
Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2723

A HYBRID WEIGHT-BASED AND STRING DISTANCES

USING PARTICLE SWARM OPTIMIZATION FOR

PRIORITIZING TEST CASES

1
 MUHAMMAD KHATIBSYARBINI,

 2
 MOHD ADHAM ISA,

3
 DAYANG NORHAYATI ABANG

JAWAWI

Department Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia

81310 Skudai, Johor, Malaysia

E-mail:
1
 fkmuhammad4@gmail.com,

2
mohdadham@utm.my

ABSTRACT

Regression testing is concerned with testing the modified version of software. However, to re-test entire test

cases require significant cost and time. To reduce the cost and time, higher average percentage fault

detection (APFD) rate and faster execution to kill fault mutant are required. Therefore, to achieve these two

requirements, an improvement to existing Test Case Prioritization (TCP) technique for a more effective

regression testing is offered. A weight-hybrid string distance technique and prioritization using particle

swarm optimization (PSO) is proposed. Distance between test cases and weight for each test case, and

hybridization of both values for weight-hybrid string distance are calculated. This experiment was

evaluated using Siemens dataset. Result obtained from this experiment shows that weight-hybrid string

distance is capable of improving APFD values whereby APFD value for hybrid TFIDF-JC is equal to

97.37%, which shows the highest improvement by 4.74% as compared to non-hybrid JC. Meanwhile, for

percentage of test cases needed to kill 100% fault mutants, hybrid TFIDF-M yields the lowest value,

22.88%, which shows a 76% improvement as compared to its non-hybrid string distance.

Keywords: Software testing, Regression testing, Test case prioritization, Particle Swarm Optimization,

String Distance

1. INTRODUCTION

In software development process, software

maintenance activity consumes a longer execution

time and can be the most expensive phase [1]. One

of the most crucial stages in maintenance activity is

testing phase, known as regression testing, which is

executed with a specific end goal to ensure the

adjustment or modification in the system does not

influence existing functionality. In other words,

regression testing is a testing activity which would

only be performed if there are changes acted upon a

system. It determines whether the new system

operates as expected when compared to functioning

old system’s version. In the work of Yoo and

Harman [2], various diverse approaches were

examined to augment the importance of the

accumulated test suite in regression testing. Those

studies were classified into three domains;

Minimization, Selection and Prioritization. Test

suite minimization (TSM) approach intends to

distinguish repetitive experiments and to eliminate

them from the test suite execution with a specific

end goal to decrease the quantity of tests to run [3].

Minimization or name as other name which is ‘test

suite reduction’, implying that the disposal is

perpetual. Test case selection (TCS) approach also

aims to decrease the quantity of test cases to be

executed, however the mainstream of selection

approach is based on modification-aware method

[4]. TCS tries to recognize the test cases which

would be important to the latest changes acted upon

a system.

Lastly, test case prioritization (TCP) main goals

are to order the whole test suite to attain early

optimization based on preferred properties [5], [6].

It gives a technique to execute test cases of highest

significance first according to some measure, and

produce some aids, such as providing earlier fault

disclosure and criticism to the testers. In TCP, test

cases are re-ordered optimally as compared to the

un-ordered generated test suite according to a

particular purpose in a manner whereby the test

cases that serve the purpose will be given the

highest priority [7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199240636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2724

We took the definition of Test Case

Prioritization problem which was proposed by

Elbaum et al. [8] into consideration which is stated

as follows.

Given: T, is a test suite; PT, is the set of

permutations of T; f, a function from PT to the real

number. Find T PT such that

 ..(1)

In this definition, PT serves as the set of all

possible sequences of T, while f is the function

when implemented to any of the sequences, yields

an award value for that particular sequence. In

short, the explanation expects that greater values of

the results are more preferable than the inferior or

the smaller values ones. There are various

conceivable objectives when alluding to

prioritization in this context. Elbaum et al. [8] also

stated some of the goals in their study which are:

1) To upsurge or improve the average percentage

fault detection (APFD) values when executing

entire test suite.

2) To kill all fault mutants at a faster pace when

executing a test suite.

Over time, researchers have proposed numerous

approaches for TCP. In code-based TCP, test cases

are prioritized by utilizing source code information

of the software system. A study carried out by Catal

and Mishra [9] revealed that the most investigated

prioritization method is coverage-based, which is

related to code-based prioritization. The downside

of code-based prioritization is that code knowledge

is needed in order to prioritize test cases, which

means prioritization cannot begin until the source

code is available [10]. Another drawback of code-

based approaches is that most of them are language

dependent [10], so testing process will become

more complicated in cases where the program is

written in various programming languages. There

are quite a number studies in TCP that focused on

regression problems with solution relying on both

old and new system codes but very few have tried

to utilize test cases generated associated with

system changes.

In this paper, a new weighted hybrid string-

based TCP technique is proposed. This technique

utilizes string inputs of test cases without the

consideration of the program source code. String-

based prioritization calculates the string distance

between test cases and then prioritizes based on the

calculated distance. String distance were measured

based on the string or terms arrangements and also

their character sequences [11]. There quite a

number of string distance types and four are used in

this experiment; Manhattan, Levenshtein, Cosine

Similarity, and Jaccard Coefficient.

However, using only string distance values, the

possibility to have similar distance is quite high and

may affect prioritization process. Therefore, to

overcome the problem, hybridization of all four

string distances with a weighting scale for text

document was carried out. As a result, the distances

calculated for each test case to the other will be

refined with their incorporating weight. This will

make a major difference in test case execution

sequence which can increase the APFD rate and kill

all fault mutants at a faster pace. The proposed

technique is validated by performing a comparative

study experiment using Siemens programs. The

evaluation is based on APFD values whereby the

greater the values, the superior the technique.

Meanwhile, for fault mutant killed performance;

smaller values are better which are measured based

on percentage of test cases required to achieve

100% mutants killed.

The rest of the paper is structured as follows:

Section 2 elaborates related work in TCP based on

string distance. Section 3 provides the preliminaries

which is an overview of related string distance,

weighting document scale, and prioritization

algorithm for the proposed work. In Section 4, a

controlled experiment for the proposed work is

presented and illustrated. Section 5 reports on our

result and discussion, and Section 6 summarize the

conclusion of this experiment.

2. RELATED WORK

As prioritization on test cases had only gone

through test case selection in early studies [5], TCP

was then suggested and assessed in a further broad

context. In real world situation, it is quite hard to

determine which tests will detect faults. Hence, it

justifies the notion behind test case prioritization

approaches to have other backups, expecting that a

certain number of backup approaches will end in

boosting fault discovery in different ways. There

were several TCP approaches that had been

anticipated and applied in the previous work. As

many as eight broad approaches were described by

Singh [12]. The TCP techniques approaches were

based on their commonalities in selection

procedure, input type, and output type.

Work by Ledru [13] presented test case

prioritization based on string distances in detecting

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2725

the strongest mutants with Manhattan distances as

the best choice in their findings. In their proposed

work, they compared four distances namely

Cartesian, Hamming, Levenshtein, and Manhattan

distances. These distances are measured in terms of

characters distances when characters are replaced

by new characters. The distances are quantified in

terms of characters difference with prioritization

using Greedy Algorithm.

Meanwhile, the work by Bo Jiang [14]

presented Levenshtein or Edit distance in detecting

the strongest mutants in Linux benchmark program.

In their work, they focused on prioritization

algorithm and claimed Levenshtein as the most

suitable string metric.

From both reported works, prioritized test cases

using string metrics have promising average

percentage of fault detection (APFD) values

compared to random ordered ones. The average of

APFD rank for all three string metrics distance were

the same except for Cartesian which had the worst

performance [13].

3. PRELIMINARIES

3.1 The String Distance for TCP

 String distance were measured based on the

string or terms arrangements and also their

character sequences [11]. A string distance is a

metric that can quantify likeness or divergence

between two contents of strings for surmised string

coordinating or examination. There are two type of

string distances; character-based and term-based

[11]. Both types have various string metrics or

distance calculations.

Manhattan Distance ...(2) [13]

Character-based string metric utilizes each

character in a string and compares it with the

character in other string. For example, Manhattan

distance (Equation 2) where string of size s can be

seen as a path of characters in an s-dimensional

space, and the characters can be correlated to their

ASCII code. Manhattan distance is equal to the

absolute difference of the ASCII value of strings.

The idea of comparing apply with the concept

where char ‘0’ were used to fill the shorter string

when the strings does not have equal length [13].

Cosine Similarity ...(3) [15]

Meanwhile for term-based, the calculation of the

string metric defined is based on the whole term of

the string compared to the term in other string. For

example, Cosine Similarity (Equation 3) represents

documents as a vector, the likeness of two

documents bear a resemblance to their vectors

distances association. These resemblances were

then measured and call as cosine similarity with the

calculation involved were the cosine value of the

angle or distance between vectors. Cosine similarity

is a standout amongst the most famous similarity

measures connected to text content reports, for

example, in various data recovery applications and

grouping [16]. For each vectors characterizes a

string with its frequency within the text, which

cannot be a negative number. As the consequence,

the cosine similarity measured in a positive value

and restricted in the middle of zero and one value.

3.2 The Term Frequency Inverse Document

Frequency (TFIDF)

 “Term frequency–inverse document frequency”

(TFIDF) is a standout amongst the most ordinarily

utilized term weighing schemes in data retrieval

methods. As for its well-known technique, TFIDF

has been regularly applied in an experimental

evaluation[17]. TFIDF is also recognized as a

statistical measurement with the intention to reveal

how significant a term is within a file in its

collection or in other words, a weighing scheme for

text documentation.

For the formulation of term frequency tf

(Equation 4), the calculation start with the use of

the selected term or string frequency in a document,

in simplest word, the amount of the term t take

place within a document d. While, the formula for

inverse document frequency idf (Equation 5), deal

with the significance of the term in the whole

documents pool.

 ... (4)

 ... (5)

This inverse document frequency measures the

amount of information carried by terms. TFIDF is

formed by the multiplication of tf.idf with some

heuristics modifications.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2726

3.3 The Algorithm for TCP

 The implementation of artificial intelligence or

search-based approach in TCP is not limited to

specific strategies only. Within TCP itself, there are

several algorithms used including Genetic

Algorithm (GA) [18]–[26], Greedy [27], [28], Ant-

Colony [29]–[31], Particle Swarm Optimization

[32], [33], and others [14], [34]. Several

observations are noted for artificial intelligence (AI)

utilization. First, there are many publications on AI

application which is used to solve different

problems contexts. Second, empirical data is easily

available for AI experimental setup. This

encourages researcher to execute and compile

results using search-based approach.

Search-based prioritization approach has quite a

number of implementation algorithms such as

Genetic Algorithm (GA) [18]–[25], Greedy [27],

[28], Ant-Colony [29]–[31], Particle Swarm

Optimization [32], [33], and others [14], [34].

Experiment by Li [28] revealed that GA application

approach works poorer when compared to a greedy

algorithm on computer-generated data. However,

the application of a search-based algorithm may

differ, based on the selected test suite, input criteria,

fitness function, and others. While the collected

result showed a major benefit of GA application in

TCP approaches, there are certain disadvantages

that exist, such as, execution time is a vast anxiety

for GA applications and they are typically slow in

the process of completion [21].

In this proposed work, rather than using the

program code, the test cases generated are utilized

for prioritization based on their inputs to calculate

string distance/similarity between test cases.

Related work by Ledru [13] using Greedy and Jiang

[35] using Local Beam Search showed promising

results in term of average percentage fault detected

in prioritizing the input based on the test cases.

Therefore, since this experiment will utilize the

inputs of the test cases, PSO is intended to be used

as our prioritization algorithm since PSO has the

best efficiency [36] in getting the shortest string

metric distance between test cases.

4. EMPIRICAL STUDIES

In this section, a weight-hybrid string distance

technique and prioritization using particle swarm

optimization is proposed to improve regression

testing by achieving higher average percentage fault

detection (APFD) rate and faster fault mutant

killed.

4.1 The Experiment Setup

 In this section, the experiment setup for test

case prioritization using Siemens dataset [37] is

described. The Siemens Suite is a well-used

benchmark programs software appeared in

numerous regression testing literature. Siemens

suite has several small software programs using C

as its main language of programming. The software

consists of small programming code with code

lines, between 173 and 565 (141 to 512 without

code make-up). Each program comes with a

reference version, and several versions with seeded

faults. If a test case is able to reveal different output

on the reference version and the version with

seeded fault, this considers that a mutant is killed.

For this experiment three datasets of a similar

application but different version of language are

utilized. Table 1 below shows a clear overview of

the datasets used.

Table 1: Overview of Datasets

Dataset

Name

Programming

Language

Fault Matrix

tcas C
Have Different

Fault Matrix
jtcas Java

cstcas C#

From Table 1, the dataset used is tcas which is

originally a C program of an aircraft collision

avoidance system. It takes 12 integer inputs and

produces one output. The program came with one

base version and 41 faulty versions with 1608 test

cases. The fault matrix is produced by executing all

test cases on all 41 faulty versions and compared

against their base version. Even as all the datasets

are for the same application, the fault matrix for

each version of the application is different.

Figure 1: Experiment Prioritization Design

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2727

Figure 1 illustrates the experiment flow for this

paper. The experiment can be divided into three

phases; Information Extraction phase, String

Distance and Prioritization phase, and Evaluation

phase. For information extraction phase, the phase

starts with extracting all the test cases and their

inputs. The extracted inputs for each test case were

put into different text document to ease the

calculation needed in the next phase. Then, the

original and versioning programs were run through

the extracted test cases to get their respective result.

The results for each version were compared with

original result to produce s fault matrix sheet to be

used in evaluation phase.

The next phase is the calculation of string

distance and prioritization phase. The string

distances between test cases are calculated based on

the extracted inputs and populated into test case

distance matrix. Within this calculation part, each

test case is weighted using TFIDF method. The

proposed hybridized string distance is also carried

out here. Upon completion of the calculation, the

test case distance matrix is then prioritized using

particle swarm optimization (PSO) to produce

prioritized test suites with the shortest distance

possible in total.

Finally, in the evaluation phase, the prioritized

test suites are evaluated by calculating their APFD

rate based on fault matrix of their program. The

fault matrix was obtained in earlier stage by

executing all test cases for all versioning programs

and comparing the outputs against the original

program. The results is compared to produce the

fault matrix sheet. The percentage of test cases

required to kill 100% fault mutants is also

calculated.

4.2 The Proposed Hybrid String Distance

 This experiment will utilize the inputs of the

test cases. The inputs will be calculated for their

similarity between test cases using string metric.

The string distance to be used in this experiment

consists of two character-based string distances;

Manhattan distance (Equation 2) evaluated by

Ledru [13] and Levenshtein distance (Equation 6)

used by Bo Jiang [14], and two term-based string

distances; Cosine Similarity distance (Equation 3)

and Jaccard Coefficient distance (Equation 7).

Levenshtein Distance … (6) [14], [38]

Jaccard Coefficient …(7) [15]

Since Manhattan and Cosine Similarity already

been explained in preliminaries section, for

Levenshtein distance, the value is calculated by

counting the minimum number of operations

required to transform one string into another.

Jaccard in the other hand is calculated based on the

number of mutual terms in compared to the amount

of all exclusive terms in both strings [11]. A hybrid

string distance with TF-IDF is then proposed.

TFIDF is a weighing scheme for text

documentation. Table 2 shows the brief idea of how

the string distance values are hybridized.

Table 2: The Overview Idea Hybrid String Distance

TFIDF Values

for Each Test

Case

String Metric

Value Between

Test Cases

Hybrid String

Metric with

TFIDF

Weight of

TC1 = W1

Distance/

Similarity

between TC1 –

TC2 = D1,2

D1,2 . W2

.

.

.

.

.

.

.

.

.

Weight of

TCn = Wn

Distance/

Similarity

between TCn –

TCn+1 =

Dn,n+1

Dn,n+1 . Wn+1

As shown in Table 2, the formulation of the

hybrid string distance is obtained by multiplying

the value of the string distance with the weight of

the next test cases. The idea to use string distance is

inspired by the work of Bo Jiang [14] where it has

been reported that the implementation of different

distances may produce distinct results. As the

prioritization is based on the difference between

two points of test cases, instead of using only one

metric, this study proposes to add the weight of

next test case point as the second metric to be

considered. This inspires the authors to hybrid

every string distance highlighted earlier with

TFIDF which is the weighting scale for text

document to yield a better priority value for each

test case.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2728

Based on the overview of the string distance and

TFIDF weight hybridization idea, the authors

produced four new hybridized TFIDF string

distances with the formulation as shown in Table 3.

Table 3: The Formulation of String Distance

String Distance
Equation

Non-Hybrid Hybrid TFIDF

Manhattan (2) (2) × (4) × (5)

Levenshtein (6) (6) × (4) × (5)

Cosine Similarity (3) (3) × (4) × (5)

Jaccard Coefficient (7) (7) × (4) × (5)

4.3 Particle Swarm Optimization Algorithm

 Particle swarm optimization algorithm used in

this experiment is shown in Figure 2.

Figure 2: PSO Algorithm for String Distance
Prioritization

The prioritization starts with by initializing the

number of swarm particles, velocity of swarm,

maximum iteration, target distance, best distance,

size of test cases, and the path. The number of

swarm particles and the velocity are used to adjust

the execution time of the prioritization process.

Target distance is used as a target of shortest path to

search within the test suites. Iteration limits are set

to avoid an endless iteration of prioritization. Figure

3 shows some fixed values for the prioritization in

tcas dataset:

Figure 3: PSO Algorithm Parameter Setting

As shown in Figure 3, the number of swarm

particles and velocity are set at high values as the

size of the population is huge. The maximum

iteration is set at 5000 to avoid any missed paths. It

takes around 20 minutes for prioritization iteration

to reach maximum. The target distance setting

varies based on the string distance/similarity

metrics calculated.

4.4 Metric Used for Comparison

 It is essential for any approaches proposed in

test case prioritization to perform metric

measurement to assess their effectiveness. This

process is important to measure the efficacy of the

proposed approach in prioritizing test cases and to

benchmark its effectiveness against other existing

approaches. One of the metrics used in evaluation

of prioritization effectiveness is Average

Percentage of Faults Detected (APFD). APFD is a

metric used to quantify how rapid a arranged and

optimized test suite can discovers defects [5], [8].

The result of APFD values ranged in between zero

to 100 where greater value indicate better fault

revealing rate. The equation for calculating APFD

value is shown as follows.

 … (8)

Where T is a test suite containing n test cases, F

is a set of m faults revealed by T. TF1 is the first test

case in T’ ordering of T which reveals fault i and

the APFD value of T’ is calculated using the

Equation 8.

5. RESULTS AND DISCUSSION

The experiment starts with the calculation of

string metrics in this experiment where two are

character-based string metrics; Manhattan (M) and

Levenshtein (L), while another two are term-based

string metrics; Cosine Similarity (CS) and Jaccard

Coefficient (JC). The authors then hybridize those

string metrics with term frequency–inverse

document frequency (TFIDF), which is a numerical

statistic that is intended to reflect how important a

word is to a document in a collection or in other

words, a weighing scheme for text documentation.

The values of APFD rate for each dataset are

recorded in Table 4. For mutant killed performance,

the percentage of test cases needed to kill all faults

mutant are recorded in Table 5.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2729

Table 4: Average Percentage Fault Detected (APFD)

Rate

String

Distance
String Based

APFD Rate (%)

 tcas jtcas cstcas

M
Character-Based

92.39 92.70 92.80

L 90.13 91.50 90.75

CS
Term-Based

91.80 92.35 92.22

JC 92.22 92.99 92.96

TFIDF-M Weight-hybrid

Character-Based

95.87 95.61 94.48

TFIDF-L 91.73 92.71 92.40

TFIDF-CS Weight-hybrid

Term-Based

92.79 94.48 93.24

TFIDF-JC 96.19 95.34 97.37

Table 4 shows APFD rate values for each string

metric, where the higher is the value, the better is

the string metric. From Table 4, there are two string

metrics for each string-based. All the string metrics

can measure distance or similarity by just

minimally alternating their formulation of

measurement. Among the non-hybrid string

distances, JC a term-based string distance has the

highest APFD value which is 92.96% for cstcas

dataset. Hybridized TFIDF-JC scored the highest

APFD value which is 97.37% for cstcas dataset as

well. The hybrid TFIDF-JC yields the highest value

attributed to the input type for the test cases. The

input for this dataset application takes 12 integer

inputs and produces one output test case. A small

change of character within the integers may have

significant differences between the integers.

Therefore, prioritizing the whole term where it

considers every whole integer should be better

rather than prioritizing based on each character on

an integer itself. The idea of weighing TFIDF is to

calculate the weight of each test case based on the

frequency of term used, giving an extra priority to

the input values within the test case based on their

occurrences has resulted in better APFD score as

compared to all to non-hybrid string distances.

Table 5: Mutant Killed Performance

String

Distance

Percentage Test Cases Used to Kill 100%

Fault Mutants

tcas jtcas cstcas

M 92.22 92.22 92.22

L 76.18 69.97 76.18

CS 65.80 65.80 65.80

JC 42.60 42.60 42.60

TFIDF-M 22.88 22.88 22.88

TFIDF-L 47.08 37.19 37.19

TFIDF-CS 67.60 49.25 49.25

TFIDF-JC 47.33 47.33 34.89

From Table 5, the data indicates the percentage

of test cases needed for each string metric to kill

100% fault mutants or in other words to detect all

faults. Among the non-hybrid string distances, JC

outperforms other string distances by having the

lowest percentage of test cases needed to kill all

mutants which is 42.60% for cstcas dataset. Both

character-based string distances obtain higher

values against term-based. Numerous difference in

characters within a term may have resulted in a

higher difference value in the character-based string

metric which may have affected the sequence of the

prioritized test cases. The advantage of term-based

over character-based sting distances is that they will

produce over calculate distance since they consider

the whole term as one value to be calculated.

 However, this is not the case for hybrid

weight, where the percentage values for character-

based hybridized string distances yield a

significantly reduced percentage of test cases

needed to kill 100% fault mutants compared to

term-based hybridized string distances. The hybrid

TFIDF-M has the lowest value with 22.88% among

all string distances which shows a huge difference

with 75.19% improvement as compared to its non-

hybrid string distance which scored 92.22%. This

result is attributed to TFIDF which only focuses on

the term frequency in a document within a

collection or corpus. It does make a good

complement for character-based string distances

which lack whole terms values.

From the overall results of this experiment, the

authors conclude that hybrid string distance does

have an improvement in APFD rate values and

mutant killed performance. As for the string

distance, Jaccard Coefficient seems to be an ideal

string distance compared to the other three string

distances, as its result for APFD rate and

percentage of test cases needed to kill all fault

mutants showed promising scores both for; before

hybridization and after hybridization with TFIDF.

6. CONCLUSION

Within this paper, we proposed a hybrid string

metric test case prioritization using particle swarm

optimization. This approach utilized available test

cases information such as inputs for test cases. By

this, the prioritization can be executed earlier for

initial testing since the program/software codes are

not required.

The authors also elaborated particle swarm

optimization algorithm and performed the

experiment using four non-hybrid string metrics

and four hybrid string metrics. The experiment was

performed on Siemens dataset. The empirical study

result show that the test suites prioritized by the

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2730

proposed hybrid string technique yields better result

in terms of Average Percentage Fault Detection

(APFD) and mutant killed performance. For the

highest APFD rate, TFIDF-JC shows 4.74%

improvement from 92.96% to 97.37% over its non-

hybrid string metric, while for mutant killed

performance TFIDF-M shows 75.19%

improvement from 92.22% to 22.88% over its non-

hybrid string metric. The hybrid string metric yields

better scores since, the idea of weighing scheme,

TFIDF, provides an extra priority for each test case

during prioritization, which makes it an ideal

complement for character-based string distances

which lack whole terms values.

 The acquired experimental result also showed

that Jaccard Coefficient, a term-based string metric,

hybridized with TFIDF gives better APFD values

compared to the others. However, Manhattan, a

character-based string metric, hybridized with

TFIDF outperformed the others in terms of

percentage of test cases needed to kill 100% fault

mutants. For upcoming work, it seems to be an

interesting work to hybrid term and character-based

string metrics and combine them with a weighing

scheme for text document.

ACKNOWLEDGEMENT

The work is fully funded by Fundamental

Research Grant Scheme, vote number 4F836 and

Research University Grant Scheme, vote number

11H86 under the Ministry of Education. We would

also like to thank the members of Embedded &

Real-Time Software Engineering Laboratory

(EReTSEL), Faculty of Computing, UTM for their

feedback and continuous support.

REFRENCES:

[1] G. J. Myers, T. M. Thomas, and C.
Sandler, The Art of Software Testing,
vol. 1. John Wiley & Sons, 2004.

[2] S. Yoo and M. Harman, “Regression
Testing Minimisation, Selection and
Prioritisation : A Survey,” Test Verif
Reliab, vol. 0, pp. 1–7, 2007.

[3] D. Jeffrey and N. Gupta, “Improving fault
detection capability by selectively
retaining test cases during test suite
reduction,” IEEE Transactions on
Software Engineering, vol. 33, no. 2, pp.
108–123, Feb. 2007.

[4] S. Elbaum, P. Kallakuri, A. G.
Malishevsky, G. Rothermel, and S.
Kanduri, “Understanding the effects of
changes on the cost-effectiveness of

regression testing techniques,” Journal
of Software Testing, Verification and
Reliability, vol. 12, no. 2, pp. 65–83,
2003.

[5] G. Rothermel, R. H. Untch, C. C. Chu,
and M. J. Harrold, “Test case
prioritization: an empirical study,” in
Software Maintenance, 1999. (ICSM
’99) Proceedings. IEEE International
Conference on, 1999, pp. 179–188.

[6] S. Elbaum, A. G. Malishevsky, and G.
Rothermel, “Test case prioritization: a
family of empirical studies,” IEEE
Transactions on Software Engineering,
vol. 28, no. 2, pp. 159–182, 2002.

[7] Y. Singh, “Systematic Literature Review
on Regression Test Prioritization
Techniques Difference between
Literature Review and Systematic
Literature,” Informatica, vol. 36, pp. 379–
408, 2012.

[8] S. Elbaum, A. Malishevsky, and G.
Rothermel, Prioritizing test cases for
regression testing. 2000.

[9] C. Catal and D. Mishra, “Test case
prioritization: a systematic mapping
study,” Software Quality Journal, vol. 21,
no. 3, pp. 445–478, 2012.

[10] A. Mahdian and A. Andrews,
“Regression testing with UML software
designs: a survey,” Journal of Software,
2009.

[11] W. Gomaa and A. Fahmy, “A survey of
text similarity approaches,” International
Journal of Computer, 2013.

[12] A. Kumar and K. Singh, “A Literature
Survey on test case prioritization,”
Compusoft, 2014.

[13] Y. Ledru, A. Petrenko, S. Boroday, and
N. Mandran, “Prioritizing test cases with
string distances,” Automated Software
Engineering, vol. 19, no. 1, pp. 65–95,
2012.

[14] B. Jiang and W. K. Chan, “Input-based
Adaptive Randomized Test Case
Prioritization,” J Syst Softw, vol. 105, no.
C, pp. 91–106, 2015.

[15] S. Cha, “Comprehensive survey on
distance/similarity measures between
probability density functions,” City, 2007.

[16] A. Huang, “Similarity measures for text
document clustering,” Proceedings of
the sixth new zealand computer, 2008.

[17] A. Aizawa, “An information-theoretic
perspective of tf–idf measures,”

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2731

Information Processing & Management,
vol. 39, no. 1, pp. 45–65, Jan. 2003.

[18] R. Maheswari and D. Mala, “Combined
Genetic and Simulated Annealing
Approach for Test Case Prioritization,”
Indian Journal of Science and
Technology, 2015.

[19] Y. Lou, D. Hao, and L. Zhang,
“Mutation-based test-case prioritization
in software evolution,” 2015 IEEE 26th
International Symposium on Software
Reliability Engineering, ISSRE 2015, pp.
46–57, 2016.

[20] F. Yuan, Y. Bian, Z. Li, and R. Zhao,
“Epistatic Genetic Algorithm for Test
Case Prioritization,” International
Symposium on Search Based, 2015.

[21] C. Catal, “On the application of genetic
algorithms for test case prioritization: a
systematic literature review,”
Proceedings of the 2nd international
workshop on, 2012.

[22] A. Kaur and S. Goyal, “A genetic
algorithm for fault based regression test
case prioritization,” International Journal
of Computer Applications, vol. 32, no. 8,
pp. 975–8887, 2011.

[23] W. Jun, Z. Yan, and J. Chen, “Test case
prioritization technique based on genetic
algorithm,” Internet Computing &
Information, 2011.

[24] S. Sabharwal, R. Sibal, and C. Sharma,
“Prioritization of test case scenarios
derived from activity diagram using
genetic algorithm,” 2010 International
Conference on Computer and
Communication Technology, ICCCT-
2010, pp. 481–485, 2010.

[25] K. Deb, S. Pratab, S. Agarwal, and T.
Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NGSA-
II,” IEEE Transactions on Evolutionary
Computing, vol. 6, no. 2, pp. 182–197,
2002.

[26] H. Do and G. Rothermel, “On the use of
mutation faults in empirical assessments
of test case prioritization techniques,”
IEEE Transactions on Software
Engineering, vol. 32, no. 9, pp. 733–752,
2006.

[27] Z. Li, M. Harman, and R. M. Hierons,
“Search Algorithms for Regression Test
Case Prioritization,” IEEE Transactions
on Software Engineering, vol. 33, no. 4,
pp. 225–237, 2007.

[28] S. Li, N. Bian, Z. Chen, and D. You, “A
simulation study on some search
algorithms for regression test case
prioritization,” 2010 10th International,
2010.

[29] K. Solanki, Y. Singh, S. Dalal, and P.
Srivastava, “Test Case Prioritization: An
Approach Based on Modified Ant Colony
Optimization,” Emerging Research in,
2016.

[30] D. Gao, X. Guo, and L. Zhao, “Test case

prioritization for regression testing based
on ant colony optimization,” Software
Engineering and Service, 2015.

[31] T. Noguchi, H. Washizaki, and Y.
Fukazawa, “History-Based Test Case
Prioritization for Black Box Testing
Using Ant Colony Optimization,” 2015
IEEE 8th, 2015.

[32] A. K. Joseph, G. Radhamani, and V.
Kallimani, “Improving test efficiency
through multiple criteria coverage based
test case prioritization using Modified
heuristic algorithm,” in 2016 3rd
International Conference on Computer
and Information Sciences (ICCOINS),
2016, pp. 430–435.

[33] M. Tyagi and S. Malhotra, “Test case
prioritization using multi objective
particle swarm optimizer,” in 2014
International Conference on Signal
Propagation and Computer Technology
(ICSPCT 2014), 2014, pp. 390–395.

[34] S. Eghbali and L. Tahvildari, “Test Case
Prioritization Using Lexicographical
Ordering,” IEEE Transactions on
Software Engineering, vol. 5589, no.
January, pp. 1–1, 2016.

[35] B. Jiang and W. Chan, “Input-based
adaptive randomized test case
prioritization: A local beam search
approach,” Journal of Systems and
Software, 2015.

[36] A. W. Mohemmed, N. C. Sahoo, and T.
K. Geok, “Solving shortest path problem
using particle swarm optimization,”
Applied Soft Computing, vol. 8, no. 4,
pp. 1643–1653, Sep. 2008.

[37] “Software-artifact Infrastructure
Repository: Home.” [Online]. Available:
http://sir.unl.edu/portal/index.php.
[Accessed: 20-Mar-2017].

[38] D. Gusfield, Algorithms on strings, trees,

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2732

and sequences : computer science and
computational biology. Cambridge
University Press, 1997.

