appropriately in optimisation studies involving 

compounds similar to the ones being investigated 

aiming at improving their corrosion inhibition 

capacities.  

 

 

2.0  METHODOLOGY 
 

2.1  Material Preparation and Inhibitors 

 

Distilled water and pure grades of ethanol, acetone, 

hydrochloric acid and inhibitor compounds were 

purchased from Sigma-Aldrich and Merck and were 

used without further purification for the corrosion 

experiments. The major compound of Alpinia 

galanga, 1'-acetoxychavicol acetate was isolated 

and characterised from the rhizome of the plant 

using a previous method [23]. The other inhibitor 

compounds were purchased because the pure 

forms could not be obtained in quantities required for 

corrosion measurements. 

 

2.2  Metal Specimen Preparation 

 

Pre-cut mild steel specimen classification type, ASTM, 

A 29/ A 29M-03 [25] of dimension (2.0cm x 2.0cm x 

0.25cm) having the composition (wt.%: 0.036 C; 0.172 

Mn; 0.0146 P; 0.108 Ni; 0.0538 Cr; 0.082 Cu and 

balance Fe) were used for the experiments. Prior to 

every measurement, the samples were polished with 

successive grades of abrasive paper (grades 180, 

400, 800, 1200 and 1500). The specimens were then 

degreased using acetone, rinsed with distilled water, 

dried and stored in the desiccator in readiness for 

polarisation measurements. 

 

2.3  Corrosion Medium 

 

The corrosion solution of 1 M HCl used was prepared 

by dilution of analytical reagent grade 37% HCl with 

distilled water. All inhibitors used were dissolved in the 

1 M HCl at different inhibitor concentrations ranging 

from 0.001 M to 0.005 M. The 1 M HCl served as the 

blank solution in the experiment.  

 

2.4  Potentiodynamic Polarization Tests 

 

Potentiodynamic polarisation tests were performed 

using the AUTOLAB model PGSTAT30 instrument. The 

polarisation tests were performed with potential 

range of ±0.25 V at open circuit (OCP) scanned at 

the rate of 1 mVs-1. The accurate Tafel portions of 

both the cathodic and anodic plots were 

extrapolated to obtain both the corrosion potential 

(Ecorr) and corrosion current densities (Icorr). A freshly 

polished mild steel sample was engaged as working 

electrode in each measurement. Each experiment 

was performed in triplicate in order to obtain 

reproducible results. All electrochemical 

measurements were recorded after mild steel 

specimen immersion for 30 minutes in the corrosion 

cell containing the test solution so as to reach steady 

state. 

The GPES electrochemical software was used to 

analyse the polarisation data. The percentage 

inhibition efficiencies of each inhibitor at different 

concentrations were calculated according to Eq. 1 

as follows[26, 27].  

 

-
% 100

o
i icorr corr

IE o
i corr

                                    (1) 

 

Where 
o

i corr and icorr are corrosion current densities 

in the absence and presence of the inhibitors 

respectively. 
 
2.5  QSAR Modeling 

 

The data set consisted of 15 compounds comprising 

of 5 phenylpropanoids of Alpinia galanga and other 

related compounds. The data set was randomly 

separated into training and test sets in 70/30 ratio 

respectively. The data for the training set was used to 

fit the QSAR model, whereas the test data set was 

employed to evaluate the QSAR model. Results of 

potentiodynamic polarisation measurements were 
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used to investigate the inhibition efficiency of the 

inhibitors. Chemdraw Ultra version 8 software was 

used to draw the molecular structures of the inhibitor 

compounds which were successively optimised 

adopting Molecular Mechanics (MM2) method and 

Molecular Orbital Package (MOPAC) module of the 

software. The Dragon software Version 6.0 was 

employed to calculate the molecular descriptors of 

the optimised molecular structures of the inhibitors 

[17]. Pre-processing was implemented in order to 

reduce the 2,263 generated descriptors from the 

whole block of Dragon software to more consistent 

and useful descriptors. This was achieved by 

excluding the descriptors with constant values, 

descriptors having zero values for all compounds, 

descriptors with relative standard deviation less than 

0.001 and descriptors with at least one missing value. 

A total of 601 calculated descriptors remained to 

build the QSAR model. 

 

2.5.1  Elastic Net Method 

 

The descriptors having the highest information are 

required for accurate selection from the entire 

molecular descriptors calculated. The problems 

associated with variable selection is finding the 

descriptors’ subset in which the QSAR model built 

with only this subset would give a better predictive 

accuracy compared to that built with the complete 

set of calculated descriptors. Methods of classical 

variable selection cannot be used for high 

dimensional QSAR simply because the MLR cannot 

fit. In recent times, penalisation methods has been 

used for variable selection in high-dimensional data. 

In this work, the penalised multiple linear regression 

(PMLR) was applied using the elastic net penalty.  

Generally, OLR assumes that the response variable 

is  y = y ,… , yn1 a linear combination of p 

molecular descriptors, X1,…,Xp in addition to an 

unknown parameter vector ,( ),1 p     as well as 

an additive error term  e = e ,…e1 2 . When n p  

the usual estimation procedure for the parameter 

vector β is the minimisation of the residual sum of 

squares [28] with respect to β and is shown in Eq. 2 as: 

ˆ β = argmin RSS  = argmin (y - Xβ) (y - Xβ)OLS β β       (2) 

 

Then, the OLS estimator  ˆ  
-1

β = X X X yOLS  is 

obtained by solving Eq. (2). The OLS estimator is 

optimal within the class of linear unbiased estimators 

whenever there is no correlation in the molecular 

descriptors. Conversely, when there is a high 

correlation in the molecular descriptors, 

multicollinearity results in the regression model. This 

results into complications in the computation of the 

OLS estimator. In a case of high dimensional data 

where n p , both the design matrix X and the 

matrix X X  no longer have full rank p . Thus, 

 
-1

X X cannot be calculated and the OLS estimator 

cannot be resolved. 

The penalisation procedures are established on 

penalty terms which yield unique estimations of the 

parameter vector β. Enhancement of the prediction 

accuracy is achievable by the shrinkage of the 

coefficients. There can also be an enhancement in 

the interpretability which is achieved by zeroing out 

some of the coefficients. The final QSAR regression 

models must contain only the relevant molecular 

descriptors which are easier to interpret.  

The general form of the PMLR is well defined 

according to Eq. 3 as follows: 

( - ) ( - ) ( )PMLR y X y X P  
                               (3) 

The estimation of the penalised parameter vector are 

achieved by minimising Eq. 3 with respect to β which 

results into Eq. 4. 

    ˆ arg min PMLRPMLR                                            (4) 

The penalty term  Pλ β  rests on the tuning 

parameter λ  which controls the shrinkage strength. 

For the tuning parameter 0  , the obtained result is 

the OLS estimators. In contrast, for large values of λ , 

the influence of the penalty term on the coefficient 

estimates increases. Consequently, the penalty 

region determines the properties of the penalised 

estimated parameter vector, whereas desirable 

molecular descriptors are variable selection. Different 

forms of the penalty terms have been introduced in 

the literature such as ridge [29], the least absolute 

shrinkage and selection operator [30] and elastic net 

penalties. 

Elastic net is a penalised method for the selection 

of variables. It is an introduction was made by Zou 

and Hastie [31] to deal with the drawbacks of other 

previous penalised methods by merging LASSO [30] 

and ridge [28] penalties and is defined by Eq. 5 [19]. 

2ˆ arg min ( )1 21 1

p p
SSR j jelastic j j

        
 

            (5) 

Elastic net is premised on two non-negative tuning 

parameters λ1, λ2. 

 

2.5.2  Prediction of Assessment Criteria 

 

The constructed QSAR model was evaluated and 

then validated to evaluate its predictive ability 

modelling 15 compounds comprising of 5 

phenylpropanoids of Alpinia galanga and other 

related compounds as corrosion inhibitors. The use of 

two statistical criteria namely, the mean-squared 

error [32-34] and the leave-one-out validation (Q2) 

(defined by Eqs. 6 and 7) were adopted for the 

training and the test sets.  
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ˆ( - ), ,

1

ntrain
y yi train i train

i
MSEtrain

ntrain
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                       (6) 
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
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 
 
 
 
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                            (7)       

 
Additionally, the coefficient of determination R2 

were engaged to estimate the predictability power 

of the QSAR model. The higher the value of Q2
int and 

the R2, the higher is the prediction power of the 

model. Subsequently, validation of the constructed 

QSAR model was carried out using the test data by 

computing the MSEtest and Q2
ext criteria. The two 

criteria are defined using the relation given by 

Algamal, et al. [20] as shown in Eqs. 8 and 9 shown 

as: 

2
ˆ( - ), ,

1

ntest
y yi test i test

i
MSEtest

ntest




                                       (8) 

 

2
ˆ( - ), ,2 1

1 -
2

( - ),
1

ntest
y yi test i test

i
Q ext ntest

y yi test train
i









 
 
 
  

                                 (9) 

 

where trainn  and testn  represent the training and 

testing sample sizes, the ,i trainy , ,i testy , ,
ˆ

i trainy , and 

,test
ˆ

iy  stand for the IE values of the training data, 

testing data, and their corresponding predicted IE 

values, respectively, while y  and trainy  represent 

the mean of the all IE values and the mean of all the 

training IE values, respectively. 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Potentiodynamic Polarization Measurements 

 

The polarisation plots showing the anodic and 

cathodic curves for the mild steel specimens in 1 M 

HCl in the absence and presence of the various 

concentrations of the inhibitors compounds were 

obtained. The Tafel plots shown in Figure 1 which 

compared the efficiencies of the inhibitors at the 

highest concentration of 0.005 M were analysed to 

calculate the current density (icorr).  
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Figure 1 Tafel polarization curves for the inhibitors on mild 

steel in 1 M HCl with and without inhibitors, (a) EUG, EA, 

MEUG (b) 4HCA, ACA, CMA (c) 34DHBD, 4H3CMA, 4H3MBD 

(d) PCAEE, CAD, 4ABD (e) 14BDCD, 4HBD, 34DMBD 

Tafel Polarisation Parameters for mild steel in 1 M HCl 

in the absence and presence of the various 

concentrations of the inhibitors are shown in Table 1 

from where their percentage inhibition efficiencies 

(IE’s) were calculated using Eq. 1. 

Table 1 shows the calculated electrochemical 

parameters associated with the polarisation of mild 

steel in HCl at different concentrations. It reveals in 

the table that the corrosion current (Icorr) decreases 

with an increase in the concentration of inhibitor thus 

resulting into increased efficiencies of the inhibitors. 

This is as a result of increase in the coverage area of 

the mild steel by the inhibitor molecules. 

The 2D structures of the 15 compounds used in the 

study together with their abbreviated names are 

shown in the Table 2. 

 

Table 1 Tafel Polarization Parameters and percentage inhibition efficiency (%IE) of the phenylpropanoids of Alpinia galanga and 

other related compounds calculated from Tafel polarization curves 

 

S/No System Icorr  

(10-4Acm-2) 

bc  

(V/dec) 

ba  

(V/dec) 

Ecorr 

(V) 

Rc  

(mm/yr) 

IE 

(%) 

 Blank 1 M HCl 10.216 0.796 0.588 -0.714 11.871 - 

1 ACA 1.601 0.306 0.241 -0.721 1.860 84.33 

2 MEUG 1.802 0.244 0.224 -0.730 2.094 82.36 

3 CAD 2.061 0.242 0.219 -0.693 2.394 79.83 

4 14BDCD 2.241 0.379 0.257 -0.728 2.604 78.06 

5 34DMBD 2.609 0.281 0.248 -0.716 3.032 74.46 

6 4ABD 2.610 0.335 0.279 -0.711 3.033 74.45 

7 4HBD 2.982 0.292 0.239 -0.720 3.465 70.81 

8 4H3MBD 3.060 0.207 0.250 -0.741 3.555 70.05 

9 EA 3.235 0.292 0.263 -0.724 3.760 68.33 

10 4H3MCA 3.551 0.300 0.298 -0.758 4.127 65.24 

11 EUG 3.951 0.350 0.304 -0.731 4.591 61.32 

12 PCAEE 4.374 0.353 0.302 -0.760 5.083 57.18 

13 CMA 4.678 0.377 0.323 -0.734 5.436 54.21 

14 34DHBD 5.110 0.421 0.348 -0.723 5.938 49.98 

15 4HCA 6.350 0.458 0.400 -0.707 7.381 37.84 

 

 

Table 2 Names and structures of the inhibitors used as corrosion inhibitors 
 

S/No Inhibitor Abbreviation Structure 

1 

 

1'-acetoxychavicol acetate ACA 

 

2 Methyl eugenol MEUG 

 

3 Cinnamaldehyde CAD 
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4 1,4-

benzenedicarboxaldehyde 

14BDCD 

 

5 3,4-dimethoxybenzaldehyde 34DMBD 

 

6 4-acetoxybenzaldehyde 4ABD 

 

7 4-hydroxybenzaldehyde  4HBD 

 

8 4-hydroxy-3-methoxy- 

benzaldehyde 

4H3MBD 

 

9 Eugenol acetate EA 

 

10 4-hydroxy-3-

methoxycinnamic acid 

4H3MCA 

 

11 Eugenol EUG 

 

12 P-Coumaryl alcohol ethyl 

Ether 

PCAEE 

 

13 Cinnamic acid CMA 

 

14 3,4-dihydroxybenzaldehyde 34DHBD 

 

15 4-hydroxycinnamic acid 4HCA 

 

 

 

There is a shift in a portion of the cathode along 

with a minor shift in the anodic portions in the 

polarisation curves when inhibitors are present. In the 

presence of the inhibitors, the corrosion potentials, 

Ecorr are more or less constant; therefore, they could 

be categorised as mixed-type inhibitors 

predominantly cathodic in effectiveness. These 

inhibitors behave as proposed by Dariva and Galio 

[35] in which they act as film forming compounds 

that cause the formation of precipitates on the metal 

surface blocking both anodic and cathodic sites.  

The corrosion inhibition efficiencies of the inhibitors 

ranged from 37.8% in 4HCA to 84.3% in ACA. 

Differences in the inhibition efficiencies result from 

electronic structures of inhibitor molecules, functional 

groups, steric factor, aromaticity, electron density at 

donor atoms, molecular area and molecular weight 

of the inhibitor. These inhibitors are heterocyclic 

organic compounds containing oxygen. 

Heterocyclic compounds have been shown to have 

corrosion inhibition properties [36]. These inhibitors are 

highly efficient due to their excellent adsorption unto 

the mild steel surface. The presence of a lone pair of 
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electrons of the heteroatoms, the π-electrons and 

the multiple bonds of the inhibitors influence their 

adsorption on the mild steel or metal surface. 

The higher the number of lone pair and π-electrons 

in an inhibitor molecule, the greater is the electron 

density on the molecule and these results into a 

stronger interaction between the inhibitor and the 

metal’s surface. Considering the ACA molecule, the 

presence of four oxygen heteroatoms increases the 

electron density of the inhibitor and hence the 

enhancement of its inhibition efficiency. 

In addition to the oxygen heteroatoms in ACA and 

MEUG, there is a presence of acetoxyl group 

suggesting that this group is responsible for their 

highest corrosion inhibition efficiency. The acetoxyl 

group has also been shown to be responsible for the 

biological activities of the compounds of Alpinia 

galanga [37]. 

The result of highest efficiency recorded for ACA 

goes further to suggest that the 1'- and 4-acetoxyl 

groups in the molecule are essential for the corrosion 

inhibition activity. The presence of the 2'-3' double 

bond in ACA, MEUG, EA and EUG is also found to 

enhance corrosion inhibition to certain extent with 

the efficiency least in EUG. This is as a result of the 

presence of electron donating substituents on the 

phenolic moiety. This makes the lone pair of electrons 

on phenolic oxygen less available for aromatic 

delocalisation. Eugenol extracted from the nail of 

giroflier and some of its derivatives have been 

investigated and found as good corrosion inhibitors 

[38].  

Cinnamaldehyde is seen to have good corrosion 

inhibition properties. Its molecule contains a single 

conjugated system of unsaturated bonds (i.e. C=C, 

C=O and the aromatic ring). The presence of these 

active centres makes the compound a good 

corrosion inhibitor because all the active centres can 

be engaged in interaction with the mild steel surface. 

In the previous work of Avdeev, et al. [39] involving 

the use of unsaturated aldehydes as corrosion 

inhibitors, cinnamaldehyde has also been shown to 

have good corrosion inhibition properties.  

The benzaldehydes are also shown to have good 

anticorrosion properties as a result of the presence of 

active sites in their structures. As they become more 

substituted, they tend to diminish in their anticorrosion 

activities. 

The coumaric acid-type phenylpropanoids (PCAEE, 

CMA and 4HCA) give very low inhibition efficiency. 

These inhibitors lack the 4-acetoxyl group in their 

structures. This further confirms that both the acetoxyl 

group and the double bond 2'-3' double bond 

enhanced the corrosion inhibition activities. 

The low inhibition efficiencies recorded for CMA 

and 4HCA are also attributable to their acidic nature. 

It is a known fact that the reaction of acids with 

metal leads to formation of corrosive products. The 

lowest inhibition efficiency recorded for 4HCA is due 

to the presence of a hydroxyl group which makes the 

compound more acidic than CMA. The hydroxyl 

group is electron withdrawing resulting into electron 

deficiency in the compound and hence the least 

inhibition efficiency (37.8%) is obtained for the 

compound. Moreover, the molecule is incapable of 

using its three active sites containing π electrons (the 

aromatic ring, the C=C bond and the C=O group) to 

interact with the mild surface, so only the aromatic 

and carbonyl groups participate in the surface 

interaction. As a result of involvement of only two 

active sites for establishing chemisorption process, 

there is a decline in the adsorption ability of the 

molecule unto mild steel surface. 

 

3.2  QSAR Model 

 

In order to select the most informatic descriptors with 

PMLR, the 15 compounds have been randomly 

divided into a training set of 70% and a test set of 

30%. The training set was used to select the 

descriptors through finding the optimal value for the 

tuning parameters. The test set was then used to 

validate the quality of the selected descriptors. To 

find the optimal values of the pair tuning parameters 

(λ1, λ2) for elastic net, K-fold cross-validation method 

was used with K=3. Specifically, an earlier value of λ2 

for transforming the training set data into a new 

augmented training data set was given, where 0 ≤ λ2 

≤ 100. For each value of λ2
 
a 3-fold cross-validation 

was performed to select λ1. The best value for the 

pair of both tuning parameters was (0.131, 0.108).  

Four molecular descriptors were selected to 

construct the QSAR model. The names of the 

selected molecular descriptors and their descriptions 

were summarised in Table 3. The final QSAR model 

using Eq. 3 produced Eq. 10 as follows: 

171.101 34.701 3 48.797 11IE PJI Mor p    
          36.961 _ _ _ 3P VSA P  

(10) 

 

The reliability and the external predictive ability of 

the model is given by the following properties of the 

model. 
2

0.927R   

0.121MSEtrain  , 0.131MSEtest   

2
int

0.933Q  , 2
0.925Qext    

The statistical importance of the generated model 

was established by the parameters like coefficient of 

determination (R2), coefficient of internal validation 

(Leave-one-out cross-validation) (Q2
int), coefficient of 

external validation (Q2
ext), as well as the mean 

squared errors (MSE). The coefficient of 

determination R2, indicates the relative measure of 

quality of fit by the regression equation. 

Consequently, it characterises the part of the variant 

in the observed data that is depicted by the 

regression. High values of Q2
int and Q2

ext in relation 

with high value of R2, is an indicator of a suitable 

model. Therefore, the obtained high values of the R2, 

Q2
int and Q2

ext indicated the reliability and external 

predictive ability of the constructed QSAR model. In 
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addition, the low values of MSEtrain and MSEtest 

indicate that the constructed QSAR model of 

phenylpropanoids of Alpinia galanga and other 

related compounds as corrosion inhibitors on mild 

steel in acidic medium is well established without 

existence of overfitting. 
  

3.3  Interpretation of Descriptors 

 

The interpretation of the descriptors provides an 

insight into the associated factors of the corrosion 

inhibition efficiencies of the inhibitor compounds in 

consideration. The PJI3, Mor11v, Mor11p and 

P_VSA_p_3 descriptors have been selected by the 

elastic net method in this work. The Petitjean shape 

index (PJI3) is a topological anisometric descriptor 

also termed, graph-theoretical shape coefficient [16] 

that got its derivation  based on the molecular shape 

using the information of the geometry matrix. The PJI3 

descriptor has a positive coefficient in the model 

which implies that its presence is favourable to the 

corrosion activity. However, it has been observed 

that QSAR models obtained using topological 

indexes are often more difficult to correlate to easily 

understand chemical concepts in that there is 

encoding of an indirect relationship between the 

molecular structure and the descriptor values [13]. 

The Mor11v (weighted by atomic van der Waals 

volume) and the Mor11p (weighted by atomic 

polarizabilities) both belong to the 3D-MoRSE 

descriptors (3D-Molecule Representation of Structures 

based on Electron diffraction descriptors). The 3D-

MoRSE descriptors are indicators of size, mass and 

volume of the molecules [40]. The Mor11v has a 

negative coefficient in the model implying that 

atomic volumes are unfavourable to the corrosion 

activity while Mor11p with positive coefficient implies 

that atomic polarisabilities are favourable to the 

corrosion activity. Atomic polarisabilities are usually 

accompanied by high chemical activity and low 

kinetic stability to produce soft molecules [41] which 

act as better corrosion inhibitors. 

The P_VSA_p_3 descriptors belong to a set of 2D 

descriptor group having 52 descriptors that describe 

the electrostatic, steric and pharmacophoric 

properties in terms of molecular surface [42]. In the 

model, the P_VSA_p_3 descriptor has a positive 

coefficient implying that the presence of hydrophilic 

substituent groups in the aromatic ring is favourable 

to the corrosion activity. This is supported in the 

inhibitors (e.g. ACA, MEUG, EA) with the acetoxyl 

groups having the highest efficiency.   

The group type and description of the selected 

descriptors by elastic net method are summarised in 

the Table 3. 

 

 

 

 

 

 

Table 3 The selected descriptor names and their 

descriptions 

 
Descriptor Group type Description 

PJI3 Geometrical 

descriptors  

3D Petitjean shape 

index 

Mor11v 3D-MoRSE 

descriptors  

 

signal 11 / weighted 

by van der Waals 

volume 

Mor11p 3D-MoRSE 

descriptors  

 

signal 11 / weighted 

by 

polarizability 

P_VSA_p_3 P_VSA-like 

descriptors 

P_VSA-like on 

polarizability, bin 3 

 

 

4.0  CONCLUSION 
 

Experimental study was carried out to investigate the 

inhibition efficiencies of 15 compounds comprising of 

five phenylpropanoids from Alpinia galanga and 

other related compounds on mild steel corrosion in 1 

M HCl. The experimental results showed the effective 

performance of the phenylpropanoids and related 

compounds as corrosion inhibitors. Theoretical high 

dimensional QSAR modeling study was conducted 

using the obtained experimental data and the 

molecular descriptors calculated based on the 

structures of the inhibitors using the Dragon software. 

Since the classical variable selection methods 

cannot deal with high dimensional QSAR, the 

penalised multiple linear regression based on elastic 

net penalty was applied and four significant 

descriptors (i.e. PJI3, Mor11v, Mor11p, and 

P_VSA_p_3) were selected to develop high 

dimensional QSAR model. These descriptors 

significantly described the corrosion inhibition 

behaviour of the studied inhibitors. The molecular 

structure requirements of the phenylpropanoids as 

corrosion inhibitors have also been elucidated. 
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