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ABSTRACT 

 

In this study, the helicopter blade in forward-flight condition was investigated. The blade 

element theory (BET) was used throughout this analysis to investigate the angle of attack 

variations at the blade cross sections, lift distribution along the blade and effects of 

increasing helicopter speed. Prouty’s helicopter data was used to validate the analysis 

results. In this analysis, the helicopter blade was divided into 50 equally spaced elements 

and the azimuth ψ was set at 7.2° for each movement of the blade. The helicopter speed 

of 80 m/s was considered. The analysis revealed that the computation results were in good 

agreement with Prouty’s diagram. Furthermore, it was also evident that in the case of a 

helicopter in forward-flight condition, the blade at retreating side was generally at low 

angle of attack and experienced low lift, in contrast to the blade at advancing side. The 

increment of the helicopter speed affected the lift distribution along the blade. The reverse 

flow area was widened two times from that given by the original Prouty’s diagram. In 

addition, it was proven that each helicopter has its own speed limit called velocity never 

exceed (VNE). It was also shown that BET is important in conducting the analysis to 

modify the helicopter blade design for the aerodynamic characteristics’ improvement as 

well as stability and general performance enhancement for the helicopter. 
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INTRODUCTION 

 

The helicopter is a unique flying vehicle designed to perform various manoeuvring flights 

such as hovering, forward, rearward, sideward, and vertical translations. These 

capabilities make helicopter a viable and extensively used vehicle platform in missions 

such as air patrol, search and rescue (SAR), transportation to rural places or offshore 

platform in which the take-off and landing space is often limited. For a traditional 

helicopter configuration, the main rotor is the key component that produces lift and 

propulsive forces. The tail rotor generates a thrust force to counteract the fuselage torque 
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arising from the rotation of the main rotor and is mainly used for the directional (yaw) 

motion control of the helicopter. During the flight, the main rotor spins at a constant 

rotational speed. The change in the collective and cyclic pitch angles input by the pilot 

will alter the aerodynamic loads of the rotor; hence, changing the translation motion of 

the helicopter. In hover flight, the main rotor experiences equivalent collective and cyclic 

pitch inputs to stay afloat in equilibrium. However, in a forward-flight manoeuvre, the 

forward speed causes the rotor to experience high and low airspeed regions at both sides 

of the rotor which complicates analysis compared to a hovering flight [1-4].  

 

  
 

Figure 1.  Velocity distribution of the helicopter blade in forward flight [4]. 

 

However, the current speed of the helicopter is still considered slower than the 

fixed-wing aircraft. One of the key factors that limit the helicopter capability to achieve 

faster forward speed is the retreating blade stall. The retreating blade stall condition is a 

dangerous flight condition in helicopters, where a rotor blade with smaller resultant 

relative wind will stall after exceeding the critical angle of attack. The lift generation 

between advancing and retreating side of the blade is different from each other during 

forward flight where the advancing side experiences significant lift increase compared to 

the retreating side [1-4]. This is illustrated in Figure 1 which shows that the advancing 

side encounters increased velocity due to a combination of rotational velocity of the rotor 

and helicopter’s forward speed while the retreating side experiences a decreased velocity. 

To overcome the dissymmetrical of lift problem in forward flight, the pilot has to control 

the blade cyclic pitch input to the main rotor blade in order to control both sides of the 

angle of attack [1-4]. The angle of attack at retreating side must be increased due to its 

lower relative velocity, while at the advancing side, the blade must operate at a lower 

angle of attack due to the higher velocity profile. If the retreating side of the angle of 

attack become too large, then the blade will stall which results in a loss of overall lift from 

the rotor, which subsequently restricting the forward speed of the helicopter [5-8]. 
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Various recent research activities focused on overcoming the speed limitation 

imposed by retreating blade stall condition to drive the helicopter at a faster speed beyond 

its speed limit, Velocity Never Exceed (VNE). The blade planform modification [9-11] 

is one of the commonly used methods to improve the forward speed of a helicopter. This 

modification is focused on the design at the tip of the blade whereby a poor design will 

contribute to serious implication on the rotor performance. The British experimental rotor 

program (BERP) blade is the most successful design [12, 13] in the blade planform 

modification which was fitted at GKN-Westland Super Lynx and attained the world speed 

record of 400.87 km/h for conventional helicopter [14]. Another commonly used method 

to achieve higher forward speed is to delay flow separation at the retreating blade. This 

feature can be achieved through the use of passive or active flow control devices installed 

on the blade. The passive control methods delay the flow separation in the retreating 

region through the blade geometrical modification and are always in operation, regardless 

of need or performance penalty. Passive control devices such as Pulse Vortex Generator 

Jets (PVGJs) [15-17], Direct Synthetic Jet (DSJ) [18, 19], Rod Vortex Generator (RVG) 

[20] and Vortex Trap Concept [21-23]were designed to generate vortices to reduce flow 

separation of the retreating blade at a high angle of attack. On the other hand, the second 

method controls flow by adding energy or momentum to the flow in a regulated manner. 

Actuators are at the heart of active flow control implementation and several concepts were 

introduced in literature such as Spar85Def10 concept [24], Active Camber Deformation 

[25], Variable Droop Leading Edge (VDLE) [26, 27], Nose-Droop Concept [28], Static 

Extended Trailing Edge (SETE) [29], Trailing-Edge Flap (TEF) [30], and Gurney Flap 

(GF) [31, 32]. The important step before modifying the standard blade design with the 

installation of the passive or active devices on the helicopter blade is to determine the 

exact location of flow separation region along the retreating side [1-4]. The focus of this 

paper is to explore the implementation of BET for predicting the aerodynamic 

performance for the helicopter blade during the forward-flight condition; hence, 

determining the exact location of flow separation region from BET analysis. Several 

forward speeds were considered for this analysis to investigate the effect of increasing 

forward speed on flow separation region.  

 

METHODS AND MATERIALS 

 

Theoretical Background 

There are several methods that can be used to analyse the aerodynamic characteristics of 

helicopter blade such as the momentum theory, blade element theory (BET), and vortex 

method [1-4]. Among the above-mentioned methods, BET is widely used to provide a 

fast prediction of the rotor aerodynamics forces such as rotor thrust, lift and drag 

coefficients, induced velocity, and rotor disk loading at each element along the blade 

either in the advancing or retreating side. Additionally, dynamic coefficients such as the 

lateral and longitudinal flapping coefficients, pitching, sectional blade angle of attack, 

collective pitch, and rotor coning angles acting on the blade also can be obtained using 

BET [1-4]. Other advantages of BET are that the method is relatively simple for 

predicting the performance of a rotor and the results of the analysis are reasonably 

accurate. 

In this paper, BET was used throughout the analysis. In BET, each blade section 

was assumed to act as a quasi-2D aerofoil to produce aerodynamic forces. Figure 2 shows 

the velocity components and angle of attack that occur at the blade element on the 

helicopter blade. In forward flight, a function of the radial station, r and the azimuth 
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position, ψ was used to analyse the angle of attack and increment of lift at the element. 

Furthermore, the blade flapping motion, blade feathering motion, and velocity of the 

blade were also taken into account in this analysis to obtain the angle of attack at the 

various elements of the blade. 

 

. 

(a) Velocity components at blade element        (b) Angle of attack at blade element 

 

Figure 2.  Aerodynamic environment at a typical blade element [1-4]. 

 

The angle of attack along the blade radial and azimuth position is shown in Eq. (1).  
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where TU is the tangential velocity (Equation 2), PU is the perpendicular velocity 

(Equation 3), and   is blade pitch. The calculation of tangential and perpendicular 

velocity is given as follows: 
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    vVVrU sR  cos,  (4) 

 

where sV is the component of forward speed parallel to the rotor shaft and local induced 

velocity, v is used for this analysis is shown in Equations 5 and 6, respectively. 
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The helicopter blade pitch (or feathering) motion   ,r and blade flapping as the 

function of blade azimuth    can be described as the Fourier series in Equations 7 and 

8 respectively [2, 6].  
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where 0 is collective pitch, tw  is twist angle, A1 is lateral cyclic, B1 is longitudinal 

cyclic, oa is the rotor coning angle, nsa   is longitudinal flapping and lateral flapping is nsb

. The angle of attack along the blade radial and azimuth position is simplified in Equation 

9 [6] 
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The increment of lift on each blade element along the blade and around the 

azimuth is computed by using Equation 10. 
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where  is density, a  is the slope of aerofoil lift curve per radian and c is the blade chord. 

 

 
Figure 3. Meshing of the blade movement area (rotor blade is divided into 50 elements 

along the span of the blade with equally spaced azimuth angle spacing (ψ = 7.2° each). 

 

Blade Data and Parameter  

In BET, the angle of attack and lift on the entire blade is the integration of the angle of 

attack and lift on all the blade elements from the centre of the rotor to the tip. The rotor 
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blade from Prouty’s example helicopter [4] was used in the analysis, whereby the blade 

was divided into 50 equally spaced elements and azimuth range, ψ at 7.2° for each 

movement of the blade (Figure 3). The analysis of this paper was based on the data from 

Prouty’s example helicopter given in Table 1. 

 

Table 1. Blade parameter and Prouty’s data used for analysis. 

 

Blade Parameter 

No. of blade 2 

Blade radial section 50 

Blade azimuth section 7.2° 

Sample Data [4] 

Aerofoil NACA 0012 

Blade radius, R 9.144 m 

Chord, c  0.61 m 

Blade cutout ratio, 0r  0.15 

Tip speed, R  197 m/s 

Speed, V 59.16 m/s 

Tip speed ratio, μ 0.3 

Collective pitch, 0  15.8° 

Lateral cyclic, A1 -2.3° 

Longitudinal cyclic, B1 4.9° 

Coning angle, 0a  4.3° 

Angle of tip path plane, TPPa  -3.7° 

Twist angle, tw  -10° 

 

RESULTS AND DISCUSSION 

 

In this study, the analysis was done based on the data obtained from Prouty’s research on 

helicopters. In order to ensure that the analysis was done properly and accurately, the 

computed distribution of the angle of attack along the helicopter main rotor blade in 

forward-flight condition was compared with the established findings from Prouty’s 

analysis [4]. The result of that analysis as illustrated in Figure 4 showed that the computed 

analysis was in good agreement with the Prouty’s diagram. From Figure 4(b), the analysis 

gave evidence that the advancing side region (y/R > 0) contained a low angle of attack 

while at retreating side (y/R < 0 regions), the analysis produced a high angle of attack and 

a reverse flow area. Reverse flow area is an area with no lift and indicates that the airflow 

moved across the trailing edge toward the leading edge of the blade [1-4]. The reverse 

flow area can also be identified by observing rotation area with a significantly high angle 

of attack value.  

To investigate the lift forces produced along the blade at advancing and retreating 

sides, the movement of the blade rotation in 1-2-3 position sequence (counter clockwise) 

was considered as shown in Figure 5. The analysis considered three azimuth angles at ψ 

= 43.2° / ψ = 223.2°, ψ = 93.6° / ψ = 273.6° and ψ = 136.8° / ψ = 316.8°. The data from 

Figure 4(b) and the lift coefficient for NACA0012 at difference Mach numbers from Paul 

[33] were used in this analysis in order to obtain the lift distribution along Blades A and 

B. 
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(a) The angle of attack distribution from Prouty’s analysis at V=60m/s [4]. 

 

 
(b) Computed analysis 

 

Figure 4. Angle of attack and reverse flow area comparison (a) Prouty’s diagram         

(b) The computed analysis. 

 

Figure 6 shows the angle of attack and lift distribution along Blades A and B at 

positions 1, 2, and 3. From Figure 6(a), the general trend for all azimuth angles showed 

that a high angle of attack occurred at the retreating side (Blade A) compared with 

advancing side (Blade B). The azimuth ψ = 223.2° (Position 1) of Blade A contained the 

highest angle of attack, which was about 11.3° located at the 37% of Blade A from the 

hub of the rotor. Meanwhile, for Blade B ψ = 43.2° (position 1), the highest angle of 
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attack was around 6.3°. Positions 2 and 3 had the similar curve of the angle of attack 

compared to Position 1. The negative angle of attack at inboard of the Blade A at the 

retreating side was the reverse flow area where the angle of attack value increased at the 

inboard of the blade from r/R=0.2 (Position 1) to r/R=0.4 (Position 3). At the advancing 

side (Blade B at azimuth ψ= 43.2°, ψ=93.6o and ψ = 136.8o ) in Figure 6(a), the high angle 

of attack occurred at inboard of the blade and it gradually decreased from root to tip of 

the blade. This reduction was due to the blade twist effect [1-4]. From this analysis, the 

retreating side having the critical area contained the high angle of attack at the 0.65R and 

1.0R, which was the suitable location to place the separation control device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Rotation of main rotor blade. 

 

 Table 2. Lift per running meter at advancing and retreating side. 

 

 

Position 

Retreating side, 

Blade A 

Advancing side 

Blade B 

Azimuth,  

ψ 

Lift per running meter,

rL  /  

Azimuth,  

ψ 

Lift per running meter,

rL  /  

1 223.2° 121.7 x 103 43.2° 219.2 x 103 

2 273.6° 88.5 x 103 93.6° 143.0 x 103 

3 316.8° 111.7 x 103 136.8° 146.3 x 103 

 

Figure 6(b) is plotted based on the data from Figure 6(a) to show the lift 

distribution at Blades A and B. Table 2 shows the lift at advancing and retreating blade 

for Positions 1 to 3. From Figure 6(b) and Table 2 for the triple positions of rotation, the 

advancing blade side had an additional lift  rL   compared to the retreating blade side. 

The lower lift value at the retreating blade wasdue to the reverse flow region where no 

lift forces were generated from the rotor hub to 0.4R. The dissymmetrical of lift affected 

the helicopter’s forward motion where the helicopter has the tendency to roll to the left at 

the retreating side. To overcome the extra lift at advancing side, the pilot has to control 

the helicopter blade manually using cyclic pitch input in order to stabilise the blade by 

reducing the angle of attack at the retreating side and avoid the unwanted rolling motion 

to the retreating blade side [1-4]. The result also gives the indication that any installation 

A B 

o0o180

o2.43

o6.93

o8.136

o2.223

o6.273

o8.316
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of flow control device should focus on the area along the retreating blade from 0.4R  to 

the tip of the blade, 1.0R.  

 

 
(a) 

 

 
(b) 

Figure 6. Angle of attack and lift distribution for Blades A and B (a) Angle of attack 

distribution (b) Lift distribution. 
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(a) V= 59.16m/s (b) V= 80m/s 

 

Figure 7. Comparison of the distribution of the angle of attack of the blade for forward 

speed at V=60m/s and V=80m/s. 

 

 The effect of increasing the helicopter speed is important to understand its 

limitations, VNE. In this study, the helicopter speed at 80m/s wa chosen to compare with 

Prouty’s speed (59.16 m/s) to investigate the aerodynamic characteristic of increasing 

helicopter speed. Figure 7 shows the distribution of the angle of attack when the helicopter 

speed increased about 33.33% from V = 60 m/s. From Figure 7, the diameter of reverse 

flow area at retreating side for V = 80 m/s increased two times of reverse flow (no lift) 

region diameter for V = 60 m/s. The distribution of the angle of attack differed for each 

speed due to the increased speed of the helicopter. This indicated that the lift for the 

retreating side of the rotor decreased when the speed of the helicopter increased. To 

ensure safety, every helicopter normally has its limit of speed, VNE (Velocity Never 

Exceed) to avoid the build-up of reverse flow area and significant low lift at the retreating 

blade. This factor is a very important indicator to researchers in order to improve the blade 

aerodynamic performance and also the overall helicopter performance.  

 

CONCLUSIONS 

 

In this paper, the result of the angle of attack and lift distribution along the main rotor 

blade when the helicopter is in forward-flight condition obtained using BET was 

presented. The Prouty’s example of helicopter data was validated to ensure the angle of 

attack and lift distribution along the blade was done properly and accurately. Good 

agreement of angle of attack between BET data and angle of attack diagram was achieved. 

Based on the findings, the high angle of attack occurred at the advancing side of the rotor 

starting from the inboard position of the blade and gradually decreased from root to tip of 

the blade. Meanwhile, the highest angle of attack and reverse flow area occurred at the 

retreating side. Thus, the results show that the lift of retreating side was lower compared 

to the advancing side, hence causing the helicopter to roll to the retreating side. Increasing 

the helicopter speed effect the angle of attack and lift distribution along the blade. The 

reverse flow area region also increased as the helicopter moved at a faster speed. It can 

be concluded that aerodynamic parameter based on BET is an important tool for a 

researcher in analysing helicopter blade in forward-flight condition before modification 
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of the blade is made. Further studies are recommended on the effect of changing the cyclic 

pitch of the blade.  
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