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ABSTRACT 

 

Regression testing is concerned with testing the modified version of software. However, to re-test entire test 

cases require significant cost and time. To reduce the cost and time, higher average percentage fault 

detection (APFD) rate and faster execution to kill fault mutant are required. Therefore, to achieve these two 

requirements, an improvement to existing Test Case Prioritization (TCP) technique for a more effective 

regression testing is offered. A weight-hybrid string distance technique and prioritization using particle 

swarm optimization (PSO) is proposed. Distance between test cases and weight for each test case, and 

hybridization of both values for weight-hybrid string distance are calculated. This experiment was 

evaluated using Siemens dataset. Result obtained from this experiment shows that weight-hybrid string 

distance is capable of improving APFD values whereby APFD value for hybrid TFIDF-JC is equal to 

97.37%, which shows the highest improvement by 4.74% as compared to non-hybrid JC. Meanwhile, for 

percentage of test cases needed to kill 100% fault mutants, hybrid TFIDF-M yields the lowest value, 

22.88%, which shows a 76% improvement as compared to its non-hybrid string distance. 

Keywords: Software testing, Regression testing, Test case prioritization, Particle Swarm Optimization, 

String Distance 

 

1. INTRODUCTION  

 

In software development process, software 

maintenance  activity consumes a longer execution 

time and can be the most expensive phase [1]. One 

of the most crucial stages in maintenance activity is 

testing phase, known as regression testing, which is 

executed with a specific end goal to ensure the 

adjustment or modification in the system does not 

influence existing functionality. In other words, 

regression testing is a testing activity which would 

only be performed if there are changes acted upon a 

system. It determines whether the new system 

operates as expected when compared to functioning 

old system’s version. In the work of Yoo and 

Harman [2], various diverse approaches were 

examined to augment the importance of the 

accumulated test suite in regression testing. Those 

studies were classified into three domains; 

Minimization, Selection and Prioritization. Test 

suite minimization (TSM) approach intends to 

distinguish repetitive experiments and to eliminate 

them from the test suite execution with a specific 

end goal to decrease the quantity of tests to run [3]. 

Minimization or name as other name which is ‘test 

suite reduction’, implying that the disposal is 

perpetual.  Test case selection (TCS) approach also 

aims to decrease the quantity of test cases to be 

executed, however the mainstream of selection 

approach is based on modification-aware method 

[4]. TCS tries to recognize the test cases which 

would be important to the latest changes acted upon 

a system. 

Lastly, test case prioritization (TCP) main goals 

are to order the whole test suite to attain early 

optimization based on preferred properties [5], [6]. 

It gives a technique to execute test cases of highest 

significance first according to some measure, and 

produce some aids, such as providing earlier fault 

disclosure and criticism to the testers. In TCP, test 

cases are re-ordered optimally as compared to the 

un-ordered generated test suite according to a 

particular purpose in a manner whereby the test 

cases that serve the purpose will be given the 

highest priority [7]. 
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We took the definition of Test Case 

Prioritization problem which was proposed by 

Elbaum et al. [8]  into consideration which is stated 

as follows. 

Given: T, is a test suite; PT, is the set of 

permutations of T; f, a function from PT to the real 

number. Find T  PT such that 

 ..(1) 

In this definition, PT serves as the set of all 

possible sequences of T, while f is the function 

when implemented to any of the sequences, yields 

an award value for that particular sequence. In 

short, the explanation expects that greater values of 

the results are more preferable than the inferior or 

the smaller values ones. There are various 

conceivable objectives when alluding to 

prioritization in this context. Elbaum et al. [8] also 

stated some of the goals in their study which are: 

1) To upsurge or improve the average percentage 

fault detection (APFD) values when executing 

entire test suite. 

2) To kill all fault mutants at a faster pace when 

executing a test suite. 

 

Over time, researchers have proposed numerous 

approaches for TCP. In code-based TCP, test cases 

are prioritized by utilizing source code information 

of the software system. A study carried out by Catal 

and Mishra [9] revealed that the most investigated 

prioritization method is coverage-based, which is 

related to code-based prioritization. The downside 

of code-based prioritization is that code knowledge 

is needed in order to prioritize test cases, which 

means prioritization cannot begin until the source 

code is available [10]. Another drawback of code-

based approaches is that most of them are language 

dependent [10], so testing process will become 

more complicated in cases where the program is 

written in various programming languages. There 

are quite a number studies in TCP that focused on 

regression problems with solution relying on both 

old and new system codes but very few have tried 

to utilize test cases generated associated with 

system changes. 

In this paper, a new weighted hybrid string-

based TCP technique is proposed. This technique 

utilizes string inputs of test cases without the 

consideration of the program source code. String-

based prioritization calculates the string distance 

between test cases and then prioritizes based on the 

calculated distance. String distance were measured 

based on the string or terms arrangements and also 

their character sequences [11]. There quite a 

number of string distance types and four are used in 

this experiment; Manhattan, Levenshtein, Cosine 

Similarity, and Jaccard Coefficient.  

However, using only string distance values, the 

possibility to have similar distance is quite high and 

may affect prioritization process. Therefore, to 

overcome the problem, hybridization of all four 

string distances with a weighting scale for text 

document was carried out. As a result, the distances 

calculated for each test case to the other will be 

refined with their incorporating weight. This will 

make a major difference in test case execution 

sequence which can increase the APFD rate and kill 

all fault mutants at a faster pace. The proposed 

technique is validated by performing a comparative 

study experiment using Siemens programs. The 

evaluation is based on APFD values whereby the 

greater the values, the superior the technique. 

Meanwhile, for fault mutant killed performance; 

smaller values are better which are measured based 

on percentage of test cases required to achieve 

100% mutants killed. 

The rest of the paper is structured as follows: 

Section 2 elaborates related work in TCP based on 

string distance. Section 3 provides the preliminaries 

which is an overview of related string distance, 

weighting document scale, and prioritization 

algorithm for the proposed work. In Section 4, a 

controlled experiment for the proposed work is 

presented and illustrated. Section 5 reports on our 

result and discussion, and Section 6 summarize the 

conclusion of this experiment. 

 

2.  RELATED WORK 

 

As prioritization on test cases had only gone 

through test case selection in early studies [5], TCP 

was then suggested and assessed in a further broad 

context. In real world situation, it is quite hard to 

determine which tests will detect faults. Hence, it 

justifies the notion behind test case prioritization 

approaches to have other backups, expecting that a 

certain number of backup approaches will end in 

boosting fault discovery in different ways. There 

were several TCP approaches that had been 

anticipated and applied in the previous work. As 

many as eight broad approaches were described by 

Singh [12]. The TCP techniques approaches were 

based on their commonalities in selection 

procedure, input type, and output type. 

Work by Ledru [13] presented test case 

prioritization based on string distances in detecting 
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the strongest mutants with Manhattan distances as 

the best choice in their findings. In their proposed 

work, they compared four distances namely 

Cartesian, Hamming, Levenshtein, and Manhattan 

distances. These distances are measured in terms of 

characters distances when characters are replaced 

by new characters. The distances are quantified in 

terms of characters difference with prioritization 

using Greedy Algorithm.  

Meanwhile, the work by Bo Jiang [14] 

presented Levenshtein or Edit distance in detecting 

the strongest mutants in Linux benchmark program. 

In their work, they focused on prioritization 

algorithm and claimed Levenshtein as the most 

suitable string metric. 

From both reported works, prioritized test cases 

using string metrics have promising average 

percentage of fault detection (APFD) values 

compared to random ordered ones. The average of 

APFD rank for all three string metrics distance were 

the same except for Cartesian which had the worst 

performance [13]. 

 

3. PRELIMINARIES 

3.1 The String Distance for TCP 

 String distance were measured based on the 

string or terms arrangements and also their 

character sequences [11]. A string distance is a 

metric that can quantify likeness or divergence 

between two contents of strings for surmised string 

coordinating or examination. There are two type of 

string distances; character-based and term-based 

[11]. Both types have various string metrics or 

distance calculations. 

Manhattan Distance ...(2) [13] 

Character-based string metric utilizes each 

character in a string and compares it with the 

character in other string. For example, Manhattan 

distance (Equation 2) where string of size s can be 

seen as a path of characters in an s-dimensional 

space, and the characters can be correlated to their 

ASCII code. Manhattan distance is equal to the 

absolute difference of the ASCII value of strings. 

The idea of comparing apply with the concept 

where char ‘0’ were used to fill the shorter string 

when the strings does not have equal length [13]. 

Cosine Similarity ...(3) [15] 

Meanwhile for term-based, the calculation of the 

string metric defined is based on the whole term of 

the string compared to the term in other string. For 

example, Cosine Similarity (Equation 3) represents 

documents as a vector, the likeness of two 

documents bear a resemblance to their vectors 

distances association. These resemblances were 

then measured and call as cosine similarity with the 

calculation involved were the cosine value of the 

angle or distance between vectors. Cosine similarity 

is a standout amongst the most famous similarity 

measures connected to text content reports, for 

example, in various data recovery applications and 

grouping [16]. For each vectors characterizes a 

string with its frequency within the text, which 

cannot be a negative number. As the consequence, 

the cosine similarity measured in a positive value 

and restricted in the middle of zero and one value. 

3.2 The Term Frequency Inverse Document 

Frequency (TFIDF) 

 “Term frequency–inverse document frequency” 

(TFIDF) is a standout amongst the most ordinarily 

utilized term weighing schemes in data retrieval 

methods. As for its well-known technique, TFIDF 

has been regularly applied in an experimental 

evaluation[17]. TFIDF is also recognized as a 

statistical measurement with the intention to reveal 

how significant a term is within a file in its 

collection or in other words, a weighing scheme for 

text documentation. 

For the formulation of term frequency tf 

(Equation 4), the calculation start with the use of 

the selected term or string frequency in a document, 

in simplest word, the amount of the term t take 

place within a document d. While, the formula for 

inverse document frequency idf (Equation 5), deal 

with the significance of the term in the whole 

documents pool. 

 ... (4) 

    ... (5) 

This inverse document frequency measures the 

amount of information carried by terms. TFIDF is 

formed by the multiplication of tf.idf with some 

heuristics modifications. 
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3.3 The Algorithm for TCP 

 The implementation of artificial intelligence or 

search-based approach in TCP is not limited to 

specific strategies only. Within TCP itself, there are 

several algorithms used including Genetic 

Algorithm (GA) [18]–[26], Greedy [27], [28], Ant-

Colony [29]–[31], Particle Swarm Optimization 

[32], [33], and others [14], [34]. Several 

observations are noted for artificial intelligence (AI) 

utilization. First, there are many publications on AI 

application which is used to solve different 

problems contexts. Second, empirical data is easily 

available for AI experimental setup. This 

encourages researcher to execute and compile 

results using search-based approach.  

Search-based prioritization approach has quite a 

number of implementation algorithms such as 

Genetic Algorithm (GA) [18]–[25], Greedy [27], 

[28], Ant-Colony [29]–[31], Particle Swarm 

Optimization [32], [33],  and others [14], [34]. 

Experiment by Li [28] revealed that GA application 

approach works poorer when compared to a greedy 

algorithm on computer-generated data. However, 

the application of a search-based algorithm may 

differ, based on the selected test suite, input criteria, 

fitness function, and others. While the collected 

result showed a major benefit of GA application in 

TCP approaches, there are certain disadvantages 

that exist, such as, execution time is a vast anxiety 

for GA applications and they are typically slow in 

the process of completion [21]. 

In this proposed work, rather than using the 

program code, the test cases generated are utilized 

for prioritization based on their inputs to calculate 

string distance/similarity between test cases. 

Related work by Ledru [13] using Greedy and Jiang 

[35] using Local Beam Search showed promising 

results in term of average percentage fault detected 

in prioritizing the input based on the test cases. 

Therefore, since this experiment will utilize the 

inputs of the test cases, PSO is intended to be used 

as our prioritization algorithm since PSO has the 

best efficiency [36] in getting the shortest string 

metric distance between test cases. 

 

4. EMPIRICAL STUDIES 

 

In this section, a weight-hybrid string distance 

technique and prioritization using particle swarm 

optimization is proposed to improve regression 

testing by achieving higher average percentage fault 

detection (APFD) rate and faster fault mutant 

killed. 

 

4.1 The Experiment Setup 

 In this section, the experiment setup for test 

case prioritization using Siemens dataset [37] is 

described. The Siemens Suite is a well-used 

benchmark programs software appeared in 

numerous regression testing literature. Siemens 

suite has several small software programs using C 

as its main language of programming. The software 

consists of small programming code with code 

lines, between 173 and 565 (141 to 512 without 

code make-up). Each program comes with a 

reference version, and several versions with seeded 

faults. If a test case is able to reveal different output 

on the reference version and the version with 

seeded fault, this considers that a mutant is killed. 

For this experiment three datasets of a similar 

application but different version of language are 

utilized. Table 1 below shows a clear overview of 

the datasets used. 

Table 1: Overview of Datasets 

Dataset 

Name 

Programming 

Language 

Fault Matrix 

tcas C 
Have Different 

Fault Matrix 
jtcas Java 

cstcas C# 

 
From Table 1, the dataset used is tcas which is 

originally a C program of an aircraft collision 

avoidance system. It takes 12 integer inputs and 

produces one output. The program came with one 

base version and 41 faulty versions with 1608 test 

cases. The fault matrix is produced by executing all 

test cases on all 41 faulty versions and compared 

against their base version. Even as all the datasets 

are for the same application, the fault matrix for 

each version of the application is different. 

 

 
 

Figure 1: Experiment Prioritization Design 

 



Journal of Theoretical and Applied Information Technology 
30th June 2017. Vol.95. No 12 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2727 

 

Figure 1 illustrates the experiment flow for this 

paper. The experiment can be divided into three 

phases; Information Extraction phase, String 

Distance and Prioritization phase, and Evaluation 

phase. For information extraction phase, the phase 

starts with extracting all the test cases and their 

inputs. The extracted inputs for each test case were 

put into different text document to ease the 

calculation needed in the next phase. Then, the 

original and versioning programs were run through 

the extracted test cases to get their respective result. 

The results for each version were compared with 

original result to produce s fault matrix sheet to be 

used in evaluation phase.  

The next phase is the calculation of string 

distance and prioritization phase. The string 

distances between test cases are calculated based on 

the extracted inputs and populated into test case 

distance matrix. Within this calculation part, each 

test case is weighted using TFIDF method. The 

proposed hybridized string distance is also carried 

out here. Upon completion of the calculation, the 

test case distance matrix is then prioritized using 

particle swarm optimization (PSO) to produce 

prioritized test suites with the shortest distance 

possible in total.  

Finally, in the evaluation phase, the prioritized 

test suites are evaluated by calculating their APFD 

rate based on fault matrix of their program. The 

fault matrix was obtained in earlier stage by 

executing all test cases for all versioning programs 

and comparing the outputs against the original 

program. The results is compared to produce the 

fault matrix sheet. The percentage of test cases 

required to kill 100% fault mutants is also 

calculated. 

 

4.2 The Proposed Hybrid String Distance 

 This experiment will utilize the inputs of the 

test cases. The inputs will be calculated for their 

similarity between test cases using string metric. 

The string distance to be used in this experiment 

consists of two character-based string distances; 

Manhattan distance (Equation 2) evaluated by 

Ledru [13] and Levenshtein distance (Equation 6) 

used  by Bo Jiang [14], and two term-based string 

distances; Cosine Similarity distance (Equation 3) 

and Jaccard Coefficient distance (Equation 7).  

 

 

Levenshtein Distance  … (6) [14], [38] 

 

 

Jaccard Coefficient …(7) [15] 

Since Manhattan and Cosine Similarity already 

been explained in preliminaries section, for 

Levenshtein distance, the value is calculated by 

counting the minimum number of operations 

required to transform one string into another. 

Jaccard in the other hand is calculated based on the 

number of mutual terms in compared to the amount 

of all exclusive terms in both strings [11]. A hybrid 

string distance with TF-IDF is then proposed. 

TFIDF is a weighing scheme for text 

documentation. Table 2 shows the brief idea of how 

the string distance values are hybridized. 

Table 2: The Overview Idea Hybrid String Distance 

TFIDF Values 

for Each Test 

Case 

String Metric 

Value Between 

Test Cases 

Hybrid String 

Metric with  

TFIDF 

Weight of 

TC1 = W1 

Distance/ 

Similarity 

between TC1 – 

TC2 = D1,2 

D1,2 . W2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Weight of 

TCn = Wn 

Distance/ 

Similarity 

between TCn – 

TCn+1 = 

Dn,n+1 

Dn,n+1 . Wn+1 

As shown in Table 2, the formulation of the 

hybrid string distance is obtained by multiplying 

the value of the string distance with the weight of 

the next test cases. The idea to use string distance is 

inspired by the work of Bo Jiang [14] where it has 

been reported that the implementation of different 

distances may produce distinct results. As the 

prioritization is based on the difference between 

two points of test cases, instead of using only one 

metric, this study proposes to add the weight of 

next test case point as the second metric to be 

considered. This inspires the authors to hybrid 

every string distance highlighted earlier with 

TFIDF which is the weighting scale for text 

document to yield a better priority value for each 

test case. 
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Based on the overview of the string distance and 

TFIDF weight hybridization idea, the authors 

produced four new hybridized TFIDF string 

distances with the formulation as shown in Table 3. 

Table 3: The Formulation of String Distance 

String Distance 
Equation 

Non-Hybrid Hybrid TFIDF 

Manhattan (2) (2) × (4) × (5) 

Levenshtein (6) (6) × (4) × (5) 

Cosine Similarity (3) (3) × (4) × (5) 

Jaccard Coefficient (7) (7) × (4) × (5) 

 

4.3 Particle Swarm Optimization Algorithm 

 Particle swarm optimization algorithm used in 

this experiment is shown in Figure 2.  

 

Figure 2: PSO Algorithm for String Distance 
Prioritization 

The prioritization starts with by initializing the 

number of swarm particles, velocity of swarm, 

maximum iteration, target distance, best distance, 

size of test cases, and the path. The number of 

swarm particles and the velocity are used to adjust 

the execution time of the prioritization process. 

Target distance is used as a target of shortest path to 

search within the test suites. Iteration limits are set 

to avoid an endless iteration of prioritization. Figure 

3 shows some fixed values for the prioritization in 

tcas dataset: 

 

Figure 3: PSO Algorithm Parameter Setting 

As shown in Figure 3, the number of swarm 

particles and velocity are set at high values as the 

size of the population is huge. The maximum 

iteration is set at 5000 to avoid any missed paths. It 

takes around 20 minutes for prioritization iteration 

to reach maximum. The target distance setting 

varies based on the string distance/similarity 

metrics calculated. 

4.4 Metric Used for Comparison 

 It is essential for any approaches proposed in 

test case prioritization to perform metric 

measurement to assess their effectiveness. This 

process is important to measure the efficacy of the 

proposed approach in prioritizing test cases and to 

benchmark its effectiveness against other existing 

approaches. One of the metrics used in evaluation 

of prioritization effectiveness is Average 

Percentage of Faults Detected (APFD). APFD is a 

metric used to quantify how rapid a arranged and 

optimized test suite can discovers defects [5], [8]. 

The result of APFD values ranged in between zero 

to 100 where greater value indicate better fault 

revealing rate. The equation for calculating APFD 

value is shown as follows.  

 … (8) 

Where T is a test suite containing n test cases,  F 

is a set of m faults revealed by T. TF1 is the first test 

case in T’ ordering of T which reveals fault i and 

the APFD value of T’ is calculated using the 

Equation 8. 

  

5. RESULTS AND DISCUSSION 

 
The experiment starts with the calculation of 

string metrics in this experiment where two are 

character-based string metrics; Manhattan (M) and 

Levenshtein (L), while another two are term-based 

string metrics; Cosine Similarity (CS) and Jaccard 

Coefficient (JC). The authors then hybridize those 

string metrics with term frequency–inverse 

document frequency (TFIDF), which is a numerical 

statistic that is intended to reflect how important a 

word is to a document in a collection or in other 

words, a weighing scheme for text documentation. 

The values of APFD rate for each dataset are 

recorded in Table 4. For mutant killed performance, 

the percentage of test cases needed to kill all faults 

mutant are recorded in Table 5. 
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Table 4: Average Percentage Fault Detected (APFD) 

Rate 

String 

Distance 
String Based 

APFD Rate (%) 

 tcas  jtcas cstcas 

M 
Character-Based 

92.39 92.70 92.80 

L 90.13 91.50 90.75 

CS 
Term-Based 

91.80 92.35 92.22 

JC 92.22 92.99 92.96 

TFIDF-M Weight-hybrid 

Character-Based 

95.87 95.61 94.48 

TFIDF-L 91.73 92.71 92.40 

TFIDF-CS Weight-hybrid  

Term-Based 

92.79 94.48 93.24 

TFIDF-JC 96.19 95.34 97.37 

 

Table 4 shows APFD rate values for each string 

metric, where the higher is the value, the better is 

the string metric. From Table 4, there are two string 

metrics for each string-based. All the string metrics 

can measure distance or similarity by just 

minimally alternating their formulation of 

measurement. Among the non-hybrid string 

distances, JC a term-based string distance has the 

highest APFD value which is 92.96% for cstcas 

dataset. Hybridized TFIDF-JC scored the highest 

APFD value which is 97.37% for cstcas dataset as 

well. The hybrid TFIDF-JC yields the highest value 

attributed to the input type for the test cases. The 

input for this dataset application takes 12 integer 

inputs and produces one output test case. A small 

change of character within the integers may have 

significant differences between the integers. 

Therefore, prioritizing the whole term where it 

considers every whole integer should be better 

rather than prioritizing based on each character on 

an integer itself. The idea of weighing TFIDF is to 

calculate the weight of each test case based on the 

frequency of term used, giving an extra priority to 

the input values within the test case based on their 

occurrences has resulted in better APFD score as 

compared to all to non-hybrid string distances. 

Table 5: Mutant Killed Performance 

String 

Distance 

Percentage Test Cases Used to Kill 100% 

Fault Mutants 

tcas jtcas cstcas 

M 92.22 92.22 92.22 

L 76.18 69.97 76.18 

CS 65.80 65.80 65.80 

JC 42.60 42.60 42.60 

TFIDF-M 22.88 22.88 22.88 

TFIDF-L 47.08 37.19 37.19 

TFIDF-CS 67.60 49.25 49.25 

TFIDF-JC 47.33 47.33 34.89 

 

From Table 5, the data indicates the percentage 

of test cases needed for each string metric to kill 

100% fault mutants or in other words to detect all 

faults. Among the non-hybrid string distances, JC 

outperforms other string distances by having the 

lowest percentage of test cases needed to kill all 

mutants which is 42.60% for cstcas dataset. Both 

character-based string distances obtain higher 

values against term-based. Numerous difference in 

characters within a term may have resulted in a 

higher difference value in the character-based string 

metric which may have affected the sequence of the 

prioritized test cases. The advantage of term-based 

over character-based sting distances is that they will 

produce over calculate distance since they consider 

the whole term as one value to be calculated.  

  However, this is not the case for hybrid 

weight, where the percentage values for character-

based hybridized string distances yield a 

significantly reduced percentage of test cases 

needed to kill 100% fault mutants compared to 

term-based hybridized string distances. The hybrid 

TFIDF-M has the lowest value with 22.88% among 

all string distances which shows a huge difference 

with 75.19% improvement as compared to its non-

hybrid string distance which scored 92.22%. This 

result is attributed to TFIDF which only focuses on 

the term frequency in a document within a 

collection or corpus. It does make a good 

complement for character-based string distances 

which lack whole terms values. 

From the overall results of this experiment, the 

authors conclude that hybrid string distance does 

have an improvement in APFD rate values and 

mutant killed performance. As for the string 

distance, Jaccard Coefficient seems to be an ideal 

string distance compared to the other three string 

distances, as its result for APFD rate and 

percentage of test cases needed to kill all fault 

mutants showed promising scores both for; before 

hybridization and after hybridization with TFIDF. 

 

6. CONCLUSION 

 
Within this paper, we proposed a hybrid string 

metric test case prioritization using particle swarm 

optimization. This approach utilized available test 

cases information such as inputs for test cases. By 

this, the prioritization can be executed earlier for 

initial testing since the program/software codes are 

not required.  

The authors also elaborated particle swarm 

optimization algorithm and performed the 

experiment using four non-hybrid string metrics 

and four hybrid string metrics. The experiment was 

performed on Siemens dataset. The empirical study 

result show that the test suites prioritized by the 
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proposed hybrid string technique yields better result 

in terms of Average Percentage Fault Detection 

(APFD) and mutant killed performance. For the 

highest APFD rate, TFIDF-JC shows 4.74% 

improvement from 92.96% to 97.37% over its non-

hybrid string metric, while for mutant killed 

performance TFIDF-M shows 75.19% 

improvement from 92.22% to 22.88% over its non-

hybrid string metric. The hybrid string metric yields 

better scores since, the idea of weighing scheme, 

TFIDF, provides an extra priority for each test case 

during prioritization, which makes it an ideal 

complement for character-based string distances 

which lack whole terms values.  

    The acquired experimental result also showed 

that Jaccard Coefficient, a term-based string metric, 

hybridized with TFIDF gives better APFD values 

compared to the others. However, Manhattan, a 

character-based string metric, hybridized with 

TFIDF outperformed the others in terms of 

percentage of test cases needed to kill 100% fault 

mutants. For upcoming work, it seems to be an 

interesting work to hybrid term and character-based 

string metrics and combine them with a weighing 

scheme for text document. 
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