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Preface

The main goal of a control system is that of causing a dynamic process
to behave in a desired manner. The analysis and design of such a control
system to provide a demanded behaviour is usually done by employing a
mathematical model of the dynamic process. This model is chosen to repre-
sent the major dynamical features of the process. For the reason that the
mathematical model is an idealization of the real process, it is imprecise and
this inaccuracy entails the existence of model uncertainty. This fact, among
others, complicates the analysis and design of a control system.

The choice of the control structure plays an essential role to allow the at-
tainment of the demanded behaviour. Typically, some kind of specifications,
for example, open-loop and closed-loop specifications, can not be fulfilled si-
multaneously and trade-offs between them have to be considered.

Therefore, it is important to distinguish between difficulties to the control
problem (such as model uncertainty, disturbances that cause the output
to deviate from its desired value, etc.) and difficulties due to the control
structure. In this way, our research has been focused on attempting to
find out new control structures to avoid traditional difficulties related with
standard, well-established, feedback control configurations.

The common, distinguishing, feature of the control structures we work
with is the so-called Observer-Controller configuration. Our work, previously
focused on single-input single-output systems, shows the benefits of using
such a configuration:

(Pedret et al., 1999) In this work we present a two-step design procedure
in which reference model specifications are tackled first as nominal
requirements and second, the robustness properties of the resulting
nominal design are enhanced. The reference model specifications are

v



vi Preface

achieved by means of an appropriate selection of the state feedback
controller. The robustness considerations are taken into account by
performing a Youla type parameterization of all possible observers for
a given plant.

(Vilanova et al., 1999) In this work, we suggest, for the first time, the
actual Observer-Controller configuration for robustness enhancement.
The consideration of robustness enhancement problem comes from the
fact that the approach is based on improving the robustness properties
of a previously existing controller instead of on the design of a robust
controller.

(Pedret et al., 2001) In this work, the design procedure for the robust
enhancement approach is refined and illustrated with the control of an
open-loop unstable process.

(Pedret, 2000) The above-referred publications are the basis of the Master
Thesis.

All this favorable receptions motivated to go on with the extension of
the research to multivariable systems. The establishment of the robustness
properties proposed for scalar case were no longer applicable for the mul-
tivariable case. Nevertheless, the transfer function formulation, in which
the SISO framework is based, allowed an straightforward generalization to
MIMO systems. Then, an alternative, more systematic, design procedure
had to be chosen and we fond that the design procedure could be suitable
adjusted to fit the H∞ / Structured Singular Value framework.

This work presents the above-mentioned generalization of the Observer-
Controller configuration which has also accepted for publication (Pedret et
al., 2003). In addition to the multivariable approach to robustness enhance-
ment, this work presents a new two degrees-of-freedom control configuration,
also based on the Observer-controller configuration.

This work was typeset using LATEX. The simulations, numerical compu-
tations and figures where developed in Matlab

1.

1
Matlab is a registered trademark of MathWorks, Inc.
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Voldria mostrar el meu agräıment a totes aquelles persones que han estat
el meu costat durant aquests anys a la Universitat Autònoma de Barcelona.
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Chapter 1

Introduction

In this Chapter we introduce the control problem with regards of the stan-
dard control structures used to address it. Such standard control configurations
present well-known conflicting objectives which can be mitigated by using alter-
native control configurations.

1.1 The control problem

A primary objective of a control system is to make the output of a dynamic
process behave in a certain manner. This desired behaviour for the output is
pursued by means of manipulations on the input of the process. Nevertheless,
hard constrains such as limits on the controls or states and conflicting per-
formance objectives prevents the accomplishment of the desired behaviour
for the controlled process.

The design procedure of a control system usually involves a mathematical
model of the dynamic process, the plant model or nominal model. Conse-
quently, many aspects of the real plant behaviour can not be captured in
an accurate way with the plant model leading to uncertainties. Such plant
model miss-matching should be characterized, albeit loosely, by means of
disturbances signals and/or plant parameter variations, often characterized
by probabilistic models, or unmodeled dynamics, commonly characterized in
the frequency domain.

Usually, high performance specifications are given in terms of the plant
model. For this reason, model uncertainties characterization should be in-

1



2 Introduction

corporated to the design procedure in order to provide a reliable control
system capable to deal with the real process and to assure the fulfillment of
the performance requirements. The term robustness is used to denote the
ability of a control system to cope with the uncertain scenario.

The performance specifications are usually given accordingly for the reg-
ulation problem or for the tracking problem. The former is to manipulate
the input of the plant to counteract the effect of output disturbances. The
later is to handle the input of the plant to keep the controlled variables close
to the given reference signal.

The key point is the way the controller generates the control signal in a
suitable manner. There exist a lot of different strategies and methodologies
to cope with this problem, say the controller design problem. However, any
possible choice can be classified as belonging to open-loop control or closed-
loop control.

K

K

P

P

output

output

control

control

measurement

reference

reference

Figure 1.1: Open-loop and closed-loop control configurations.

Although the two options are available, when bearing in mind a control
system, closed-loop configurations automatically appears. This is because
open-loop control, as depicted in Figure 1.1, is effective only in some, rela-
tively simple, situations in which plant variations and output disturbances
do not cause the actual output to deviate significantly from the specified
reference input. Thereupon, with this scheme there is no way of knowing
if the output variables deviates from it desired value. This is the reason of
introducing feedback: without feedback, there is no means of comparing the
actual behaviour of the process with its desired behaviour to automatically
correct its performance. Feedback control may therefore be used to coun-
teract potential effects of plant variations and output disturbances. On the
other hand, the presence of feedback signal implies the need for a physical
measurement. A sensor is needed to monitorize the output variable and in,
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many cases, the measurements are corrupted with noise, which also compli-
cates the design process.

In order for a control system to achieve the specified performance re-
quirements in the presence of external disturbances and model uncertainties
it is necessary to resort to feedback control. Another fundamental reason
for making use of feedback is that unstable plants can only be stabilized by
feedback. Therefore, the ability of feedback to mitigate the effect of exter-
nal disturbances, to reduce the effect of model uncertainties and to stabilize
unstable plants is of crucial importance in controller design.

Of course, there is also the opposite situation, in which the plant is stable
and the used of feedback (if not done properly) can drive the system to the
instability. This is not the case with an open-loop control scheme, where
the stability of the system is always guaranteed as long as the plant, and
the controller, are stable. The only thing that concerns open-loop control is
performance in terms of tracking.

The failure of open-loop control is due to the lack of information, being
feedback a way of providing such information. Moreover, with a feedback
controller we are not only accessing to this information but establishing a
way of using it. Thus, if a feedback compensator is to be used to achieve the
desired performance in terms of tracking, the additional cost of the stability
constraint must be paid. The performance specification is now relegated to
play a secondary role and the primary concern is now stability, even if the
plant is open loop-stable.

1.2 Feedback configuration

It is well known that standard feedback control is based on generating a
control signal u by processing the error signal, e = r−y, that is, the difference
between the reference inputs and the output controlled signals. Therefore,
the input to the plant is

u = K(r − y) (1.1)

In such a case the associated design problem has one degree of freedom
(1-DOF).

The errors signal in the 1-DOF control structure shown in Figure 1.2 is
related to the external inputs r and d by means of the sensitivity function
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K P
yuer

-

d

Figure 1.2: Standard one degree-of-freedom feedback control system.

S
.= (I +PK)−1, i.e., e = S(r−d). Apart from the sign, the reference r and

the disturbance d have the same effect on the error e. Therefore, if r and
d vary in a similar manner the controller K can be chosen to minimize e in
some sense. Alternatively, if r and d have different nature, the controller has
to be chosen either for good step responses for r or good ramp attenuation for
d or else some compromise have to be found. If there are strict requirements
on both command response (tracking problem) and disturbance rejection
(regulation problem), an acceptable compromise might not exist.

Different design strategies can be considered to design the controller K
but the trade-off between disturbance rejection and command tracking is
inherent in the nature of 1-DOF feedback control scheme. To allow indepen-
dent controller adjustments for both r and d, additional controller blocks
have to be introduced into the system as in Figure 1.3.

Two degrees-of-freedom (2-DOF) control configuration are characterized
by allowing a separate processing of the reference inputs and the controlled
outputs. The 2-DOF compensators present the advantage of a complete
separation between feedback and reference tracking properties: the feedback
properties of the control system are assured by a feedback controller, i.e., the
first degree of freedom; the reference tracking specifications are addressed
by a prefilter controller, i.e., the second degree of freedom, which determines
the open-loop processing of the reference commands.

In the 2-DOF control configuration shown in Figure 1.3 the references,
r, and the measurements, y, enter the controller separately and are indepen-
dently processed, i.e.,

u = K

[
r
y

]
= K2 r − K1 y (1.2)

In such control configuration, the feedback controller K1 and the prefilter
K2 are selected arbitrarily with internal stability the only restriction.
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K2 P
yur

-

d

K1

Figure 1.3: Standard two degrees-of-freedom control configuration.

Many design procedures for both the 1-DOF and 2-DOF feedback control
configuration are based on the characterization of the class of stabilizing
controllers for a plant in term of a parameter denoted, in a widespread way,
Q. This theory appeared in (Youla et al., 1976b) and (Youla et al., 1976a)
for the continuous-time. More precisely, the term Q is a stable, proper, filter
build into a stabilizing controller. Consequently, the relevant transfer matrix
functions of the associated closed-loop system turn out to be linear in the
operator Q which allows optimization over Q (Vidyasagar, 1985), (Boyd and
Barratt, 1991).

1.3 Robustness and performance

It is well known that there is an intrinsic conflict between performance and
robustness in the standard feedback framework, see (Doyle and Stein, 1981),
(Chen, 1995) for a detailed analysis and discussions. We have argued that
the system responses to commands is an open-loop property while robust-
ness properties are associated with the feedback. Therefore, one must make
a tradeoff between achievable performance (in terms command tracking)
and robustness (against external disturbances and model uncertainties). In
this way, a high performance controller designed for a nominal model may
have very little robustness against the model uncertainties and the external
disturbances.

For this reason, worst-case robust control design techniques such as H∞
control, �1 control, (Francis, 1987), (Green and Limebeer, 1995), (Morari
and Zafirou, 1989), (Stoorvogel, 1992), among many others and µ synthesis
(Zhou et al., 1996), have gained popularity in the last twenty years, or so.
Unfortunately, it is well recognized in the robust control community that a
robust controller design is usually achieved at the expense of performance.
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This is not hard to understand since all these robust control design tech-
niques are based on the worst possible scenario which may never occur in a
particular control system.

It is well-known that 2-DOF compensators offers the advantage of the
separation principle between performance and robustness (Youla and Bon-
giorno, 1985), (Vilanova, 1996). In this case, performance should be under-
stood in terms of command tracking. Then, the closed-loop properties can
be shaped independently of the reference tracking transfer function. As is
pointed out in (Safonov et al., 1981), classical approaches to controller design
tend to stress the use of feedback either for robustness and for modify the
systems’ response to commands. Hence, it would seem so natural to choose
a 2-DOF to tackle the control design problem. In this way, the feedback
controller could be used to give robustness to the control system and the
prefilter controller could be used to define the command’s response.

Why are 2-DOF compensators not used as expected? As it is sug-
gested in (Vilanova and Serra, 1998), one possible reason may be the lack
of methodologies to design the two compensators. Since the best way to
allocate the gain between the two compensators is not so clear, the ap-
proaches found in the literature are mainly based on optimization problems
over a Youla parametrisation to get the final, robust, compensator (Youla
and Bongiorno, 1985), (Vidyasagar, 1985), (Limebeer et al., 1993).

In recent years, several approaches have appeared as explicit two-step
design procedures to take into account the robustness properties of a con-
troller (Hrissagis and Crisalle, 1997), (Ansay et al., 1998), (Zhou, 2000).
Commonly, the initial controller is reformulated as the central controller
in the Youla parametrisation of the stabilizing controllers from a nominal
plant and an optimization problem is performed over the Youla parameter
to get the final, robustified, controller. The controller architectures works
in such a way that the feedback control system will be solely controlled by
the performance controller when there is no model uncertainties and exter-
nal disturbances and the robustification controller will only be active when
there are model uncertainties or external disturbances.

The approaches based on a reformulation of a control system as the
central controller in the Youla parametrisation allows the Youla parameter
to be made adaptive (Tay et al., 1998).
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1.4 A new controller architecture

In this Thesis, we shall propose a new controller architecture to try to com-
pletely overcome the conflict between performance and robustness in the
traditional feedback framework. The proposed control configuration comes
from the coprime factorization approach and, in such a context, a some-
what uncommon observer-based control configuration is derived. It is the
Observer-Controller configuration and it is used in different arrangements.

The first proposal, deals with the robustness enhancement problem as
an alternative to the design of a robust control system. With the lofty goal
of achieving high performance in the face of disturbances and uncertainties
we proceed as follows: first, an initial feedback control system is set for the
nominal plant to satisfy tracking requirements and second, the resulting ro-
bustness properties are conveniently enhanced while leaving unaltered the
tracking responses provided by the initial controller. The approach is based
on the generation of a complement for the nominal control system by means
of an structure based on the Observer-Controller configuration. The final
control system works in such a way that the plant will be solely controlled
by the initial nominal feedback controller when there is neither model uncer-
tainties nor external disturbances and the robustification controller will only
be active when there is model uncertainties and/or external disturbances.

The second proposal also addresses the goal of high performance in the
face of disturbances and uncertainties. In this case, a two degrees-of-freedom
control configuration is developed. We proceed as follows: first, an observer-
based feedback control scheme is designed to guarantee some levels of sta-
bility robustness and second, a prefilter controller is computed to guarantee
robust open-loop processing of the reference commands.

Despite both proposals are not based on a reformulation in terms of
the Youla parameter, it is possible to perform a Youla parametrization to
characterize the set of all observers for the nominal plant. Such approach
is not considered here. See (Pedret et al., 1999) or (Pedret, 2000) for more
details.

Essentially, this thesis proposes two 2-DOF control configurations for
high performance and robustness properties. The first presented proposal
do not fit the standard 2-DOF control scheme made up with a feedback con-
troller and a prefilter controller. Nevertheless, it can also be seen to lie in
the 2-DOF control configuration in the sense that a complete separation of
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properties is achieved. In such case, the tracking properties of the nominal
plant are attained by a controller and the robustness properties are conside-
red and enhanced if necessary by the Observer-Controller configuration. The
design procedures involves µ and constrained H∞ optimization, respectively.

1.5 Notation

The most important notation is summarized in the List of Acronyms and
in the Notation and Symbols, at the end of this Thesis. We have used
lower-case letters for vectors and signals, e.g., u, y, r and capital letters for
matrices, transfer functions and systems, e.g., P , K. Matrix elements are
usually denoted by lower-case letters, so pij is the ij’th element in the matrix
P . However, upper-case letters are sometimes used to denote partitions in
a matrix, i.e., P is partitioned so that Pij is itself a matrix.

An abuse of notation is usually performed with the Laplace variable s,
which is often omitted for simplicity. So we often write P when we mean
P (s).

Let M ∈ Cn×m. Then σ̄(M) denotes the largest singular value of M . H∞
denotes the Banach space of bounded analytic functions with the ∞-norm
defined as

‖F‖∞ .= sup
ω

σ̄(F (jω)) (1.3)

for any F ∈ H∞. A state space realization of a rational proper transfer
(matrix) function G(s) is denoted by

G(s) =
[

A B

C D

]
= C(sI − A)−1B + D. (1.4)

Let P be a block matrix

P =
[

P11 P12

P21 P22

]
. (1.5)

Then, the liner fraction transformation (LFT) of P over F is defined as

F(P,F ) = P11 + P12F (I − P22F )−1P21 (1.6)
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where F is assumed to have appropriate dimensions and (I − P22F )−1 is
well-defined.

1.6 Outline of this Thesis

This thesis has not been written to offer a completed-in-itself reading. Well-
known background theory has been sacrificed for the shake of simplicity and
only the fundamental issues to frame the work have been provided. Some
important issues for multivariable control have been reported but appended
at the back of this thesis. So, we have organized the work as follows:

Chapter 2: In this Chapter the concept of model uncertainty is presented,
assuming that the real plant is unknown but belonging to a class of models
built around the nominal model. The General Control Configuration is in-
troduced as long as the general framework for the µ analysis and synthesis
of controllers for multivariable systems.

Chapter3: In this Chapter we give a short introduction to the factorization
approach which consist on factorize a transfer (matrix) function of a system,
not necessarily stable, as a ratio of two stable transfer (matrix) functions.
Within the factorization framework, the Observer-Controller configuration
is introduced to be used in the different control configurations proposed in
this thesis.

Chapter 4: In this Chapter we present a new configuration to improve the
robustness properties of a nominal high performance control system. The ro-
bustness enhancement approach is based on the generation of a complement
for a nominal control system by means of an Observer-Controller structure.
The resulting two-step design procedure allows an enhancement of the ro-
bustness properties without modifying the nominal controller. The design
procedure is systematized by a translation into the H∞ / Structured Sin-
gular Value framework and evaluated on a high purity distillation column
example.

Chapter 5: In this Chapter we present a new 2-DOF control configuration
based on an observer-based feedback control scheme to guarantee some lev-
els of stability robustness and a prefilter controller computed to guarantee
robust open-loop processing of the reference commands. The feedback con-
trol scheme is configured by solving a constrained H∞ optimization problem
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using the right coprime factorization of the plant in an active way. The pre-
filter controller is designed by assuming a Reference Model with the desired
relations from the reference signals and by solving a Model Matching Prob-
lem imposed on the prefilter controller such that the response of the overall
close-loop system match that of the Reference Model. The design procedure
is also evaluated on a high purity distillation column example.
Chapter 6: This Chapter provides the concluding remarks and proposals
for further research.
Appendix A: This Appendix reviews some basic topics of matrix theory
and has been are included as background material for this thesis.
Appendix B: This Appendix introduces a typical high-purity distillation
process of the type used in the literature as a benchmark problem for com-
paring methods for robust controller design.
Appendix C: This Appendix provides the state-space solutions of several
examples carried out along this thesis.



Chapter 2

Preliminaries for
multivariable feedback
control

In this Chapter the concept of model uncertainty is presented, assuming that the
real plant is unknown but belonging to a class of models built around the nominal
plant. The general configuration to formulate control problems is introduced.
The structured singular value framework is used to get necessary and sufficient
conditions for robust stability and robust performance. A µ-“optimal” controller
is synthesized for the control of a high purity distillation column.

2.1 Introduction

In this Chapter we review the general method of formulating control prob-
lems introduced by (Doyle, 1983). Within this framework, we recall the
general method for representing uncertainty for multivariable systems. We
deal with the structured singular value, µ, a powerful tool introduced by
(Doyle, 1982) which provides a generalization of the singular value, σ̄, and
the spectral radius, ρ. We see that, by using µ, it is possible to get necessary
and sufficient conditions for robust stability and also for robust performance.
We also show how the “optimal” robust controller, in terms of minimizing
µ, can be designed using DK-iteration (also called µ synthesis). We show
this ad-hoc method that involves solving a sequence of scaled H∞ problems.

11
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The original high purity distillation column benchmark problem intro-
duced by (Skogestad et al., 1988) is considered since it has been used in the
literature as a test for robust controller designs. In the original benchmark
problem a µ-“optimal” one degree-of-freedom robust controller is presented
as the optimal solution. So, the µ-“optimal” controller for the distillation
process is reproduced here to be used as a guide for the different control
configurations presented in this work.

The Chapter is organized as follows: Section 2.2 review the general con-
trol problem formulation. Section 2.3 present the general framework for
the analysis and synthesis of controllers for robust stability and robust per-
formance with MIMO systems. In Section 2.4 we see how the structured
singular value can be used to synthesize a µ-“optimal” robust controller.

2.2 General control problem formulation

In this Section the general control configuration to formulate control prob-
lems is presented (Doyle, 1983). Within this framework, the scheme in Figure
2.1 is considered, where G is the generalized plant and K is the generalized
controller. Four types of external variables are dealt: exogenous inputs, w,
i.e., commands, disturbances and noise; exogenous outputs, z, e.g., error sig-
nals to be minimized; controller inputs, v, e.g., commands, measured plant
outputs, measured disturbances; control signals, u.

z

v

w

u

K

G

Figure 2.1: General control problem formulation with no model uncertainty.

The controller design problem is divided into the analysis and the synthe-
sis phases. The controller K is synthesized such that some measure, in fact a
norm, of the transfer function from w to z is minimized, e.g. the H∞ norm.
Then the controller design problem is to find a controller K —that generates
a signal u considering the information from v to mitigate the effects of w on
z— minimizing the closed-loop norm from w to z. For the analysis phase,
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the scheme in Figure 2.1 is to be modified to group the generalized plant G
and the resulting synthesized controller K in order to test the closed-loop
performance achieved with K. How to group G and K is treated further on.

To get meaningful controller synthesis problems, weights on the exoge-
nous inputs w and outputs z are incorporated. The weighting matrices are
usually frequency dependent and typically selected such that the weighed
signals are of magnitude 1, i.e. the norm from w to z should be less than 1.

Example 2.2.1. The feed-back control system shown in Figure 2.2 is con-
sidered to illustrate how to find the weighted generalized plant G.

K

W1

Wp
Po

y y’

-

di

u

u’

r

Figure 2.2: One degree-of-freedom control configuration.

First, the feed-back control system we are dealing with is to be rearranged
as in Figure 2.1 with

w
.=
[

di

r

]
, z

.=
[

u′

y′

]
and v

.= r − y (2.1)

Therefore, the generalized plant G is transfer matrix function that relates
the input signals [w u]T and the output signals [z v]T . It can be written as

G =


 0 0 W1

WpPo 0 WpPo

−Po −I −Po


 (2.2)

�

In the above example, a weighted generalized plant G has been derived to
allow synthesizing the controller K. If the generalized plant G is partitioned
as
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G =
[

G11 G12

G21 G22

]
(2.3)

such that its parts are compatible with the signals w, z, u and v in the
generalized control configuration, then

z = G11w + G12u

v = G21w + G22u (2.4)

From the Example 2.2.1 we have

G11 =
[

0 0
WpPo 0

]
, G12 =

[
W1

WpPo

]
(2.5)

G21 =
[ −Po I

]
, G22 = −Po

Usually, a state-space realization for G is required in order to apply
standard control strategies. In such a case, a state-space realization for G can
be obtained by directly realizing the transfer matrix G using any standard
multivariable realization techniques (Zhou and Doyle, 1998), (Green and
Limebeer, 1995).

Once the stabilizing controller K is synthesized, it rests to analyze the
closed-loop performance that it provides. In this phase, the controller for
the configuration in Figure 2.1 is incorporated into the generalized plant G
to form the system N , as it is shown in Figure 2.3.

zw

Figure 2.3: General block diagram for analysis with no uncertainty.

Straightforward algebra shows that, by substituting z = Nw and u = Kv
into equations (2.4), the expression for N is given by

N = G11 + G12K(I − G22K)−1G21
.= F�(G,K) (2.6)



Sec. 2.2. General control problem formulation 15

where F�(G,K) denotes the lower Linear Fractional Transformation (LFT)
of G and K.

In order to obtain a good design for K, a precise knowledge of the plant
is required. The dynamics of interest are modeled but this model may be
inaccurate and may not reflect the changes suffered by the plant with time.
To deal with this problem, the concept of model uncertainty comes out. The
plant P is assumed to be unknown but belonging to a class of models, P, built
around a nominal model Po. The set of models P is characterized by a matrix
∆, which can be either a full matrix or a block diagonal matrix, that includes
all possible perturbations representing uncertainty to the system. Weighting
matrices W1(s) and W2(s) are usually employed to express the uncertainty
in terms of normalized perturbations in such a way that ‖∆‖∞ ≤ 1. A
detailed treatment of model uncertainty is dealt in Section 2.3.

The general control configuration in Figure 2.1 may be extended to in-
clude model uncertainty as it is shown in Figure 2.4.

D
z1

z2

v

w1

w2

u

K

G

Figure 2.4: General control configuration with model uncertainty.

The block diagram in Figure 2.4 is used to synthesize a controller K. To
transform it for analysis, the lower loop around G is closed by the controller
K and it is incorporated into the generalized plant G to form the system
N as it is shown in Figure 2.5. The same lower LFT is obtained as in (2.6)
where no uncertainty where considered.

To evaluate the relation form w = [w1 w2]T to z = [z1 z2]T for a given
controller K in the uncertain system, the upper loop around N is closed
with the perturbation matrix ∆. This results in the following upper LFT:

Fu(N ,∆) .= N22 + N21∆(I −N11∆)−1N12 (2.7)
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D
z1

z2

w1

w2

Figure 2.5: General block diagram for analysis with uncertainty.

To represent any control problem with uncertainty by the general control
configuration in Figure 2.4 it is necessary to represent each source of uncer-
tainty by a single perturbation block ∆, normalized such that ‖∆‖∞ ≤ 1.
The perturbations can represent parametric uncertainty, non modeled, etc.
as will be seen in Section 2.3.

For numerical calculations purposes, the generalized plant G can be ob-
tained using available software (Balas et al., 1998).

2.3 Uncertainty and robustness

The concept of model uncertainty has just been introduced in Section 2.2.
We know that precise knowledge of the plant is required for a proper design
of K, otherwise the controller is bound to fail when driving the real system.
Nevertheless, an exact knowledge of the plant is not always possible: models
may be inaccurate and may not reflect the changes suffered by the plant
with time. Therefore, it is often assumed that the real plant, denoted by P ,
is unknown but belonging to a class of models, P, built around a nominal
model, Po. The set of models P is characterized by a matrix ∆ which can
be either a full matrix or a block diagonal matrix including all possible
perturbations representing uncertainty to the system.

In this Section we present the general framework for the analysis and
synthesis of controllers for robust stability and robust performance with
MIMO systems. The following terminology is used:

Definition 2.3.1. The closed-loop system has Nominal Stability (NS) if the
controller K internally stabilizes the nominal model Po, i.e., the four transfer
matrices N11, N12, N21 and N22 in the closed-loop transfer matrix N shown
in Figure 2.3 are stable.

�
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Definition 2.3.2. The closed-loop system has Nominal Performance (NP)
if the performance objectives are satisfied for the nominal model Po, i.e.,
‖N22‖∞ < 1 in Figure 2.3.

�

Definition 2.3.3. The closed-loop system has Robust Stability (RS) if the
controller K internally stabilizes every plant P ∈ P, i.e., in Figure 2.5,
Fu(N ,∆) is stable ∀∆, ‖∆‖∞ ≤ 1.

�

Definition 2.3.4. The closed-loop feedback system has Robust Performance
(RP) if the performance objectives are satisfied for P ∈ P, i.e., in Figure
2.5, ‖Fu(N ,∆)‖∞ < 1 ∀∆, ‖∆‖∞ ≤ 1.

�

The nominal stability and nominal performance can be checked using
standard techniques. The conditions to satisfy robust stability and robust
performance are considered next.

2.3.1 Uncertainty representation

Two ways of representing model uncertainty are considered next: unstruc-
tured and structured uncertainty. With unstructured uncertainty, the indi-
vidual sources of uncertainty are described with a single perturbation which
is a full matrix compatible with the plant P . With a structured uncertainty
description, the individual sources of uncertainty are not linked together in
one full matrix. Instead, the sources of uncertainty are represented sepa-
rately.

Unstructured uncertainty

Unstructured uncertainty is a kind of uncertainty description which is often
used to get simple models. Uncertainty is expressed in terms of a specific
single perturbation matrix ∆, usually with dimensions compatible with those
of the plant and normalized such that σ̄(∆) ≤ 1.

Let P ∈ P be any member of the set of possible plants P and let Po ∈ P
denote the nominal model of the plant. Then, unstructured uncertainty are
commonly expressed in terms of the following four single perturbations as
shown in Figure 2.6:
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LI LA

Po Po

LO

Po Po

LE

K K

KK

- -

--

Figure 2.6: Common uncertainty representations involving single perturbations:
multiplicative input uncertainty (LI); additive uncertainty (LA); multiplicative out-
put uncertainty (LO); inverse multiplicative output uncertainty (LE).

PA = {P : P = Po + LA} , LA = wA∆ (2.8)

PO = {P : P = (I + LO)Po} , LO = wO∆ (2.9)

PI = {P : P = Po(I + LI} , LI = wI∆ (2.10)

PE =
{
P : P = (I − LE)−1Po

}
, LE = wE∆ (2.11)

where LA stands for additive perturbation, LO multiplicative output pertur-
bation, LI multiplicative input perturbation and LE inverse multiplicative
output perturbation.

In all cases the magnitude of the perturbation L may be measured in
terms of a bound on σ̄(L),

σ̄(L) ≤ w(ω) ∀ω (2.12)

where

w(ω) = max
P ∈ P

σ̄(L) (2.13)

The bound w(ω) can also be interpreted as a scalar weigh on a normalized
perturbation ∆(s),
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L(s) = w(s)∆(s), σ̄(∆(jω)) ≤ 1 ∀ω (2.14)

Sometimes, matrix weighs are used to describe the uncertainty, L =
W1∆W2. Nevertheless, neither the scalar weigh w(s) nor the transfer func-
tion matrices W1 and W2 do not generally constitute an exact description
of the uncertainty. This leads to a conservative uncertainty description in
which the set of plants satisfying (2.14) are larger than the original set P.

Structured uncertainty

To avoid the conservatism, inherent in the unstructured uncertainty descrip-
tion, the individual sources of uncertainty are represented separately. This
uncertainty description involves multiple norm-bounded perturbations,

σ̄(∆i) ≤ 1 ∀ω (2.15)

and weighting matrices W1 and W2 are used to describe the actual pertur-
bation Li

Li = W2∆iW1 (2.16)

The individual uncertainties ∆i are combined into one large block diag-
onal perturbation matrix

∆ = diag{∆1, ...,∆m} (2.17)

satisfying

σ̄(∆) ≤ 1 ∀ω (2.18)

Structured uncertainty representation considers the individual uncer-
tainty present on each input channel and combines them into one large di-
agonal block (2.17). This representation avoids the non-physical couplings
at the input of the plant that appears with the full perturbation matrix ∆
in an unstructured uncertainty description. Consequently, the resulting set
of plants is not so large as with an unstructured uncertainty description and
the resulting robustness analysis is not so conservative.
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2.3.2 Robust stability for unstructured uncertainty

Let us consider the unstructured uncertainty description characterized by
a full complex transfer function matrix ∆(s) satisfying σ̄(∆) ≤ 1. In such
a situation, each one of the block diagrams in Figure 2.6 can be arranged
to fit in the general control configuration shown in Figure 2.4 in order to
synthesize the controller K.

We saw in Section 2.2 that to transform each one of the diagrams in
Figure 2.6 for analysis, the lower loop around G has to be closed by the con-
troller K and incorporated into the generalized plant G to form the system
N , shown in Figure 2.5. The following lower LFT was obtained

N = G11 + G12K(I − G22K)−1G21 (2.19)

We also saw that the uncertain closed-loop transfer function from w to
z in Figure 2.5 was related by the upper LFT

Fu(N ,∆) .= N22 + N21∆(I −N11∆)−1N12 (2.20)

Assuming that the system is nominally stable, the only source of in-
stability in the upper LFT (2.20) is the term (I −N11∆)−1. Therefore, the
stability of the system in Figure 2.5 is equivalent to the stability of the struc-
ture shown in Figure 2.7, where M .= N11, i.e. the portion of the transfer
matrix function N seen by the perturbation block ∆.

D
z1w1

Figure 2.7: General M∆ structure for robust stability analysis.

The system shown in Figure 2.7 is stable if and only if det(I−M∆) does
not encircle the origin as s crosses the Nyquist D contour for all possible
∆. Because the perturbations are norm bounded, i.e., σ̄(∆) ≤ 1, this is
equivalent to (Morari and Zafirou, 1989)
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det(I −M∆) �= 0 ∀ω, ∀∆, σ̄(∆) ≤ 1 (2.21)
�

ρ(M∆) ≤ 1 ∀ω, ∀∆, σ̄(∆) ≤ 1 (2.22)

This condition is not itself useful to check the stability of the M∆ structure
since it must be tested for all possible perturbations ∆. What is desired is
a condition on the matrix M, preferably on some norm of M.

The following theorem establishes a condition on M so that it can not
be destabilized by ∆.

Theorem 2.3.1. (Small Gain Theorem) Assume that M is stable. Then
the interconnected M∆ system shown in Figure 2.7 is well-posed and inter-
nally stable for all perturbations ∆ with σ̄(∆) ≤ 1 if and only if

‖M‖∞ < 1 (2.23)

Proof. See (Morari and Zafirou, 1989) or (Zhou et al., 1996).
�

Robust stability conditions for the different uncertainty representations
shown in Figure 2.6 can be derived from Theorem 2.3.1. See (Morari and
Zafirou, 1989) for more details.

2.3.3 Robust stability for structured uncertainty

Let us consider an structured uncertainty description characterized by a
diagonal transfer function matrix ∆(s) = diag{∆1, ...,∆m}. In general, ∆i

may be any stable rational transfer matrix satisfying σ̄(∆i) ≤ 1 ∀ω. In such
a situation, each one of the block diagrams in Figure 2.6 can be arranged
to fit in the general control configuration shown in Figure 2.4 to synthesize
the controller K and also arranged to form the system N shown in Figure
2.5. The uncertain closed loop transfer function from w to z in this figure is
related, as with an unstructured uncertainty description, by the upper LFT
(2.20). As we saw above, the stability of the N∆ structure is determined by
the term (1 − N11∆)−1. Therefore, to test the stability of the structure in
Figure 2.5 is equivalent to test the stability of the M∆ structure shown in
Figure 2.7, where M .= N11.
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By assuming norm bounds on each individual uncertainty, e.g., σ̄(∆i) ≤
1, it is possible to derive a necessary and sufficient non-conservative condition
on M so that it can not be destabilized by ∆. This is pursued by the
structured singular value.

Structured Singular Value

The Structured Singular Values (denoted SSV or µ) was introduced in (Doyle,
1982). At the same time, the Multivariable Stability Margin, km, for a di-
agonal perturbed system was presented in (Safonov, 1982) as the inverse
of µ. Despite the later represents a more natural definition of robustness
margins, the former offers a number of other advantages such as providing
a generalization of the singular values, σ̄, and the spectral radius, ρ. The
SSV is used to get necessary and sufficient, non-conservative, conditions for
robust stability and also for robust performance in presence of structured
perturbations.

The SSV is defined to obtain the tightest possible bound on M such
that det(I − M∆) �= 0. The problem is to find the smallest structured
∆, measured in terms of σ̄(∆), which makes det(I −M∆) singular. Then,
µ(M) = 1/σ̄(∆). The definition of µ(M) adopted form (Doyle, 1982) reads
as follows.

Definition 2.3.5. For a square complex matrix M, the Structured Singular
Value, µ∆(M), is defined at each frequency such that

µ∆(M) .=
1

min∆ {σ̄(∆)|det(I −M∆) = 0 for some structured ∆} (2.24)

If no ∆ exist such that det(I −M∆) = 0, then µ∆(M) .= 0
�

It should be noted that the structured singular values, µ, depends on the
matrix M and the structure of the perturbation ∆, therefore the notation
µ∆(M). For the unstructured uncertainty case, i.e. where ∆ is a full ma-
trix, the smallest ∆ which yields singularity has σ̄(M) = 1/σ̄(∆). For the
structured uncertainty case we have µ(M) = 1/σ̄(∆).

A necessary and sufficient condition on matrix M for robust stability is
provided by the following theorem.
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Theorem 2.3.2. Assume the nominal system (∆ = 0) is stable. Then the
M∆ system shown in Figure 2.7 is stable for all ∆, σ̄(∆) ≤ 1 if and only if

µ∆(M) < 1, ∀ω (2.25)

Proof. (Doyle, 1982).
�

Theorem 2.3.2 may be interpreted as a Generalized Small Gain theo-
rem applied to equation (A.29), which also takes the structure of ∆ into
account. µ∆(M) is seen as a generalization of the spectral radius, ρ(M),
and the maximum singular value, σ̄(M). It can be shown (Doyle, 1982)
that µ∆(M) = ρ(M) when the perturbation ∆ is totally structured, i.e.,
∆ = δiI, |δi| ≤ 1 and that µ∆(M) = σ̄(M) when the perturbation ∆ is
unstructured, e.g., ∆ is a full matrix.

Definition 2.3.5 is not itself useful for computing µ∆(·): currently, no sim-
ple computational method exists for exactly calculating µ in general and an
efficient exact method is most likely not possible (Braatz et al., 1994). This
motivated to approximate µ∆(M) by computing upper and lower bounds.
The upper bound is derived by the computation of non-negative scaling ma-
trices D� and Dr defined within a set D that commutes with the structure
∆. For a detailed discussion on the specification of such a set D of scaling
matrices see, for instance, (Packard and Doyle, 1993). The commutation of
D with ∆ implies that Dr∆ = ∆D� and µ∆(M) = µ∆(D�MD−1

r ) for all D�,
Dr ∈ D. Then, the upper bound of µ∆(M) can be computed from

µ∆(M) ≤ inf
D�, Dr ∈ D

σ̄(D�MD−1
r ) (2.26)

Optimization problem (2.26) is convex in D (Packard and Doyle, 1993),
i.e. it has only one minimum. It has been shown (Doyle, 1982) that the
inequality is, in fact, an equality if the number of blocks in ∆ are less than
4. Otherwise, the bound has evidenced to be tight in a few percent (Balas
et al., 1998).

2.3.4 Robust Performance

Often, stability is not the only property of a closed loop system that must
be guaranteed for all possible plants in the uncertainty set P. In most cases,
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the performance objectives are desired to be kept even for the worst-case
plant in the uncertainty set.

According to Definition 2.3.4, robust performance is achieved if

‖Fu(N ,∆)‖∞ < 1, ∀∆, σ̄(∆) ≤ 1 (2.27)

where Fu(N ,∆) is the upper LFT derived from the general block diagram
for analysis with uncertainty in Figure 2.5.

In order to evaluate robust performance using the structured singular
value function, let us compare the condition in equation (2.23) for robust
stability and the formally identical condition in equation (2.27) for robust
performance. From Theorem 2.3.1 we know that stability of the M∆ struc-
ture in Figure 2.7, with ∆ a full complex matrix, is equivalent to ‖M‖∞ < 1.
From this theorem we can conclude that the condition for robust performance
‖Fu‖∞ < 1 is equivalent to the stability of the Fu∆P structure, with ∆P

being a full complex matrix of appropriate dimensions.

The structure of ∆ is now given by

∆ .=
{[

∆ 0
0 ∆P

]
: ∆,∆P ∈ RH∞, σ̄(∆) ≤ 1, σ̄(∆P ) ≤ 1

}
(2.28)

Figure 2.8 shows the equivalence between RP and RS. Condition (2.27)
for RP is satisfied iff the system N is robustly stable with respect to the
block diagonal perturbation ∆ defined in (2.28).

D

DP

z1

z2

w1

w2

Figure 2.8: Block diagram for testing robust performance.

The following theorem can be stated:
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Theorem 2.3.3. The nominally stable system N in Figure 2.8 subjected to
the block diagonal uncertainty ∆ (σ̄(∆) ≤ 1) satisfies the robust performance
condition ‖Fu(N ,∆)‖∞ < 1 if and only if

µ∆(N ) < 1, ∀ω (2.29)

where µ is computed with respect to the structure ∆ in (2.28) and ∆P is a
full complex perturbation with appropriate dimensions.

Proof. (Packard and Doyle, 1993), (Zhou et al., 1996).

�

Remark 2.3.1. The robust performance condition (2.29) based on the SSV
involves the enlarged perturbation set ∆ = diag{∆,∆P } and allows to test
robust performance in a non-conservative way. ∆ represents the true uncer-
tainty and may be a full matrix, i.e., unstructured uncertainty, or a block
diagonal matrix, i.e., structured uncertainty; ∆P is a full complex matrix
arising from a H∞ norm performance specification. Since ∆ always has
structure, the use of the H∞ norm, ‖N‖∞ < 1, is generally conservative for
robust performance.

As long as Definition 2.3.5 is not itself useful for computing µ∆(·), the
value of µ∆(N ) is to be approximated by it upper bound computed from

µ∆(N ) ≤ inf
D�, Dr ∈ D

σ̄(D�ND−1
r ) (2.30)

This approximation was argued in Section 2.3.3, when the µ-condition
for robust stability (2.25) is computed by means of its upper bound (2.26).

Example 2.3.1. Let us find the matrix N for the one degree-of-freedom
control configuration with a multiplicative input uncertainty representation
and performance defined in terms of weighted sensitivity as shown in Figure
2.9.

The proposed control scheme is to be rearranged into the N∆ structure
in Figure 2.8 with

w1
.= di, z1

.= u′, w2
.= do and z2

.= y′ (2.31)
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K

W1 D

Wp
Po

y y’

u’

-

di do

u

Figure 2.9: One degree-of-freedom control configuration with a multiplicative in-
put uncertainty representation.

Therefore, the interconnection matrix N can be written, after some straight-
forward algebra, as

N =
[ −W1To −W1SoK

WpSoPo WpSo

]
(2.32)

where

So = (I + PoK)−1 (2.33)

and

To = (I + PoK)−1PoK (2.34)

are the output sensitivity transfer function and the complementary sensitiv-
ity transfer function, respectively.

�
Example 2.3.2. Let us consider the nominal model of a distillation process
given by (B.8). Appendix B.4 also describes the uncertainty and the per-
formance weights. A diagonal PI controller from (Skogestad et al., 1988) is
employed to illustrate the usage of the SSV to test for NP, RS and RP:

K(s) = k
(75s + 1)

s

[
1 0
0 −1

]
, k = 0.024 (2.35)

Figure 2.10 illustrates the µ-plots for distillation process with the diag-
onal PI controller. It should be noted that neither NP nor RS are satisfied.
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Figure 2.10: µ-plots for diagonal PI controller.
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Figure 2.11: Closed loop response with diagonal PI controller to reference input.
Nominal plant (solid) and the perturbed plant P3(s) (dashed).
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In fact, no choice of k is able to satisfy both requirements (Skogestad et
al., 1988). As it is expected, RP is not fulfilled either.

Time response of y1 and y2 to a filtered setpoint change in y1, r1 =
1/(5s + 1), is shown in Figure 2.11. They confirm the poor performance
offered by the diagonal PI controller either for the nominal plant model and
for the uncertain plant P3(s) in (B.11). Despite the uncertain plant P3(s) is
one of the worst plants in P, it does not destabilize the closed loop system.
Nevertheless, there exists a plant in the set P for which the controller does
not guarantee closed loop stability. For instance, the plants P5(s) and P6(s)
defined in (B.15) can not be stabilized by the diagonal PI controller.

�

2.4 Controller synthesis

We have seen that the structured singular value provides a systematic way
to test for both robust stability (2.25) and for robust performance (2.29)
with a given controller K. In addition to this analysis tool, the structured
singular value can be used to synthesize the controller K.

The robust performance condition (2.29) implies robust stability (2.25),
since

sup
ω

µ∆(N ) ≥ sup
ω

µ∆(M) (2.36)

Therefore, a controller designed to guarantee robust performance will also
guarantee robust stability.

Provided that the interconnection matrix N is a function of the controller
K, as seen from equation (2.19), the µ-“optimal” controller K can be found
by minimizing

sup
ω

µ∆(N ) (2.37)

At the present moment, there is no direct method to find the controller K
by minimizing (2.37). However, the procedure known as DK-iteration (also
called µ synthesis) (Zhou et al., 1996) is an ad-hoc method that attempts to
minimize the upper bound (2.30) of µ. Thus, the objective function (2.37)
is transformed into
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min
K

inf
D�, Dr ∈ D

sup
ω

σ̄(D�ND−1
r ) (2.38)

The DK-iteration approach involves to alternatively minimize

sup
ω

σ̄(D�ND−1
r ) (2.39)

for either K or D� and Dr while holding the other constant. For fixed
D� and Dr, the controller is solved via H∞ optimization; for fixed K, a
convex optimization problem is solved at each frequency. The magnitude of
each element of D�(jω) and Dr(jω) is fitted with an stable and minimum
phase transfer function and wrapped back into the nominal interconnection
structure. The procedure is carried out until supω σ̄(D�ND−1

r ) < 1.

Although convergence in each step is assured, joint convergence is not
guaranteed. However, DK-iteration works well in most cases (Balas et
al., 1998), (Packard and Doyle, 1993), (Zhou et al., 1996), (Skogestad and
Postlethwaite, 1997). The optimal solutions in each step are of supreme im-
portance to success with the DK-iteration. Moreover, when K is fixed, the
fitting procedure plays an important role in the overall approach. Low order
transfer function fits are preferable since the order of the H∞ problem in
the following step is reduced yielding controllers of lower dimension. Never-
theless, the method is characterized by giving controllers of very high order
that must be reduced applying model reduction techniques (Glover, 1984).

The synthesis procedure can be summarized as follows:

1. K-step: Scale the interconnection matrix N with D�(s) and
Dr(s), and synthesize an H∞ controller for the scaled design
problem, i.e., minimize

∥∥D�ND−1
r

∥∥ for K with fixed D�(s) and
Dr(s).

2. D-step: Find D�(jω) and Dr(jω) to minimize frequency-by-
frequency the upper bound, σ̄(D�ND−1

r (jω)), with fixed N (s).
Fit the magnitude of each element of D�(jω) and Dr(jω) to sta-
bles and minimum phase transfer functions D�(s) and Dr(s). Go
to step 1 until

∥∥D�N (K)D−1
r

∥∥
∞ < 1 or the ∞-norm no longer

decreases.



30 Preliminaries for multivariable feedback control

Remark 2.4.1. In some cases, it may be desirable simply to design a con-
troller for the plant model Po to satisfy certain nominal performance spec-
ifications and only guaranteeing robust stability. This may occur in cases
such as plants operating most of the time close to its nominal point, with
occasional plant perturbations. In such cases, performance may not be of
primary importance when perturbations occur provided that the system re-
mains stable. The loosing of performance may be treated in a second stage
of the design. Then, if the controller K is to be designed just for robust
stability, the µ-“optimal” controller K can be found by minimizing

sup
ω

µ∆(M) (2.40)

Now, the objective function (2.40) if transformed into

min
K

inf
D�, Dr ∈ D

sup
ω

σ̄(D�MD−1
r ) (2.41)

The next example illustrates the above iterative controller design proce-
dure on a distillation process.

Example 2.4.1. Let us consider the distillation process described in Ap-
pendix B.2. The linear model of the plant is

Po(s) =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
(2.42)

As in Example 2.3.2, a diagonal block input uncertainty is considered with
weigh

W1(s) = 0.2
5s + 1

0.5s + 1
I (2.43)

The performance requirement is just

σ̄(So) < |Wp|−1 (2.44)

where So = (I + PoK)−1 is the output sensitivity and

Wp(s) = 0.5
10s + 1

10s
I (2.45)
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The control objective is to minimize the peak value of µ∆(N ), where
∆ = diag{∆,∆P } is defined as in (2.28). The transfer matrix function N
was given in (2.32). First, the generalized plant G has to be found, as in
(2.2). It includes the plant model, Po, the performance weigh, Wp, and the
uncertainty weigh, W1, but not the controller. The controller to be designed,
K, appears into N since N = F�(G,K). Once the generalized plant G is
found, the structure of ∆ has to be defined: ∆ consists on two 1× 1 blocks
and ∆P consists on one 2×2 blocks. The scaling matrices D� and Dr have the
structure D� = Dr = diag{d1, d2, d3I2} with I2 being a 2×2 identity matrix.
We may chose d3 = 1 since we do not want to scale the controller. As initial
scalings we select d0

1 = d0
2 = 1 to scale G with the matrices diag{D�, I2}

and diag{Dr, I2}. The design procedure is detailed next.
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Figure 2.12: Upper µ-bound (solid) and scaled upper µ-bound (dashed).

Iteration 1

K-step: The H∞ controller for the scaled plant, with D� =
Dr = I, has six states (2 from Po, 2 from W1 and 2 from Wp).
The achieved ∞-norm is

∥∥D�ND−1
r

∥∥
∞ = 1.1798.

D-step: The upper µ-bound has a peak value of µ = 1.1714.
The curve is illustrated in Figure 2.12. The frequency-dependent



32 Preliminaries for multivariable feedback control

d1
1(ω) and d1

2(ω) are each fitted using 3th order transfer functions
D�(s) and Dr(s). Figure 2.13 shows the frequency-dependent
scaling d1

1(ω) in solid line and the fitted transfer functions D�(s)
and Dr(s) in dashed line. The scaling d1

2(ω) is very closed to
d1(ω) and therefore, it is not shown. This indicates that the
worst case full block ∆ is in fact diagonal.

Iteration 2

K-step: With the 6 state scaling D�(s) and Dr(s) we obtain a
18 state H∞ controller. The ∞-norm is

∥∥D�ND−1
r

∥∥
∞ = 1.0329

D-step: The upper µ-bound has a peak value of µ = 1.0329.
The curve is illustrated in Figure 2.12. The frequency-dependent
d2

1(ω) and d2
2(ω) are each fitted using 2th order transfer functions

D�(s) and Dr(s). Figure 2.13 shows the frequency-dependent
scaling d2

1(ω) in solid line and the fitted transfer functions D�(s)
and Dr(s) in dashed line.
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Figure 2.13: Frequency-dependent scaling d1(ω) (solid) and the fitted transfer
functions (dashed).
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The DK-iteration procedure is stopped after two iterations. With the
the 6 state scalings D�(s) and Dr(s) the ∞- norm is no longer reduced from
the previous iteration.

Figure 2.14 shows the µ-curves for the nominal performance (NP), robust
stability (RS) and robust performance (RP) with the achieved µ-“optimal”
controller, Kopt. The state-space realization of such an optimal controller
is given in Table C.1. The objectives of RS and NP are easily fulfilled.
Nevertheless, the peak µ-value is 1.0329 which means that the performance
specification σ̄(So) < |Wp|−1 is almost fulfilled for all possible plants.

The µ-“optimal” controller in (Skogestad et al., 1988) has a peak µ-value
of 1.06. By trial and error, a µ-“optimal” controller with a peak µ-value of
0.974 was found in (Lundström, 1994).
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Figure 2.14: µ-plots for Kopt.

The time response of both y1 and y2 to a filtered setpoint change in
y1, r1 = 1/(5s + 1), is shown in Figure 2.15. The solid lines represents the
responses for the nominal plant, Po; the dashed lines represents the responses
for the uncertain plants, Pi = PoEIi for i = 1, . . . , 6 as in (B.15). The
predictions from the µ-curves in Figure 2.14 are fulfilled and the responses
show no strong sensitivity to input uncertainty.
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Figure 2.15: Closed-loop setpoint change with the µ-“optimal” controller Kopt:
response for the nominal plant Po (solid) and for the uncertain plants Pi = PoEIi ,
i = 1, . . . , 6 (dashed).
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Figure 2.16: Closed-loop response with the µ-“optimal” controller Kopt to a dis-
turbance in the output signal y1: response for the nominal plant Po (solid) and for
the uncertain plants Pi = PoEIi , i = 1, . . . , 6 (dashed).
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Figure 2.16 shows the response to a unitary step disturbance at the
output with the µ-“optimal” controller Kopt. The response for the nominal
plant Po is illustrated in solid and the responses for the uncertain plants
Pi = PoEIi , i = 1, . . . , 6 in equation (B.15) are illustrated in dashed lines.

�

2.5 Summary

The general method of formulating control problems has been introduced and
the general approach for representing uncertainty for multivariable systems
has been presented. We have recalled how the structured singular value, µ,
allows to get necessary and sufficient conditions for robust stability and also
for robust performance. In addition, we have reviewed the DK-iteration
procedure, which has been applied to the control a high purity distillation
column. Such a distillation process has also been controlled by means of a
PI control strategy, showing unacceptable responses.
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Chapter 3

Factorization Approach

In this Chapter we give a short introduction to the so-called factorization or
fractional approach which is to be used along this work. The central idea is to
factor a transfer (matrix) function of a system, not necessarily stable, as a ratio
of two stable transfer (matrix) functions. Within the factorization framework,
the Observer-Controller configuration is introduced to be used in the different
control configurations proposed in this work.

3.1 Introduction

A short introduction to the so called factorization or fractional approach is
provided in this Chapter. The central idea is to factor a transfer (matrix)
function of a system, not necessarily stable, as a ratio of two stable trans-
fer (matrix) functions. This idea provides a methodology for the resolution
of several control problems, i.e., the stabilization of a non necessary sta-
ble system, and the analysis of feedback control systems. The factorization
approach will constitute the framework for the analysis and design in subse-
quent Chapters. The treatment in this Chapter is fairly standard and follows
(Vilanova, 1996), (Vidyasagar, 1985), (Nett et al., 1984), (Francis, 1987) or
(Maciejowski, 1989). Although the idea of coprime factorizations is mainly
based on ring theory1 and a rigorous algebraic approach exist to the stabiliza-
tion problem from the factorization approach (Desoer et al., 1980), (Desoer

1In fact, the set of stable transfer functions is a ring.

37



38 Factorization Approach

and Gustafson, 1984), (Vidyasagar et al., 1982), (Vidyasagar, 1985), the pre-
sentation here will not be on the algebraic side since, to make it properly,
we should need to introduce a lot of, sometimes messy, notation.

Within the factorization approach we present the Observer-Controller
configuration, a somewhat uncommon configuration which is based on a
king of state feedback (Vidyasagar, 1985) (Kailath, 1980). The Observer-
Control configuration constitutes the basis for the different control structures
proposed in this work.

The Chapter is organized as follows: Section 3.2 introduces a condition
for internal stability in terms of the plant and the controller factors and it is
shown how every plant has associated a stabilizing controller. This controller
is determined by the components of a Bezout equation that provides coprime
plant factors. Section 3.3 deals with the factorization of transfer (matrix)
functions. Finally, Section 3.4 presents the Observer-Controller configura-
tion, the somewhat uncommon configuration, that will constitute the basic
structure for the different control configurations in this work.

3.2 Motivation for the fractional representation

The specifications on a control system can be seen as given by some criterion
to be optimized or by specifying some set of desirable transfer functions that
the compensated system should belong to. The typical and the most impor-
tant example is that of stabilizing an unstable plant. This specification may,
of course, include stabilization in the sense of requiring the poles of the com-
pensated system to belong to some stability region D. The introduction of
the factorization approach for representing a system comes from the follow-
ing observation (Vidyasagar, 1985): the set of desired transfer functions for
the compensated system is easily specified, but it rests to specify the class of
transfer functions within the plant transfer function may lie. This class will
be determined by choosing the compensation scheme to be used. Therefore,
the classical feedback configuration of Figure 3.1 has to be considered.

The transfer matrix from the external inputs [r di]T to the outputs [u y]T

is:

H(Po,K) =


 K(I + PoK)−1 PoK(I + PoK)−1

KPo(I + KPo)−1 Po(I + KPo)−1


 (3.1)
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K Po

yr u

-

di

Figure 3.1: Classical unity feedback configuration.

By defining

G =


 K 0

0 Po


 F =


 0 I

−I 0


 (3.2)

the transfer matrix (3.1) can be rewritten as:

H(Po,K) = G(I + FG)−1 (3.3)

Therefore, the system of Figure 3.1 is internally stable if every element of
H(Po,K) is stable. If we solve (3.3) for G

G = H(I −FH)−1 = H Adj(I −FH)/det(I −FH) (3.4)

Expression (3.4) shows that every element of the matrix G can be ex-
pressed as the ratio of two stable transfer functions. Recall that the elements
of G are the controller and the plant to be controlled. Thus,

once the set of stable transfer functions has been established, the
class of all transfer functions that can be encompassed within the
theory of stabilization consist on those transfer functions that can
be expressed as a ratio of two stable transfer functions.

These observations suggest a way of addressing the stabilization problem,
say the one where both the plant and the controller are represented as the
ratio of stable transfer functions. This is the Factorization Approach. It
may be shown, that the set of all stabilizing compensators for a given plant
can be expressed in a parameterized factorization manner from the factors of
the plant. This is the celebrated Youla parametrisation of all the stabilizing
controllers presented in (Youla et al., 1976b; Youla et al., 1976a).
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3.3 Coprime factorizations over RH∞

A usual way of representing a scalar system is as a rational transfer function
of the form

Po(s) =
n(s)
m(s)

(3.5)

where n(s) and m(s) are polynomials and (3.5) is called polynomial fraction
representation of Po(s). Another way of representing Po(s) is as the product
of a stable (matrix) transfer function and a (matrix) transfer function with
stable inverse, i.e.,

Po(s) = N(s)M−1(s) (3.6)

where N(s), M(s) ∈ RH∞.
In the Single-Input Single-Output (SISO) case, it is easy to get a frac-

tional representation in the polynomial form (3.5). Let ζ(s) be a Hurwitz
polynomial such that degζ(s) = degm(s) and set

N(s) =
n(s)
ζ(s)

M(s) =
m(s)
ζ(s)

(3.7)

The factorizations to be used will be a special one called Coprime Fac-
torizations. Two polynomials n(s) and m(s) are said to be coprime if their
greatest common divisor is 1 (no common zeros). It follows from Euclid’s
algorithm — see for example (Kailath, 1980) — that n(s) and m(s) are
coprime iff there exists polynomials x(s) and y(s) such that the following
Bezout identity is satisfied:

x(s)m(s) + y(s)n(s) = 1 (3.8)

Note that if z is a common zero of n(s) and m(s) then x(z)m(z)+y(z)n(z) =
0 and therefore, n(s) and m(s) are not coprime.

This concept is automatically generalized to transfer functions N(s),
M(s), X(s) and Y (s). Two transfer function are coprime when any pos-
sible common factor, say U(s), between N(s) and M(s) is minimum phase.
Thus, if N(s) = W (s)U(s) and M(s) = Z(s)U(s), then U−1 is stable. This
way, the common factor can be absorbed into X(s) and Y (s). Now, let
us move to the general situation of a multivariable system. In this case,
distinction on right and left factorizations has to be done.
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Example 3.3.1. Finding a coprime factorization for a scalar transfer func-
tion is fairly easy. Let us consider the scalar system

Po(s) =
(s + 1)(s − 2)
(s + 3)(s − 4)

(3.9)

We first make all the RHP-poles of Po zeros of M , and all the RHP-zeros of
Po zeros of N . We then allocate the poles of N and M so that N and M
are both proper and the identity Po = NM−1 holds. Then,

N(s) =
(s − 2)
(s + 3)

, M(s) =
(s − 4)
(s + 1)

(3.10)

is the simplest coprime factorization. Usually, N(s) and M(s) are selected
to have the same poles as each other and the same order as Po(s). Then,
taking ζ(s) = (s + p1)(s + p2),

N(s) =
(s + 1)(s − 2)

(s + p1)(s + p2)
, M(s) =

(s + 3)(s − 4)
(s + p1)(s + p2)

(3.11)

is a coprime factorization of Po(s) for any p1, p2 > 0.
�

Remark 3.3.1. The above example shows that a coprime factorization for a
system Po(s) is not unique and can be achieved for any Hurwitz polynomial
ζ(s) satisfying degζ(s) = degm(s). It is clear that the polynomial ζ(s) is
canceled and the frequency response of NM−1 is that of Po. Nevertheless,
the allocation of the poles p1, p2 determines the shape of N(jω) and M(jω).

The relevance of Remark 3.3.1 will be seen further on.
Assuming that M(s) be squared and nonsingular, the following defini-

tions can be written:

Definition 3.3.1. (Bezout identity) Two transfer functions Nr and Mr

are right coprime if and only if there exists stable matrix transfer functions
Xr and Yr such that

[
Xr Yr

] [ Mr

Nr

]
= XrMr + YrNr = I (3.12)
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Similarly, two transfer functions N� and M� are left coprime if and only if
there exists stable matrix transfer functions X� and Y� such that

[
M� N�

] [ X�

Y�

]
= M�X� + N�Y� = I (3.13)

�

The stable matrix transfer functions Xr, Yr, (X�, Y�) are called right (left)
Bezout complements.

Now, let Po(s) be a proper real rational matrix. Then,

Definition 3.3.2. A right coprime factorization (RCF) of Po(s) is a factor-
ization Po = NrM

−1
r , where Nr and Mr are right coprime over RH∞ .

�

Definition 3.3.3. A left coprime factorization (LCF) of Po(s) is a factor-
ization Po = M−1

� N�, where N� and M� are left coprime over RH∞ .
�

Finally,

Definition 3.3.4. Po has doubly coprime factorization if there exist a RCF
Po = NrM

−1
r , a LCF Po = M−1

� N� and Xr, Yr, X�, Y� ∈ RH∞ such that

[
Xr Yr

−N� M�

] [
Mr −Y�

Nr X�

]
= I (3.14)

�

Transfer functions are a good way of representing systems because they
give more immediate insight into a systems behaviour. However, for numer-
ical calculations a state-space realization is usually desired.

With the above definitions, the following theorem arises to provide right
and left coprime factorizations for the proper real rational matrix Po(s),
where

Po(s) =
[

A B

C D

]
(3.15)

is a minimal stabilisable and detectable state-space realization.
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Theorem 3.3.1. Define

[
Mr −Y�

Nr X�

]
.=


 A + BF B −L

F I 0
C + DF D I


 (3.16)

[
Xr Yr

−N� M�

]
.=


 A + LC −(B + LD) L

F I 0
C −D I


 (3.17)

where F and L are such that A + BF and A + LC are stable. Then, Po =
NrM

−1
r (Po = M−1

� N�) is a RCF (LCF).
Proof. The theorem is demonstrated by substituting (3.16) and (3.17) in to
equation (3.14).

�

Standard packages can be used to compute appropriate F and L matrices
numerically. Given A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n a matrix F such
that the eigenvalues of A + BF are those specified in vector

pF = [pF1 · · · pFn ]T (3.18)

can be computed with the restriction that no eigenvalue should have a mul-
tiplicity greater than the number of inputs. Similarly, a matrix H such that
the eigenvalues of A + LC are those specified in vector

pL = [pL1 · · · pLn ]T (3.19)

can be computed with the same restriction associated with the multiplicity
of the eigenvalues.

We next exemplify the computation of a coprime factorization for a given
system Po(s) provided a minimal stabilisable and detectable state-space re-
alization (3.15). For illustrative purposes we have tried a single-input single-
output plant case.

Example 3.3.2. Let us calculate a coprime factorization for a scalar system

Po(s) =
(s − 1)
s(s + 5)

(3.20)
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with eigenvalues for A + BF allocated to form the polynomial ζ(s) = (s +
2)(s + 5), i.e., pF = [2 5]T , and with eigenvalues for A + LC allocated to
form the polynomial (s + 3)(s + 4), i.e., pL = [3 4]T .

Then, Po(s) = N(s)M−1(s),

N(s) =
s − 1

(s + 2)(s + 5)
, M(s) =

s

(s + 2)
(3.21)

form a coprime factorization with

X(s) =
s + 4.5 ± j5.45
(s + 3)(s + 4)

, Y (s) =
−24(s + 5)

(s + 3)(s + 4)
(3.22)

the associate Bezout complements.
�

Either the right coprime factorization and the left coprime factorization
provided by Theorem 3.3.1 can be given a feedback control interpretation.

3.3.1 RCF feedback control interpretation

A feedback control interpretation for the mathematical right coprime fac-
torization stated above is to be provided here. Let us consider the system
Po(s) with the realization (3.15). Under stabilizability assumption on the
pain (A,B), it is possible using standard methods to construct a constant
stabilizing state-feedback gain (matrix) F , in that A + BF has all eigen-
values within the RHP. It can be shown in Figure 3.2. The gain F can
be obtained from various methodologies from linear controller designs. Op-
timal state-feedback gain matrix F can be found by means of the Linear
Quadratic Regulator (LQR) problem approach. It is based on finding a
unique positive semi-definite solution of an algebraic Riccati equation (Stein
and Athans, 1987). Eigenvalues assignment approaches can be found in
(Ogata, 1990).

The realization of Po (3.15) affected by state-variable feedback is shown
in Figure 3.2. From such diagram block, the following equations are derived:




ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

u(t) = Fx(t)

(3.23)
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Figure 3.2: Realization of Po (3.15) affected by state-variable feedback and the
artificial signal ξ.

We can define the artificial signal ξ(t) = u(t) − Fx(t). Then




ẋ(t) = (A + BF )x(t) + Bξ(t)

y(t) = (C + DF )x(t) + Dξ(t)

u(t) = Fx(t) + ξ(t)

(3.24)

Taking Laplace transforms,

u(s)
ξ(s)

= F (sI − (A + BF ))−1B + I
.= Mr(s) (3.25)

y(s)
ξ(s)

= (C + DF )(sI − (A + BF ))−1B + D
.= Nr(s) (3.26)

so that

y(s) = Nr(s)ξ(s) = Nr(s)M−1
r (s)u(s) = Po(s)u(s) (3.27)

The relation between the input signal u and the output signal y in equa-
tion (3.27) is illustrated in Figure 3.3.

Equations (3.25) and (3.26) can be expressed in a more compact form as
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Po

yu
⇒ Mr

-1 Nr

yxu

Figure 3.3: Diagram block representation of right coprime factorization Po =
NrM

−1
r .

Mr(s) =
[

A + BF B

F I

]
(3.28)

and

Nr(s) =
[

A + BF B

C + DF D

]
(3.29)

We have seen that a coprime factorization for a system Po(s) provided a
minimal stabilisable and detectable state-space realization (3.15) with A ∈
Rn×n, B ∈ Rn×m and C ∈ Rp×n is not unique. We have also seen that such
coprime factorization can be found by numerical computation of matrices F
and L such that the eigenvalues of A + BF and A + LC are those specified
in vector (3.18) and (3.18), respectively. As is was pointed out in Remark
(3.3.1), the allocated nodes for Nr and Mr are cancelled for the identity
Po = NrM

−1
r to be satisfied. Nevertheless, the allocation of the eigenvalues

of A + BF determines the shape of Nr and M−1
r . It is illustrated next.

Example 3.3.3. Let us calculate right coprime factorizations for the plant

Po(s) =
1

(0.2s + 1)(s + 1)

[
1 1

2s + 1 2

]
(3.30)

provided a minimal stabilisable and detectable state-space realization (3.15)
with A ∈ R4×4, B ∈ R2×1. Figure 3.4 a) shows the frequency response of
right coprime factors Nr and M−1

r achieved with eigenvalues for A + BF
allocated at pF = [0.1 0.2 0.3 0.4]T . Figure 3.4 b) shows the frequency
response of right coprime factors Nr and M−1

r achieved with eigenvalues for
A + BF allocated at pF = [10 20 30 40]T .

The identity Po = NrM
−1 is obviously fulfilled in both right coprime

factorizations. Nevertheless the different pole placement has repercussions
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Figure 3.4: Right coprime factorizations Po = NrM
−1
r for two different pF : a)

high-pass shape for M−1
r (jω) b) low-pass shape for M−1

r (jω).

on the frequency response of the resulting right coprime factors. For instance,
a high-pass shape for M−1

r (jω) is shown in Figure 3.4 a) while a low-pass
shape for M−1

r (jω) is shown in Figure 3.4 b).

�

The above example has illustrated how different pF for the pole place-
ment of A + BF results in different frequency responses for the achieved
right coprime factors Nr and Mr. Analogously, it may also be shown that
different pL for the pole placement of A + LC results in different frequency
responses for the achieved right coprime Bezout complements Xr and Yr.

3.3.2 LCF feedback control interpretation

A feedback control interpretation for the mathematical left coprime factor-
ization is to be provided here. Let us consider the system Po(s) with the
realization (3.15).
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Under observability assumption on the pain (A,C), state estimates x̂(t)
are to be obtained by means of an observer structure driven by the difference
between the system output y(t) and its estimation ŷ(t). The state-space
Observer-Controller configuration is shown in Figure 3.5. It is possible using
standard methods to construct a constant stabilizing output injection gain
(matrix) L, in that A + LC has all eigenvalues within the RHP. The gains
L and F can be obtained from various methodologies from linear controller
designs (Stein and Athans, 1987), (Ogata, 1990).

B

A

A
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D

L

C

C

y

xx

u x
.

x
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D
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^^
·

Figure 3.5: Realization of Po (3.15) affected by state-variable observer and con-
troller.

The following observation equations are obtained:




˙̂x(t) = Ax̂(t) + Bu(t) + L(ŷ(t) − y(t))

ŷ(t) = Cx̂(t) + Du(t)
(3.31)

Let us define the “observation error” signal ν as

ν = ŷ − y = Cx̂ + Du − y
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Then,




˙̂x(t) = (A + LC)x̂(t) − Ly(t) + (B + LD)u(t)

ŷ(t) = Cx̂(t) + Du(t)
(3.32)

Taking Laplace Transforms,

ν(s)
y(s)

= −[C(sI − (A + LC))−1L + I] .= M�(s) (3.33)

ν(s)
u(s)

= C(sI − (A + LC))−1(B + LD) + D
.= N�(s) (3.34)

so that

y(s) = M−1
� (s)ν(s) = M−1

� (s)N�(s)u(s) = Po(s)u(s) (3.35)

Equations (3.33) and (3.34) can be expressed in a more compact form as

M�(s) = −
[

A + HC H

C I

]
(3.36)

and

N�(s) =
[

A + LC B + LD

C D

]
(3.37)

3.4 Observer-Controller configuration

This Section presents the Observer-Controller configuration. This somewhat
uncommon configuration is based on the usage of the partial state ξ that
appears on the context of right coprime factorizations.
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3.4.1 Partial state feedback

In Section 3.3.1, a state feedback control interpretation of the right coprime
factorization of Po is provided. A controller-form realization of the RCF
Po = NrM

−1
r shall demonstrate that the state variables of any minimal

realization of Po are completely determined by ξ(·) and its derivatives — see
(Kailath, 1980) for more details. Therefore ξ(·) is often called the partial
state1 of a system. In this context, the state feedback through a gain matrix
K can be schematically represented as in Figure 3.6.

Mr

-1 Nr

yur x

-

K

Figure 3.6: Representation of partial state feedback from a right coprime factor-
ization Po = NrM

−1
r .

Given a controllable and observable system with the strictly proper trans-
fer function

Po(s) = Nr(s)M−1
r (s) (3.38)

with Nr(s) and Mr(s) right coprime, it is possible to design a compensator
K(s) to make the overall relation from the input r to the output y have a
strictly proper transfer function, say

Tref (s) = Nr(s)Z−1(s) (3.39)

with all nodes freely assignable.

What is required in order to achieve such a desired input/output transfer
function (3.39) is to first access the partial state ξ,

ξ(s) = M−1
r (s)u(s) (3.40)

1It should noted that to observe the partial state will not be the same as to perform a
partial observation of the state variables, usual in the state-space control context.
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and then feed it back to the input through an appropriate compensator, say
K(s)ξ(s).

If there are no disturbances acting on the system shown in Figure 3.6, the
relations from the reference command r to the output u and control signal
y are, respectively,

Tur = (I + KM−1
r )−1 = (Mr + K)−1Mr

.= Z−1
r Mr (3.41)

and

Tyr = Nr(I + M−1
r K)−1M−1

r = Nr(Mr + K)−1 .= NrZ
−1
r (3.42)

Theorem 3.4.1. Provided that Nr(s) and Mr(s) are stable, the nominal
control system shown in Figure 3.6, with input output transfer matrix func-
tion (3.39), will be stable if and only if Z−1

r (s) is stable and Zr(s) = Mr(s)+
K(s) is unimodular.

Proof. The fact that Z−1
r (s) must be stable is obvious. Then, if Zr(s)

is unimodular it must occur that detZr(s) is a nonzero scalar and its in-
verse Z−1

r (s) = AdjZr(s)/detZr(s) is clearly a polynomial. Conversely, if
Zr(s) and Z−1

r (s) are both polynomial matrices, let detZr(s) = α1(s) and
detZ−1

r (s) = α2(s). Clearly, α1(s) and α2(s) will also be polynomials, and
moreover α1(s)α2(s) = 1. This can only happen if α1(s) and α2(s) are both
scalars. Therefore Zr(s) must be unimodular. �

Finally, to obtain the desired transfer function Tref (s) (3.39) we choose

K(s) = Zr(s) − Mr(s) (3.43)

Remark 3.4.1. This way, the set of stabilizing Observer-Controller com-
pensators are characterized by a free, unimodular, parameter Zr(s).

3.4.2 RHP-zeros

The partial state feedback control configuration shown in Figure 3.6 allows to
design a controller K(s) to make the closed-loop relation from the reference
r to the output y have a strictly proper transfer function Tref = NrZ

−1
r

having all nodes freely assignable and characterized by a free, unimodular,
parameter Zr(s).
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Po
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Figure 3.7: Output feedback control configuration.

The scheme in Figure 3.6 presents an important advantage with respect
to the a standard output feedback control configuration shown in Figure 3.7.

A plant having a right-half plane zero, z, is subjected to serious perfor-
mance limitations. It may be proven (Hold and Morari, 1985) that stable
plants with RHP-zeros have inverse response. Moreover, RHP-zeros located
close to the origin cause control problems to arise (Skogestad and Postleth-
waite, 1997). It is well-known from classical root-locus analysis (Kuo, 1982),
(Dorf, 1990), (Ogata, 1990) that as the feedback gain increases towards infin-
ity, the closed-loop poles move to the positions of the open-loop zeros. Thus,
the presence of RHP-zeros implies high-gain instability. In theory, any lin-
ear plant may be stabilized without regard of the location of its RHP-poles
and RHP-zeros, provided the plant does not contain unstable hidden nodes.
However, this may require an unstable controller and, for practical purposes,
it is sometimes undesirable.

Let us consider a SISO system Po(s) = n(s)/m(s) affected by a negative
output feedback controller K(s) = k as shown in Figure 3.7. The closed loop
response from the reference r to the output y is

T (s) =
KPo

1 + KPo
=

n(s)
m(s) + kn(s)

=
ncl(s)
mcl(s)

(3.44)

Remark 3.4.2. It is seen from (3.44) that the zero polynomial is ncl(s) =
n(s), so the zero locations are unchanged by output feedback.

Remark 3.4.3. The pole locations from (3.44) are changed by output feed-
back. That is, as the feedback gain k is increased, the closed loop poles move
from open-loop poles to the open-loop zeros, i.e.,

k → 0 ⇒ roots{mcl(s)} = roots(m(s)} (3.45)
k → ∞ ⇒ roots{mcl(s)} = roots{kn(s)} (3.46)

Therefore, RHP-zeros implies high gain instability.
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On the other hand, let us also consider a SISO system with a coprime
factorization Po(s) = N(s)M−1(s) with N(s) = n(s)/ζ(s) and M(s) =
m(s)/ζ(s) affected by a partial state feedback controller K(s) = k as shown
in Figure 3.6. The closed loop response from the reference r to the output
y is

T (s) =
NM−1

1 + KM−1
=

n(s)
m(s) + kζ(s)

=
ncl(s)
mcl(s)

(3.47)

Remark 3.4.4. We can see from (3.47) that the pole locations are still
changed by partial state feedback. Nevertheless, as the feedback gain k is
increased, the closed loop poles move from open-loop poles to the open-loop
nodes of kζ(s), i.e.,

k → 0 ⇒ roots{mcl(s)} = roots{m(s)} (3.48)
k → ∞ ⇒ roots{mcl(s)} = roots{kζ(s)} (3.49)

As long as ζ(s) is assumed to be any Hurwitz polynomial such that degζ(s) =
degm(s), we conclude that partial state feedback control configuration as that
shown in Figure 3.6 avoids RHP-zeros to commit instability.

Remark 3.4.5. The fact that partial state feedback control configuration
avoids RHP-zeros to cause instability is an important result. In such a way,
the methodology used to design the controller K(s) does not have to be con-
strained with the requirement that the resulting controller K(s) be stable.

The directions associated with MIMO systems makes more difficult to
consider how RHP-zeros in a separately manner, as in the SISO case. It is
well-known that a multivariable plant may have a RHP-zero and a RHP-
pole at the same location, but their effect may not interact if they are in
completely different parts of a system.

3.4.3 Observed partial state feedback

In Section 3.4.1 we dealt with the assumption that the partial state could
be directly accessed. Now, such ideal scenario is transformed in order to
provide an observation of the partial state.

The somewhat uncommon configuration (Vidyasagar, 1985), (Kailath,
1980) presented in this Section is based on the reconstruction ξo of the partial
state ξ. The Observer-Controller configuration is illustrated in Figure 3.8.
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Figure 3.8: The Observer-Controller configuration.

To reconstruct the partial state we make use of the Bezout identity re-
lating the right coprime transfer matrices, Nr(s) and Mr(s),

Xr(s)Mr(s) + Yr(s)Nr(s) = I (3.50)

which immediately yields the configuration of Figure 3.8.
We will show that the observer scheme allows the exact reconstruction ξo

of the partial state if and only if the two components Xr(s) and Yr(s) satisfy
the Bezout identity (3.50). The following relations are got form Figure 3.8:

ξ(s) = M−1
r (s)u(s) , y(s) = Nr(s)ξ(s) (3.51)

The observed signal ξo can be expressed as

ξo(s) = Xr(s)u(s) + Yr(s)y(s) , (3.52)

and, by substituting (3.51) into equation (3.52), we have

ξo(s) = [Xr(s)Mr(s) + Yr(s)Nr(s)]ξ(s) (3.53)

Hence, as long as the Bezout identity (3.50) holds, it is possible the exact
reconstruction of the partial state, ξo = ξ.

The case in which disturbances affect the control system is illustrated in
Figure 3.9. In case of disturbances at the input of the plant, do = 0, the
reconstruction is affected by the perturbation. We have that

ξ(s) = M−1
r (s)[u(s) + di(s)] (3.54)
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Figure 3.9: The Observer-Controller configuration with external perturbations.

and

ξo(s) = ξ(s) − Xr(s)di(s) (3.55)

In case of disturbances affecting at the output of the plant, di = 0, we
have that

ξ(s) = N−1
r (s)[y(s) − do(s)] (3.56)

and

ξo(s) = ξ(s) + Yr(s)do(s) (3.57)

Therefore, the Bezout identity (3.50) allows the exact reconstruction of
the partial state, ξ, if no disturbances enter the control system. If distur-
bances affect the control system, the observed partial state ξo is no longer
equal to the partial state ξ. This, in principle, unforeseen situation can be
used in a constructive manner since the observed partial state ξ includes a
measure of the disturbances. With an appropriate feedback of (3.55) and/or
(3.57) through the matrix transfer function K(s) the effect that the distur-
bances cause to the controlled variable can be minimized in some sense.

As it has been shown, the key equation for the reconstruction of the
partial state is the Bezout identity (3.50). By application of a Youla type
parametrization, it is possible to write the set of observers that gives the
partial state ξ as the set of solutions to the Bezout identity. If X∗

r and Y ∗
r
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are solutions of the Bezout identity and Q is a stable, but otherwise free,
parameter, the set

{Xr, Yr : Xr = X∗
r − NrQ, Yr = Y ∗

r + MrQ} (3.58)

characterizes all linear observers for ξ (Ding et al., 1994). The Q parameter
may be selected on the bases of some robustness criterion.

In (Pedret et al., 1999) we dealt with the design of the state feedback
compensator K(s) considering reference model specifications. The method-
ology is presented as a two-step design procedure in which the reference
model specifications are tackled first as nominal requirements and second,
the robustness properties of the resultant nominal design are enhanced. The
reference model specifications are achieved by means of an appropriate selec-
tion of the partial state feedback controller K(s). The robustness consider-
ations are taken into account by performing a Youla type parameterization
of all solutions of the Bezout identity as that in the set (3.58).

3.5 Summary

In this Chapter we have presented the coprime factorization framework for
multivariable linear systems. The condition for internal stability in terms
of the plant and the controller factors has been given and it is been shown
how every plant has associated a stabilizing controller determined by the
components of a Bezout equation that provides coprime plant factors. State-
space realizations for the coprime factorization of a given system have been
obtained.

Within the right coprime factorization approach, the Observer-Controller
configuration has been introduced. We have seen that this control configu-
ration avoids one of the inherent control problem caused by RHP-zeros, i.e.,
the structure prevent the system to be unstable with high gain feedback con-
trol. Such control configuration will constitute the basis for all the control
structures designed in this work.



Chapter 4

The Observer-Controller
configuration for Robustness
Enhancement

In this Chapter we present a new approach to improve the robustness properties
of a nominal control system. It can be seen as an alternative to the design of
robust controllers. The method is based on the generation of a complement for
a nominal control system by means of an Observer-Controller structure. The
resulting two-step design procedure allows an enhancement of the robustness
properties without modifying the nominal controller. The design procedure is
systematized by a translation into the H∞ / Structured Singular Value frame-
work and evaluated on a high purity distillation column example.

4.1 Introduction

The design of robust controllers has been one of the great deals of Lin-
ear Control Theory over the last decades. Some, now well established, ap-
proaches have been developed: (Ackerman, 1993), (Grimble, 1994), (Green
and Limebeer, 1995), (Zhou et al., 1996), among others. A common fea-
ture of most of the advanced robust control algorithms is that of setting an
optimization problem posed in terms of the uncertainty description. This
optimization problem is usually solved in terms of the Youla-parameter

57
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(Vidyasagar, 1985), (Boyd and Barratt, 1991). The problem with that kind
of approaches is that of mixing the performance measures for the nominal
controller and the robustness properties in the overall design process.

A different approach is that of the Internal Model Control (IMC) (Morari
and Zafirou, 1989). This approach is based on computing an optimal con-
troller, the IMC controller, as the first stage of the design. In the second
stage of the design procedure, the IMC controller is detuned to cope with ro-
bustness. This approach has the advantage that complete different measures
can be used for both nominal performance properties and the robustness
characteristics.

Some other works that could be considered to deal with the robustness
enhancement problem appeared in the literature as explicitly two-step design
approaches: (Hrissagis et al., 1996), (Hrissagis and Crisalle, 1997), (Ansay
and Wertz, 1997). Such approaches consist on an enhancement of the ro-
bustness properties of the initial controller at the second step of the design
procedure. The robustness enhancement problem proceeds as follows:

1) The initial controller is reformulated as the central controller in the
Youla parametrisation of the stabilizing controllers from a nominal
plant.

2) An optimization problem is performed for the Youla parameter to get
the final, robustified, controller

The approach presented in (Ansay and Wertz, 1997) uses a special form
of the Youla parameterization. This special form of the Youla parametriza-
tion allows to get all controllers yielding the same closed-loop characteristic
polynomial provided by an initial controller. The initial controller is a Gen-
eralized Predictive Controller (Clarke et al., 1987). The problem with this
approach is that the extension to the unstable plant case is not straightfor-
ward as it can be seen in (Ansay et al., 1998). Also, the extension to the
multivariable plant case looks difficult.

The extension to the unstable plant case is not a problem with the ap-
proach presented in (Hrissagis et al., 1996) and (Hrissagis and Crisalle, 1997).
In such cases, a complete Youla parametrization is used and the general prob-
lem is posed as an optimization problem with respect to the Youla parameter
and some norm that depends on the specifications. However, all the referred
approaches for robustness enhancement lies on the polynomial description of
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the plant and the controller. Therefore, the generalization to multivariable
systems is difficult.

In (Vilanova et al., 1999) we suggested a way of using the Observer-
Controller structure that overcomes the above mentioned difficulties. The
approach is not based on setting the controller to be robustified as the central
controller of the stabilizing controller family. Instead,

1) An initial feedback control system is set for the nominal plant to satisfy
some step response requirements1.

2) The resulting robustness properties are conveniently enhanced while
leaving unaltered the step responses provided by the initial controller.

The approach is based on the generation of a complement for the nominal
control system by means of the Observer-Controller configuration. That is,
a correcting control action to the initial feedback loop that compensates the
presence of uncertainty not, necessarily, considered by the initial controller.
Within this approach, the structure of the initial controller is not taken into
account and the resulting control configuration does not modify the initial
controller. This constitutes the main difference, and advantage, with respect
to the above referred approaches.

The Observer-Controller configuration approach to enhance the robust-
ness properties of an initial controller allows an unified treatment for both
stable and unstable systems. The approach was successfully applied to the
control of the temperature in an open-loop unstable batch chemical reactor
(Pedret et al., 2001).

The approach can also be seen to lie in the two degrees-of-freedom con-
trol configuration in the sense that a complete separation of properties is
achieved: in the first stage of the design, step responses of the nominal
system are attained by a controller set up to satisfy the requirements in
an “optimal” manner; in the second stage, model uncertainties are conside-
red and the robustness properties given by the nominal control system are
enhanced.

The Chapter is organized as follows: Section 4.2 introduces the feedback
control system and presents the proposal to design a feedback controller just
for the nominal plant. Section 4.3 gives what we call Robustness Enhance-
ment Block to allow robust stability to be guaranteed. In Section 4.4.1,

1This fact does not imply any restriction on the structure of the initial controller.
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the Robustness Enhancement Block is designed in a systematic way by a
translation into the H∞ / Structured Singular Value framework. Finally,
the proposed configuration is evaluated on a high purity distillation column
example, in Section 4.5

4.2 Problem description

Let us consider the feedback control system shown in Figure 4.1 in which Po

is the model of the plant P and K1 is the nominal feedback controller.

K1 Po

yr u

-

do
di

Figure 4.1: Nominal feedback control system.

From the scheme in Figure 4.1, the transfer matrix function that relates
the input signals and the output signals, [u y]T , is:

[
u
y

]
=

[ −To −SoK1 SoK1

SoPo So To

] di

do

r


 (4.1)

where

So = (I + PoK1)−1 (4.2)

and

To = (I + PoK1)−1PoK1 (4.3)

are the output sensitivity transfer function and the complementary sensitiv-
ity transfer function, respectively.

The feedback controller K1 can be designed such that, when applied to
the nominal plant Po, provides desired specifications, e.g., design in terms of
reference tracking and/or disturbance rejection. In practice, the knowledge
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of the model uncertainty must be incorporated into the controller design
procedure. Otherwise the controller K1 designed just for the nominal plant
Po is bound to fail when it is faced with the real plant P ∈ P. In fact, we
must demand the control system to provide, at least, closed-loop stability
with all the plants in the set P, i.e., robust stability. The requirement that
the performance achieved with the nominal plant Po be met for all the plants
in P, i.e., robust performance, could be considered as the ultimate goal for
the controller design. In some cases, it may be desirable simply to design
a controller for the plant model Po to satisfy certain nominal performance
specifications and only guaranteeing robust stability. This may occur in cases
such as plants operating most of the time close to its nominal operating
point, with occasional plant perturbations. So, performance may not be
of primary importance when perturbations occur provided that the system
remains stable.

The presented approach proposes to deal with the design of the feedback
controller K1 just for step response requirements with the nominal plant
Po. This controller can be designed by any technique from feedback control
theory. For instance, a PID control law could be a suitable choice for some
systems. Also, an H∞ weighted model reference optimization problem of
the form,

‖Wp(Tref − To)‖∞ (4.4)

could be solved, where Tref if the reference model which specifies the desired
closed-loop step responses. Since the system response to commands is an
open-loop property (Safonov et al., 1981), no stability margins are necessarily
guaranteed when the desired closed-loop behaviour is achieved. Therefore,
the Observer-Controller structure can be used to incorporate a second degree
of freedom to enhance the robustness properties provided by the nominal
control system. Next Section presents the Observer-Controller configuration.

4.3 Configuration for robustness enhancement

Let us assume that the feedback controller K1 has been given or previously
designed just to provide the desired step response requirements with the
nominal plant, Po. The controller set up with the latter assumptions could
give rise to poor stability margins: since the it has been designed just for
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the nominal step response requirements no stability margins are necessarily
guaranteed.

The Observer-Controller configuration detailed in Section 3.4 is used in
such a way that a second degree of freedom is offered. This extra degree of
freedom can be utilized to consider the, possibly, lack of robustness provided
by the nominal controller K1. The proposed method is based on the gener-
ation of a complement, δu, to the nominal feedback control system. This is
carried out by means of what we call a Robustness Enhancement Block. The
resulting overall control system is shown in Figure 4.2.

K1

Robustness
Enhancement

Block

u

du

r

-
NrMr

-1

dodi

yx

Figure 4.2: Overall control configuration for robustness enhancement.

The Robustness Enhancement Block is added to the nominal feedback
control system shown in Figure 4.1. Such structure is based on the fractional
representation framework addressed in Chapter 3. Within that formulation,
we know that a a right coprime factorization of a matrix transfer function
Po reads as

Po = NrM
−1
r (4.5)

where Nr and M−1
r are said to be right coprime over RH∞ if they have

the same number of columns and if there exist stable matrices Xr and Yr

satisfying the Bezout identity

XrMr + YrNr = I (4.6)
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Figure 4.2 shows the so-called partial state ξ, i.e., the fictitious signal
that appears after the factorization of Po. The key idea of the Robustness
Enhancement Block is the use of such an artificial signal, ξ, as the control
variable. Now, it is possible to write

y = Nrξ + do, u = Mrξ − di (4.7)

The above definitions are useful to present the feedback interconnection
we will work with. It is based on the reconstruction of the partial state, ξ.
Equations (4.6) and (4.7) show immediately how to recover the partial state:

ξo = Xru + Yry = (4.8)
= (XrMr + YrNr)ξ − Xrdi + Yrdo (4.9)

As long as the two observer transfer matrix functions Xr, Yr, make the
Bezout identity (4.6) to be satisfied, the scheme allows the reconstruction,
i.e.,

ξo = ξ − Xrdi + Yrdo (4.10)

The reconstructed signal ξo in (4.10) incorporates a measure of the dis-
turbance signals that can affect the plant, Po. Therefore, it can serve in the
specific function of compensating the possibly poor robustness bounds of the
nominal feedback control scheme in Figure 4.1.

In Section 3.4 we saw that the observed partial state, ξo, could be feed-
back through and arbitrary transfer function to constitute a state feedback
controller. The design of this transfer function for the SISO case and based
on model reference specifications was presented in (Pedret et al., 1999).

Now, the estimated partial state, ξo, is used to compute an estimation
of the output signals. Figure 4.3 reveals what is inside the Robustness En-
hancement Block.

The estimated output signal, Nrξ
o, is used to generate a residues1 signal,

χ = Nrξ
o − y, which is feed back through a transfer matrix function K2 to

1In absence of uncertainty and disturbances the value of χ is zero. Therefore, χ is called
the residues signals
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K2
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Nr
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Figure 4.3: Detail of the Robustness Enhancement Block.

complement the nominal control system. This provides an IMC-like con-
trol scheme (Morari and Zafirou, 1989): the inner loop is closed only when
necessary by a correcting control action δu.

It should be noted that, under a nominal situation, i.e., P = Po and
also d = 0, the residues signal, χ, is zero and the performance is that of
the nominal controller K1. In a more realistic situation, i.e. P �= Po and
possibly d �= 0, the residues signal, χ, through the matrix transfer function
K2, complements the nominal feedback control system in order to prevent
unmodelled dynamics and disturbances from altering the behaviour provided
by the nominal controller K1.

From the control schemes in Figure 4.2 and Figure 4.3 we can compute
the new relations between the input signals and the output signals,

[
u
y

]
=

[
−To(I + P−1

o K2NrXr) −SoK1(I + K2(I − NrYr)) SoK1

SoPo(I − K1K2NrXr) So(I − PoK1K2(I − NrYr)) To

][
di

do
r

]

(4.11)
where So is the nominal output sensitivity (4.2) and To is the nominal com-
plementary sensitivity (4.3).

It should be noted from the new input/output relations (4.11) that
the inclusion of the Robustness Enhancement Block alters the nominal in-
put/output relations (4.1). Nevertheless, such modifications only affects the
transfer matrix functions from the disturbances signals, [di do]T , to the out-
puts. The relations form the reference signals, r, remain unaltered. Such
modifications to the nominal relations from the disturbances are likely to
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be of benefit with an appropriate design of the free, stable, transfer matrix
function K2. This is done in next Section.

4.4 Design for robustness enhancement

We have seen how the Robustness Enhancement Block modifies the nominal
transfer matrix functions from the disturbances, [di do]T , while leaving the
relations from the references, r, unaltered. As it is known (see Section 2.3
for details), Robust Stability impose bounds on the frequency response of
the transfer matrix functions from the disturbance signals, [di do]T , e.g., a
multiplicative input uncertainty description bounds the frequency response
of the transfer matrix function from di to u. This property is to be used
to perform a two-step design procedure. First, the nominal controller K1

is designed just for the nominal plant Po to provide the desired step res-
ponses. Then, in a second stage, the controller K2 is designed to guarantee
closed-loop stability for all possible plant P in the set P to guarantee the
performance in terms of disturbances for all P ∈ P.

Let us assume, without lost of generality, that multiplicative input un-
certainty is considered. In such an uncertainty description, the plant P is
unknown but belonging to a set of plants, P, built around a nominal model
Po,

P = {P : P = Po(I + W2∆W1)} , σ̄(∆) ≤ 1 ∀ω (4.12)

where W1 = wII, W2 = I.
The uncertainty description assumed above allows us to redraw the con-

trol configuration for robustness enhancement. Figure 4.4 shows the overall
weighted control scheme.

From the overall control scheme in Figure 4.4 we can compute the transfer
matrix function N that relates the input signals, [di do r]T , and the weighted
output signals, [u′ y′]T ,

N =

[
−W1To(I + P−1

o K2NrXr) −W1SoK1(I + K2(I − NrYr)) SoK1

WpSoPo(I − K1K2NrXr) WpSo(I − PoK1K2(I − NrYr)) To

]

(4.13)
where So is the nominal output sensitivity (4.2) and To is the nominal com-
plementary sensitivity (4.3).
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Figure 4.4: Overall control configuration for robustness enhancement.

4.4.1 Design for robust stability

Considering unstructured uncertainty, e.g., ∆ is a full complex matrix of ap-
propriate dimensions, Theorem 2.3.1 imposes a condition on the ∞-norm of
the transfer matrix function from the input disturbance, di, to the weighted
control signal, u′, i.e., N11

.= M, in order for robust stability to be guaran-
teed. From (4.13) we have that

‖M‖∞ =
∥∥−W1To(I + P−1

o K2NrXr)
∥∥
∞ (4.14)

Therefore, from (4.14) and condition (2.23) we have,

∥∥−W1To(I + P−1
o K2NrXr)

∥∥
∞ < 1 (4.15)

The left hand side of (4.15) can be seen as formed by two terms: the first
one, −W1To, determines the robustness margins with the nominal feedback
control system; the second one, (I + P−1

o K2NrXr), includes the free stable
transfer matrix K2. If the nominal feedback controller K1 does not provide
robust stability, i.e., σ̄(To) ≥ |W1|−1, the controller K2 is designed to force
the second term, (I+P−1

o K2NrXr), to supply the extra compensation needed
in order to carry out with constraint (4.15).
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The design procedure could be based on compelling the second term in
the robust stability condition (4.15), to match a desired shape, i.e.,

I + P−1
o K2NrXr ≈ F (4.16)

where F is a low-pass filter of fixed structure. This approach was successfully
applied to the control of the temperature in an open-loop unstable batch
chemical reactor (Pedret et al., 2001).

The Structured Singular Value allows, as we saw in Section 2.3, to derive
necessary and sufficient, non-conservative, conditions for robust stability.
Within this framework, uncertainty is modeled in terms of norm-bounded
perturbations on the nominal system and weighting matrices are used such
that each perturbation is normalized to have magnitude one,

σ̄(∆i) ≤ 1,∀ω (4.17)

The individual uncertainties ∆i are combined into one large block diag-
onal perturbation matrix

∆ = diag{∆1, ...,∆n}, σ̄(∆) ≤ 1, ∀ω (4.18)

and the system is arranged to fit in the general control problem formulation
(see Section 2.2) as it is shown in Figure 4.5.
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(b)
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Figure 4.5: General interconnection of system with uncertainty.
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For our approach, the interconnection matrix G in Figure 4.5(a) is a
function of the nominal plant model Po = NrM

−1
r , the controller K1, the

right coprime factors, Xr, Yr, the uncertainty weights W1, W2 and the per-
formance weight Wp. We have that w1 = di, w2 = [do r]T , z1 = u′, z2 = y′

and v = χ. The augmented plant G and the controller K2 are related by the
following lower linear fractional transformation:

F�(G,K2)
.= G11 + G12K2(I − G22K2)−1G21 (4.19)

The lower LFT (4.19) is represented in Figure 4.5(b) by the matrix transfer
function N , in which the diagonal matrix ∆ maps the signals z1 and w1

closing the upper loop around M. It results in the following upper linear
fractional transformation:

Fu(N ,∆) .= N22 + N21∆(I −N11∆)−1N12 (4.20)

In order to check the stability of the closed loop structure in Figure 4.5(a),
the Structured Singular Value, µ, pursues the tightest possible bound on M
such that det(I −M∆) �= 0. The problem is to find the smallest structured
∆, measured in terms of σ̄(∆), which makes det(I −M∆) singular. Then,
µ(M) = 1/σ̄(∆). Definition 2.3.5 of µ(M) is adopted from (Doyle, 1982).

It should be noted that the structured singular value, µ, depends on the
matrix M and the structure of the perturbation ∆, therefore the notation
µ∆(M). For the unstructured uncertainty case, i.e., ∆ is a full matrix, the
smallest ∆ which yields singularity has σ̄(M) = 1/σ̄(∆). For the structured
uncertainty case we have µ(M) = 1/σ̄(∆).

Theorem 2.3.2 provides a necessary and sufficient condition for robust
stability. Nevertheless, Definition 2.3.5 is not itself useful for computing
µ∆(M) and, currently, no simple computational method exists for exactly
calculating µ in general and an efficient exact method is most likely not
possible (Braatz et al., 1994). This motivated to approximate µ∆(M) by
computing the upper bound,

µ∆(M) ≤ inf
D�, Dr ∈ D

σ̄(D�MD−1
r ) (4.21)

where D� and Dr are non-negative scaling matrices defined within a set D
that commutes with the structure ∆.
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We have seen that the structured singular value provides a systematic
way to test for robust stability (2.25) for a given controller K2. We will see
next how to synthesize a controller K2 for Robust Stability.

Controller synthesis: H∞ controller K2

To cope with robust stability, an H∞ controller K2 can be easily computed
by means of the following optimization problem.

min
K2

sup
ω

σ̄(M) (4.22)

The minimization problem (4.22) can be solved by using standard algo-
rithms (Balas et al., 1998), (Chiang and Safonov, 1992).

Therefore, a feedback controller K1 can be designed to cope with nominal
tracking performance and then, robust stability is assured by the Robustness
Enhancement Block with an H∞ controller K2.

4.4.2 Design for robust performance

In the nominal feedback controller K1, without the Robustness Enhance-
ment Block, performance in terms of disturbance rejection is linked with
performance in terms of tracking by the identity To + So = I. In such a
way, a design for disturbance rejection specifications considers, indirectly,
a design for tracking properties. On the other hand, the inclusion of the
Robustness Enhancement Block breaks such identity, i.e.,

To + So(I − PoK1K2(I − NrYr)) �= I (4.23)

Therefore, with the proposed robustness enhancement structure we must
specify that the design for performance is done in terms of disturbance re-
jection, i.e.,

‖WpSo(I − PoK1K2(I − NrYr)‖∞ < 1 (4.24)

The performance condition (4.24) can be checked, for all the set of plants
P ∈ P, by utilizing a RP test on the transfer matrix function N shown in
Figure 4.6.
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Figure 4.6: Block diagram for testing robust performance

Theorem 2.3.3 provides a test for robust performance computed with
respect to an augmented uncertainty structure of the perturbation matrix
∆ = diag{∆,∆p}. The performance block ∆p is a full square complex
perturbation with appropriate dimension (see Section 2.3 for details).

Remark 4.4.1. The robust performance condition (2.29) implies robust sta-
bility (2.25), since

sup
ω

µ∆(N ) ≥ sup
ω

µ∆(M) (4.25)

As it is known from the robust stability analysis, Definition 2.3.5 is not
itself useful for computing µ∆(N ) and this fact motivates to approximate
µ∆(N ) by computing upper and lower bounds. This gives rise to the com-
putation of the following upper bound:

µ∆(N ) ≤ inf
D�, Dr ∈ D

σ̄(D�ND−1
r ) (4.26)

As well as for the computation of the robust stability bound in (4.21), the
robust performance bound is also convex in D (Packard and Doyle, 1993).

We have seen that the structured singular value provides a systematic
way to test for robust stability and also for robust performance in terms of
disturbance rejection for a given controller K2. In addition to the analysis
tool, the structured singular value can be used to synthesize a µ-“optimal”
controller K2.

Controller synthesis: µ-“optimal” controller K2

A µ-“optimal” controller K2 can be designed within the structured singular
value framework to cope with robust performance in terms of disturbance
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rejection and, at the same time, as is is stated by Remark 4.4.1, designed
for robust stability. Therefore, a µ-“optimal” controller K2 can be found by
minimizing

sup
ω

µ∆(N ) (4.27)

It is known that, at the present moment, there is no direct method to
find the controller K2 by minimizing (4.27). However, in Section 2.4 we dealt
with the procedure known as DK-iteration (also called µ synthesis) (Zhou et
al., 1996). Is an ad-hoc method that attempts to minimize the upper bound
(4.21) of µ and, thus, the objective function (4.27) is transformed into

min
K2

inf
D�, Dr ∈ D

sup
ω

σ̄(D�ND−1
r ) (4.28)

The DK-iteration approach involves to alternatively minimize

sup
ω

σ̄(D�ND−1
r ) (4.29)

for either K2 or D� and Dr while holding the other constant. For fixed
D� and Dr, the controller is solved via H∞ optimization; for fixed K2, a
convex optimization problem is solved at each frequency. The magnitude of
each element of D�(jω) and Dr(jω) is fitted with an stable and minimum
phase transfer function and wrapped back into the nominal interconnection
structure.

The procedure is carried out until supω σ̄(D�MD−1
r ) < 1. The DK-

iteration approach is explained in more detail in Section 2.4.
The optimal solutions in each step are of supreme importance to success

with the DK-iteration. Moreover, when K2 is fixed, the fitting procedure
plays an important role in the overall approach. Low order transfer function
fits are preferable since the order of the H∞ problem in the following step is
reduced yielding controllers of lower dimension. Nevertheless, the method is
characterized by giving controllers of very high order that must be reduced
applying model reduction techniques (Glover, 1984).

4.4.3 Design outline

Here, we briefly describe the important points in the design procedure.
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1. Design of K1: Design a feedback controller K1 to achieve tracking
specifications for the nominal model of the plant, Po.

2. Uncertainty description: Assume that the plant P to be controlled
is unknown but belonging to a set of plants P build around the nominal
model Po, as in (4.12).

3. Coprime Factorization: Find a right coprime factorization of the
nominal model of the plant, Po = M−1

r Nr. This gives rise to the
associated Bezout components Xr and Yr.

4. Design of K2: Rearrange the scheme in Figure 4.4 to fit the gen-
eral interconnection with uncertainty shown in Figures 4.5(a) and 4.6.
Solve the optimization problem (4.22) to find a H∞ controller K2.
Solve the optimization problem (4.28) to find a µ-“optimal” controller
K2.

5. Implementation: Implement the controller scheme shown in Figure
4.4 with the nominal feedback controller K1 and the elements of the
Robustness Enhancement Block, Xr, Yr, Nr and the controller K2.

We next present an example to illustrate the above design procedure.

4.5 Application example

The proposed approach is applied to the control of a high purity distillation
system to illustrate the design procedure. The original control problem
was formulated by (Skogestad et al., 1988) as a bound on the weighted
sensitivity with frequency bounded input uncertainty. The optimal solution
to this problem was provided by (Skogestad et al., 1988) considering a one
degree-of-freedom µ−optimal controller like that discussed in Example 2.4.1
and denoted Kopt — the state-space realization of Kopt is given in Table
C.1. Nevertheless, our aim is not to design a robust control system but
to show how the Observer-Controller configuration can be used to enhance
the robustness properties of a controller, K1, designed just for the nominal
model of the plant, Po, and to compare the performance of the resulting
control configuration with that of the µ-“optimal” controller, Kopt.

The following is an idealized dynamic model of the distillation column
(See Appendix B.2 for more details),
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Po =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
(4.30)

A complex multiplicative uncertainty is assumed in each manipulated
input of magnitude

W1 = 0.2
5s + 1

0.5s + 1
I2 (4.31)

This implies a relative uncertainty up to 20% in the low frequency range
which increases at high frequencies, reaching a value of 1 at about 1 Rad/min.
The increase with frequency allows for various neglected dynamics associated
with the actuator and the valve.

The nominal performance specification is stated by the weight

Wp = 0.5
10s + 1

10s
I2 (4.32)

which implies integral action and allows an amplification of disturbances at
high frequencies by a factor of two at most.

4.5.1 Design of the nominal controller

The nominal controller, K1, is chosen as a simple diagonal (decentralized)
feedback control system with two PI controllers,

K1 = k
75s + 1

s

[
1 0
0 −1

]
, k = 0.040 (4.33)

In Example 2.3.2 we studied this controller with k = 0.024 for distilla-
tion process. The nominal performance specification of the original control
problem is not fulfilled with K1, i.e., σ̄(So) > |Wp|−1. As it is seen in Figure
2.10, the µ-plots with such PI controller reflects that neither NP nor RS are
satisfied. As it is expected, RP is not fulfilled either.

In fact, no choice of k is able to satisfy both requirements (Skogestad et
al., 1988). Nevertheless, with the proposed robustness enhancement proce-
dure, we can perform a two-step design to account for nominal performance
and, in a second stage, to cope with robustness requirements.
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With the concern of choosing the nominal controller just for nominal
tracking performance, we chose the diagonal PI (4.33) with k = 0.040. This
controller results in a nominally stable system and provides a nominal closed-
loop step response similar to that of the µ−optimal controller shown in Fig-
ure 2.15 in solid line. The nominal performance specification of the original
control problem is fulfilled with K1, i.e., σ̄(So) < |Wp|−1, as is is shown in
Figure 4.7.

Since the knowledge of the model uncertainty has not been taken into
account to design K1, stability margins are not, necessarily, guaranteed.
This can be tested from the transfer matrix function that relates di with the
weighed control signal, u′, i.e., W1To. From Theorem 2.3.2, we can write
that robust stability is guaranteed iff σ̄(To) < |W1|−1, ∀ω. This condition
is shown graphically in Figure 4.8 and is seen not to be satisfied for all
frequencies.
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Figure 4.7: Nominal Performance bound for K1, σ̄(So) (dashed). |Wp|−1 (dash-
dotted).

Figure 4.8 tells us that the system would be unstable for some plants in
the set P. Therefore, the nominal feedback controller K1 does not provide
robust stability.
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Figure 4.8: Robust Stability bound with K1, σ̄(To) (dashed). |W1|−1 (dash-
dotted).
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Figure 4.9: Stable closed-loop setpoint responses for K1. Nominal plant (solid)
and uncertain plants Pi(s), i = 1, . . . , 4 (dashed).
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We have performed the first stage of the Observer-Controller configura-
tion approach to robustness enhancement. A controller K1 has been designed
just for nominal tracking performance without regards of model uncertainty.
Effectively, stability for the set of plants P is not guaranteed since it has
not explicitly considered in the design procedure. Step response simula-
tions for the nominal controller K1 in (4.33) with the six perturbed plants
Pi(s) = Po(s)EIi(s), with EIi = I + W1∆ given in Equations (B.11) and
(B.12), shows that the stability is fulfilled with Pi(s), i = 1, . . . , 4. On the
contrary, the perturbed plants Pi(s), i = 5, . . . , 6 are no longer stabilized by
K1.

The time responses of y1 and y2 to a filtered setpoint change in y1,
r1 = 1/(5s + 1), are shown in Figure 4.9. The solid line represents the
response for the controller K1 with the nominal plant. The dashed lines
represent the responses with the controller K1 with the four perturbed plants
Pi(s), i = 1, . . . , 4. The unstable responses for Pi(s), i = 5, . . . , 6 are not
shown.
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Figure 4.10: Closed-loop response to output disturbance for K1. Nominal plant
(solid) and uncertain plants Pi(s), i = 1, . . . , 4 (dashed).

Figure 4.10 shows the closed-loop response to output disturbance for
K1. Solid lines represent the disturbance rejection for the nominal plant
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and dashed lines represent the disturbance rejection for the uncertain plants
Pi(s), i = 1, . . . , 4. It can be shown that the perturbed plants offer a distur-
bance response very closed to that of the nominal plant. Nevertheless, we
know that the stability for the set of plant Pi(s), i = 1, . . . , 6, ∈ P with the
nominal controller K1 is not guaranteed. It is evidenced by means of the
unstable responses for Pi(s), i = 5, . . . , 6, which are not shown.

We have seen that the nominal controller K1 provides nominal perfor-
mance but the requirement of robust stability is not satisfied. Then, the
second stage of the design procedure is used next to extend the stability to
the set of plants P while leaving the nominal tracking performance unaltered.

4.5.2 Design of the Robustness Enhancement Block

Recalling equation (4.13) we know that the Robustness Enhancement Block
provides an extra term to the transfer matrix function from di to the weighted
control signal, u′, i.e., I + P−1

o K2NrXr. This term is to be designed to add
the extra compensation needed to guarantee robust stability. First, we will
design K2 as an H∞ controller. Second, we will design K2 as a µ-“optimal”
controller.

Design of K2 as an H∞ controller.

Given a right coprime factorization Po = NrM
−1
r , the nominal controller

designed in the first stage, say K1 in (4.33), the right coprime factors, Xr,
Yr, the uncertainty weight W1 and the performance weight Wp, it is possible
to find an H∞ controller K2 by solving the optimization problem (4.28) in
one step.

Solving the optimization problem (4.22) an H∞ controller K2 with 14
states is obtained. A balanced realization and an optimal Hankel norm ap-
proximation of order 10 on the state-space of K2 provides an equivalent,
reduced, controller K2. Figure 4.11 shows, in solid line, the singular val-
ues Bode plot for the 14th state controller K2 and its 10th states Hankel
norm approximated controller in crosses. A state-space realization of the
H∞ controller K2(s) = C(sI − A)B−1 + D is given in Table C.2.

With the achieved H∞ controller K2, robust stability is guaranteed since
σ̄(To(I + P−1

o K2NrXr)) < |W1|−1. This condition is shown graphically in
Figure 4.12 with solid line and it is seen to be satisfied for all frequencies.
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Figure 4.11: Frequency Bode plot for the H∞ controller K2 (solid) and its optimal
Hankel norm approximation (crosses).
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Figure 4.12: RS bound for K1, σ̄(To), (dashed) and with the H∞ controller K2,
σ̄(To(I + P−1

o K2NrXr)), (solid). |W1|−1 (dash-dotted).
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The dashed line reproduces the bound for Robust stability with the nominal
controller K1, which is σ̄(To) > |W1|−1 for some frequencies.

The µ peak value for robust stability for K1 is 1.6037 as it is shown, with
dashed line, in Figure 4.13. The µ peak value for robust stability with the
Robustness Enhancement Block with the H∞ controller K2 is 0.7796, as it
is shown in solid line. Thus, the Robustness Enhancement Block with the
H∞ controller K2 makes the condition for robust stability to be satisfied
for all frequencies and this fact tells us that all the plants in the set P are
stabilized.
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Figure 4.13: µ-plots for K1 (dashed) and with the H∞ controller K2 (solid).

The addition of the Robustness Enhancement Block with the H∞ controller
K2 has allowed to compensate the transfer matrix function form di to u′ in
order to fulfill robust stability. To make up for it, the nominal performance
bound, i.e., the transfer matrix function from do to y′, has also been modified.
Figure 4.14 shows σ̄(So) in dashed line and σ̄(So(I − PoK1K2(I − NrYr)))
in solid line. Note that the deterioration of the final output sensitivity is
produced under the allowed bound, |Wp|−1.
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Figure 4.14: NP bound for K1, σ̄(So), (dashed) and with the H∞ controller K2,
σ̄(So(I − PoK1K2(I − NrYr))), (solid). |Wp|−1 (dash-dotted).

The time responses of y1 and y2 to a filtered setpoint change in y1, r1 =
1/(5s + 1), are shown in Figure 4.15. The solid line represents the response
with the nominal plant. Without uncertainty and without perturbations, the
Robustness Enhancement Block is not working and the step response is that
of the nominal controller K1. The dashed lines represent the responses for the
six perturbed plants Pi(s), i = 1, . . . , 6 with the Robustness Enhancement
Block with the H∞ controller K2. Note that the nominal controller K1,
alone, can not stabilize the perturbed plants Pi(s), i = 5, . . . , 6. On the
contrary, with the Robustness Enhancement Block, the closed-loop stability
is guaranteed for all P (s) ∈ P.

The Robustness Enhancement Block with the H∞ controller K2 assures
robust stability while keeping the nominal step response unaltered. The step
responses with the perturbed plants shown in Figure 4.15 are similar with
that of the µ-“optimal” controller Kopt designed in Section 2.4 and shown
in Figure 2.15.

Figure 4.16 shows the responses to a unitary step disturbance at the
output with the H∞ controller K2. The response for the nominal plant Po

is illustrated in solid and the response for the uncertain plants Pi = PoEIi ,
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Figure 4.15: Closed-loop setpoint responses with the H∞ controller K2: Nominal
plant (solid) and uncertain plants Pi(s), i = 1, . . . , 6 (dashed).

i = 1, . . . , 6 are illustrated in dashed lines. It can be shown that the stability
for the set of plant Pi(s) ∈ P is fulfilled since the H∞ controller K2 assures
robust stability.

The disturbance rejection responses shown in Figure 4.16 are similar with
that of the µ-“optimal” controller Kopt designed in Section 2.4 and shown
in Figure 2.16.

The step responses provided by the proposed Observer-Controller config-
uration, i.e., K1 with the H∞ controller K2, are more homogeneous — simi-
lar to the nominal responses — than the step responses for the µ-“optimal”
controller Kopt designed in Section 2.4. This assertion is performed by com-
paring step responses in Figure 2.15 and that in Figure 4.15.

The disturbance rejection responses with the proposed Observer-Controller
configuration for the uncertain plants Pi(s), i = 1, . . . , 6 are also closed to
the disturbance response for the nominal plant Po. Comparing simulation
results in Figure 4.16 and Figure 2.16, we can observe the following: the
proposed Observer-Controller configuration, with K1 and the H∞ controller
K2, presets a nominal disturbance rejection response slightly worst than the
nominal disturbance rejection for the µ-“optimal” controller Kopt.
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Figure 4.16: Closed-loop response to a disturbance at the output signal y1 with the
H∞ controller K2: response for the nominal plant Po (solid) and for the uncertain
plants Pi = PoEIi , i = 1, . . . , 6 (dashed).

In any case, within the structured singular value framework, we can
design a µ-“optimal” controller K2 for compensating this lost of performance
is terms of disturbance rejections.

Design of K2 as a µ-“optimal” controller

Given a right coprime factorization Po = NrM
−1
r , the nominal controller K1

in (4.33), the right coprime factors, Xr, Yr, the uncertainty weight W1 and
the performance weight Wp, is is possible to find a µ-“optimal” controller
K2 by solving the optimization problem (4.28).

The DK-iteration procedure, explained in detail in Section 2.4, with
D� = Dr = I as initial scalings, provides a µ-“optimal” controller K2 with 30
states. A balanced realization and an optimal Hankel norm approximation of
order 10 on the state-space of K2 provides an equivalent, reduced, controller
K2. Figure 4.17 shows, in solid line, the singular values Bode plot for the 30th
state controller K2 and its 10th states Hankel norm approximated controller
in crosses.
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Figure 4.17: Frequency Bode plot for the mu-“optimal” controller K2 (solid) and
its optimal Hankel norm approximation (crosses).

The time responses of y1 and y2 to a filtered setpoint change in y1, r1 =
1/(5s + 1), is shown in Figure 4.18. The solid line represents the response
with the nominal plant. Without uncertainty and without perturbations,
the Robustness Enhancement Block is not working and the step response is
that of the nominal controller K1. The dashed lines represent the responses
with the Robustness Enhancement Block with the µ-“optimal” controller K2

for the six perturbed plants Pi(s), i = 1, . . . , 6.
Figure 4.19 shows the response to a unitary step disturbance at the

output with the µ-“optimal” controller K2. The response for the nominal
plant Po is illustrated in solid and the response for the uncertain plants
Pi = PoEIi , i = 1, . . . , 6 in (B.15) are illustrated in dashed.

The Robustness Enhancement Block with the µ-“optimal” controller K2

assures robust stability and almost robust performance. The term almost is
used here to denote that the upper µ-bound has a peak value of µ = 1.0329
and therefore, almost less than 1. This is the same value than the upper
µ-bound for the µ-“optimal” Kopt in Section 2.4. This is observed by means
of the µ curves for the Robustness Enhancement Block with the µ-“optimal”
controller K2, which are identical to that of the µ-“optimal” Kopt.
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Figure 4.18: Closed-loop setpoint change with the µ-“optimal” controller K2: re-
sponse for the nominal plant Po (solid) and for the uncertain plants Pi = PoEIi ,
i = 1, . . . , 6 (dashed).
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Figure 4.19: Closed-loop response to a disturbance at the output signal y1 with
the µ-“optimal” controller K2: response for the nominal plant Po (solid) and for
the uncertain plants Pi = PoEIi , i = 1, . . . , 6 (dashed).
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Figure 4.20: µ-plots: the µ-“optimal” controller Kopt (solid) and K1 with the
µ-“optimal” controller K2 (dots).

�

4.6 Summary

This Chapter has shown how the Observer-Controller configuration can be
used as a framework to enhance the robustness properties of a feedback con-
trol system. An initial controller is set for nominal specifications and the
Robustness Enhancement Block is designed to cope with robustness without
altering the nominal relations from the reference. By means of the applica-
tion to the control of a high-purity distillation column, a process inherently
difficult to control, we have illustrated how the Observer-Controller config-
uration for robustness enhancement can be used in a two design procedure.
Such a procedure allows to cope, first, with nominal properties and, second,
to cope with robustness.

The presented methodology represents the extension of the approach
presented in (Vilanova et al., 1999) and (Pedret et al., 2001) to the general
multivariable scenario. The design procedure is systematized by using the
H∞ / Structured Singular Value framework. With the resulting approach,



86 The Observer-Controller configuration for Robustness Enhancement

the enhancement of the robustness properties is completely general in the
sense that it does not depend on the way the initial controller was designed
nor his structure. The approach presented in this Chapter can also be found
in (Pedret et al., 2003).



Chapter 5

The 2-DOF
Observer-Controller
configuration

In this Chapter we present a new 2-DOF control configuration based on a right
coprime factorization of the plant and the usage of the partial state as controlled
variable. The presented approach makes use of an observer-based feedback con-
trol scheme which is designed first to guarantee some levels of stability robust-
ness. This is done by solving a constrained H∞ optimization problem using the
right coprime factorization of the plant in an active way. Then, a prefilter con-
troller is computed to guarantee robust open-loop processing of the reference
commands. This is done by assuming a Reference Model and by solving a Model
Matching Problem imposed on the prefilter controller.

5.1 Introduction

Standard feedback control is based on processing the difference between the
reference inputs and the actual outputs. It is well known that, in such a
case, the design problem has one degree of freedom (1-DOF) which may be
described in terms of the stable Youla parameter (Vidyasagar, 1985). Two
degrees-of-freedom (2-DOF) compensators are characterized by allowing a
separate processing of the reference inputs and the controlled outputs and

87
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may be stated by means of two stable Youla parameters. The 2-DOF com-
pensators presents the advantage of a complete separations between feedback
and reference tracking properties (Youla and Bongiorno, 1985): the feedback
properties of the control system are assured by a feedback controller, i.e., the
first degree of freedom; the reference tracking specifications are addressed
by a prefilter controller, i.e., the second degree of freedom, which determines
the open-loop processing of the reference commands.

As is is pointed out in (Vilanova and Serra, 1997), classical control ap-
proaches tend to stress the use of feedback to modify the systems’ response
to commands. A clear example, widely used in the literature of linear con-
trol, is the usage of Reference Models to specify the desired properties on a
control system (Astrom and Wittenmark, 1984). What is specified through
a Reference Model is the desired closed-loop system response. Therefore, as
the system responds to commands is an open-loop property and robustness
properties are associated with the feedback (Safonov et al., 1981), no stability
margins are necessarily guaranteed when achieving the desired closed-loop
response behaviour.

A two degrees-of-freedom (2-DOF) control configuration may be used in
order to achieve a control system with both a performance specification, e.g.,
through a Reference Model, and some guaranteed stability margins. Never-
theless, the lack of methodologies to design the two compensators may be
the reason for the 2-DOF compensators not to be widely used. Since the best
way of allocating the gain between the two controllers is not so clear, the ap-
proaches found in the literature are mainly based on optimization problems.
Basically, these optimization problems procedures represent different ways of
setting the Youla parameters to represent the controllers (Vidyasagar, 1985),
(Youla and Bongiorno, 1985), (Grimble, 1988), (Limebeer et al., 1993).

The approach presented in (Limebeer et al., 1993) expands the role of
H∞ optimization tools in 2-DOF system design. The 1-DOF loop-shaping
design procedure (McFarlane and Glover, 1992) is extended to a 2-DOF
control configuration by means of a parametrization in terms of two sta-
ble, but otherwise free, Youla parameter (Vidyasagar, 1985), (Youla and
Bongiorno, 1985). A feedback controller is designed to guarantee to meet
robust stability and disturbance rejection requirements in a manner simi-
lar to the 1-DOF loop-shaping design procedure. A prefilter controller is
then introduced to force the response of the closed- loop system to follow
that of a specified Reference Model. The approach is carried out by assum-
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ing uncertainty in the normalized coprime factors plant descriptions (Glover
and McFarlane, 1989). Such uncertainty description allows a formulation
of the H∞ robust stabilization problem providing explicit formulas for the
corresponding controller. Nevertheless, the translation of physical param-
eters uncertainty into normalized coprime factors plant uncertainty is not
straightforward.

A frequency domain approach to Model Reference control with robust-
ness considerations was presented in (Sun et al., 1994). The design approach
consist on a nominal design and a modeling error compensation component
to compensate for the error due to uncertainty. However, since the approach
is based on the Model Reference Adaptive Control theory, the minimum
phase assumption for the plant to be controlled is inherited.

In this Chapter we present a new 2-DOF control configuration based a
right coprime factorization of the plant. Within the factorization framework,
the partial state is used as controlled variable. The presented approach is
not based on setting the 2 controllers arbitrarily, with internal stability as
the only restriction, and parameterize the controller in terms of the Youla
parameter. Instead,

1) An observer-based feedback control scheme is designed to guarantee
some levels of stability robustness. This is done by solving a con-
strained H∞ optimization problem using partial state as controlled
variable and the right coprime factorization of the plant in an active
way.

2) A prefilter controller is computed to guarantee the robust open-loop
processing of the reference commands. This is done by assuming a
Reference Model with the desired relations from the reference signals
and by solving a model matching problem imposed on the prefilter
controller such that the response of the overall close-loop system match
that of the reference model.

The presented approach is presented to provide good results for non-
minimum phase systems because of the use of a special feedback control
configuration.

The Chapter is organized as follows: Section 5.2 introduces the proposed
2-DOF control configuration and describes the two steps in which the design
methodology is divided. Section 5.3 illustrates the design of the feedback
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control structure for robust stability. In Section 5.4, a prefilter controller is
designed to guarantee robust model reference responses. Finally, the pro-
posed 2-DOF control configuration is evaluated on a high purity distillation
column example, in Section 5.5.

5.2 Displaying the 2-DOF control configuration

This Section introduces a new 2-DOF control configuration based, as it is
recurring in this work, on the fractional representation framework addressed
in Chapter 3. Within that formulation, we know that a right coprime fac-
torization of a matrix transfer function Po reads as

Po = NrM
−1
r (5.1)

where Nr and M−1
r are said to be right coprime over RH∞ if they have

the same number of columns and if there exist stable matrices Xr and Yr

satisfying the Bezout identity

XrMr + YrNr = I (5.2)

Within this framework, the so-called partial state, ξ, is the fictitious
signal that appears after the right factorization of Po, as shown in Figure
5.1.

Mr

-1 Nr

yxu

Figure 5.1: Right coprime factorization of Po in (5.1).

In Chapter 4, we have considered how the partial state, ξ, may be used
to complement a control system designed just for the nominal plant. The
strategy is based on using the partial state to compute an estimation of the
output signal. Such estimation is used to calculate how the estimated output
differs form the real output and, in consequence, to take a suitable corrective
control action. This give rise to a control configuration that allows the
enhancement of the robustness properties of the nominal control system. For
the control structure presented in this Chapter, the partial state is also taken
into account but used in a different way. The particular manner in which
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the proposed control configuration deals with the partial state is sketched in
Figure 5.2.

Mr

-1K1 Nr

yx

-

xd u

di

e1

Figure 5.2: The basic structure for the proposed control configuration.

The new configuration results in a genuine way of building the error sig-
nal, e1. Instead of comparing the output controlled signals with the reference
signals, as it is usually done in standard feedback control, the error signal
in the presented approach results form the difference between the desired
partial state and the actual partial state, i.e., e1 = ξd − ξ.

The controller K1 in the scheme depicted by Figure 5.2 is designed to
minimize the error signal e1. In other words, to force the actual partial
state, ξ, to match the desired partial states, ξd. The consequence of feeding
the partial state back, instead of the output signals, is that disturbances
entering at the output of the plant are not measured. For this reason, output
disturbances can not be eliminated. Nevertheless, we saw in Section 3.4 that
the final achieved controller K1 feeding the partial state back presents the
advantage of avoiding RHP-zeros to cause closed loop instability.

In a real scenario, the direct access to the partial state shown in Figure
5.2 is meaningless. Therefore, if we want to apply this control strategy to a
real system, some estimation technique shall be used. To observe the partial
state, the transfer matrix functions Xr and Yr, satisfying the Bezout identity
(5.2), are introduced to the control system. The resulting control scheme is
depicted in Figure 5.3.

Within the coprime factorization framework, the two Bezout comple-
ments Xr and Yr allow to recover the partial state, ξo. Recalling Section
3.4, we know that it is possible to write, from Figure 5.3,

y = Nrξ, u = Mrξ − di (5.3)

Equations (5.2) and (5.3) show immediately how to recover the partial state:
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Mr

-1K1 Nr

yx

-

xd u

di

e1

Xr Yr

xo

Figure 5.3: Observer-based control scheme.

ξo = Xru + Yry = (5.4)
= (XrMr + YrNr)ξ − Xrdi (5.5)

As long as the two observer transfer matrix functions Xr, Yr, make the
Bezout identity (5.2) to be satisfied, the scheme allows the reconstruction,
i.e.,

ξo = ξ − Xrdi (5.6)

The reconstructed signal ξo in (5.6) incorporates a measure of the distur-
bances signal that can affect the input of the plant, Po. Therefore, the error
signal e1 can be seen as a measure of how the actual partial state differs from
the desired partial state due to the disturbances di, say

e1 = ξd − ξ + Xrdi (5.7)

We will see how to design a suitable feedback controller K1 and how to
find a right coprime factorization, Po = M−1

r Nr, and the associated Bezout
components, Xr and Yr to minimize e1.

When the feedback structure shown in Figure 5.3 is designed, a prefilter
controller K2 must be incorporated to allow building the desired value for
the partial state, ξd, as it is shown in Figure 5.4. A static prefilter can be
easily found to adapt the reference command signals, r, for steady-state ac-
curacy. This reminds the constant prefilter controller that allows to include
the reference signal to the one degree-of-freedom H∞ loop-shaping control
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configuration (McFarlane and Glover, 1992). However, for many tracking
problems this will not be sufficient and a dynamic design for K2 is required.
The prefilter is designed to force the response of the closed-loop system to
follow that of a specified Reference Model, Tref . This is done in a manner
similar to the dynamic two degrees-of-freedom control configuration pro-
posed in (Limebeer et al., 1993) as an extension to one degree-of-freedom
H∞ loop-shaping design procedure.

Mr

-1K1K2 Nr

yx

-

xd u

di

e1
r

Xr Yr

xo

Figure 5.4: Overall 2-DOF control configuration.

The 2-DOF scheme shown in Figure 5.4 presents a concise, and well
suited for design, separation between feedback and open-loop properties.
Therefore, since robustness is, in fact a feedback property (Safonov et al.,
1981) we will setup the control problem as the design the robust feedback
controller K1 in order to give robustness to the control system and the
reference controller K2 in order to achieve Model Reference specifications.

Let us assume, without lost of generality, that multiplicative input un-
certainty is considered. In such an uncertainty description, the plant P to
be controlled is unknown but belonging to a set of plants, P, built around a
nominal model, Po,

P = {P : P = Po(I + W2∆W1)} , σ̄(∆) ≤ 1 ∀ω (5.8)

where W1 = wII, W2 = I.

Let us also assume that an input/output ideal response is specified by
means of a Reference Model Tref . Therefore, the control objective can be
stated as follows:
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Given a nominal system Po, an uncertainty description that gives
rise to the family of plants P in (5.8) and a Reference Model Tref ,
design a control system so that the input/output relations for all
possible plants P ∈ P behave as close as possible to Tref and
provides the desired stability margins.

This problem could be called the design of Model Reference Robust Con-
troller. The way to the solution will comprise the application of the following
steps to the control scheme depicted in Figure 5.4.

Step 1: Feedback controller design. Find a coprime factorization
for the nominal model, Po = M−1

r Nr, the associated Bezout compo-
nents, Xr and Yr and design of the feedback controller K1 so that the
resulting closed-loop system remains stable for all P ∈ P.

Step 2: Reference controller design. Design a prefilter controller
K2 so that relations from the references to the outputs for all P ∈ P
behave as close as possible to that of the reference model Tref . The
design of the reference controller will depend upon the performance
criterion chosen for the desired closeness to the reference model Tref .
We will address the problem to optimal Model Reference controller
specifications in an ∞-norm sense. This way, the design of the reference
controller turns out to be a Model Matching Problem.

Next Section deals with the design of the feedback structure for robust
stability, i.e., the design of the feedback controller K1, the right coprime
factors M−1

r , Nr, and the associated Bezout components, Xr, Yr. Section
5.4 addresses the design of the prefilter controller K2.

5.3 Feedback controller design

This Section presents the design of the feedback controller K1 and also the
finding of a coprime factorization for the nominal model, Po = M−1

r Nr,
and the associated Bezout components, Xr and Yr, for the proposed control
configuration shown in Figure 5.3.

A right coprime factorization of the nominal model, Po = M−1
r Nr, with

Nr, Mr ∈ RH∞ , is computed as we saw in Section 3.3. The only re-
quirement will be to exist matrix transfer functions, Xr, Yr ∈ RH∞ , such
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that a Bezout identity holds. With right coprime factors Nr, Mr, Xr, Yr

and with a given uncertainty description (5.8), the feedback controller K1

shown in Figure 5.3 may be designed by applying a robust control design
methodology. The objective is that the resulting closed-loop system guar-
antees some stability margins. Obviously, the choice of the robust control
design strategy will depend upon the uncertainty description. The only re-
quirement will be to provide a Robust Stability test in order to check the
stability margins that the resulting controller provides. Different approaches
are (Vidyasagar, 1985), (Morari and Zafirou, 1989), (Grimble, 1994), (Green
and Limebeer, 1995) and (Zhou and Doyle, 1998), among others.

One of the most distinctive features of the proposed approach is the
usage of the partial state ξ as the control variable. It has been extensively
commented and it is easily perceived from the control scheme in Figure
5.3. In this point we can reveal that this is not the only peculiarity in the
proposed control scheme. Another distinguishing feature is that of giving the
right coprime factors of the plant and its associated Bezout complements an
active role in the overall control system.

Effectively, from Theorem 3.3.1 we know that a right coprime factoriza-
tion of the nominal model, Po = M−1

r Nr, and the associated Bezout com-
ponents, Xr and Yr can be found by means of the state feedback gain, F ,
and the state observation gain, L. They are entirely free assignable matrices
with the only restriction that A + BF and A + LC must be asymptotically
stable. We can see, from equation (3.16), that the eigenvalues of A + BF
determine the resultant poles of Mr and Nr. Analogously from equation
(3.17), the eigenvalues of A + LC establish the poles of Xr and Yr.

Obviously, for a right coprime factorization, Po = M−1
r Nr, the Bezout

equation XrMr + YrNr = I must be fulfilled independently of the place
that the eigenvalues of A + BF and the eigenvalues of A + LC are assigned.
Nevertheless, depending on such a pole placement, each one of the involved
factors, Mr(s), Nr(s), Xr(s) and Yr(s), will have different poles and different
zeros. As long as Mr(s), Nr(s), Xr(s) and Yr(s) contribute individually in
the relevant input/output transfer functions, the pole placement procedure
can be seen, and used, to provide an extra degree of freedom. That is the
key idea of the proposed design for the feedback control scheme.

To design the feedback structure shown in Figure 5.3, the control scheme
with direct access to the partial state ξ is considered first (see Figure 5.2).
Its input/output relations are developed and the properties of such an ideal
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control configuration are analyzed. Next, the observer-based control scheme
is considered since the structure with direct access to the partial state has
not applicability to control a real system (see Figure 5.3). The resultant
input/output relations are also developed. The final feedback controller K1

and the coprime factors Mr, Nr, Xr and Yr results from solving a con-
strained H∞ optimization problem which, essentially, arises from enforcing
the input/output relations of the observer-based control scheme in Figure
5.3 to match that of the direct access control scheme in Figure 5.2.

5.3.1 Direct access to the partial state

Let us assume that Po = M−1
r Nr is a right coprime factorization for the

nominal model of the plant. Let us also assume that partial state ξ is
directly accessed. Both assumptions allow to consider the feedback control
structure shown in Figure 5.2.

This situation is, in fact, unrealistic since the partial state is an artificial
signal appearing in the context of coprime factorization and direct access
to ξ is meaningless when one is faced with the real plant. Nevertheless, the
structure in Figure 5.2 presents some advantages. In Section 3.3 we saw that
it is possible to detect a remarkable difference between the standard output
feedback control scheme and that shown in Figure 5.2: in the former, the
feedback controller K1 is in charge of the nominal plant Po = M−1

r Nr; in
the later, the controller K1 faces just one of the coprime transfer matrices
in which the nominal plant is split up, that is M−1

r . Within a right coprime
factorization of the plant, the poles of Po are absorbed into M−1

r as poles;
the zeros of Po are absorbed into Nr as zeros. As it is stood out by remark
3.4.4, the final achieved controller K1 in the ideal structure shown in Fig-
ure 5.2 avoids dealing with RHP-zeros of the plant. This is an important
advantage since the possible RHP-zeros of the plant are prevented to cause
closed-loop instability. Another important advantage is that the methodol-
ogy used to design the controller K1 does not have to be constrained with
the requirement that the resulting controller be stable.

On the other hand, the scheme in Figure 5.2 does not allow output
disturbances to be rejected. This is an obvious consequence of feeding the
partial state back instead of feeding the output signal y back. Despite this
serious drawback, we are primarily interested in exploiting the advantage
pointed above and explained in Section 3.4.2.
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From Figure 5.2 we can write, after some straightforward algebra, the
relations between the input signals [di ξd]T and the output signals [u y]T :

[
u
y

]
=
[ −MrRYrNrM

−1
r MrR

Nr(I − R)M−1
r NrR

] [
di

ξd

]
(5.9)

where

R
.= (I + M−1

r K1)−1M−1
r K1 (5.10)

and

I − R = (I + M−1
r K1)−1 (5.11)

Figure 5.5 illustrates typical frequency response shapes for R and I − R
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Figure 5.5: Typical frequency plots for R and I − R.

Assuming a nominal situation in which no disturbances di enter the con-
trol system, the scheme in Figure 5.2 can be represented as it is shown in
Figure 5.6.

Figure 5.6 shows the ideal representation in which the input disturbances
signal is zero, i.e., di = 0. In such a case, the feedback controller K1 and the
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right coprime transfer matrix M−1
r can be grouped to form a new transfer

function R defined in equation (5.10).

Mr

-1K1

R

Nr

yuxd x

-

Figure 5.6: Ideal representation of the feedback scheme with di = 0.

Remark 5.3.1. Assuming a nominal situation in which no disturbances di

enter the control scheme in Figure 5.2, the relation from the desired partial
state ξd and the output signal y, is just reduced to

y = NrR ξd (5.12)

where Nr is the transfer matrix that contains the (possibly RHP) zeros of
the plant and R is defined in equation (5.10).

The transfer matrix R is a function of the controller K1 and the coprime
factor M−1

r . As long as R relates the desired partial state, ξd, and the actual
partial state, ξ, it should have, ideally, an all pass shape with constant
magnitude equal to one. Therefore, the feedback controller K1 and the
right coprime factors could be designed by minimizing the following weighted
H∞ norm:

‖W (I − R)‖∞ (5.13)

The optimization problem (5.13) represents the minimization of the maxi-
mum of the weighted difference between R and its ideal value, I. The weight
W may be chosen to have a high-pass shape to enforce the optimization
problem at low frequencies.

An alternative optimization problem could be to design the feedback con-
troller K1 and to find the right coprime factors by minimizing the following
weighted H∞ norm:

∥∥WNr(I − R)M−1
r

∥∥
∞ (5.14)
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The optimization problem (5.14) represents the minimization of the maxi-
mum of the weighted transfer function from the disturbances di to the output
y. Note that the effect of the disturbances di hinders the transfer function
from y to ξd to be just NrR, as it is stated by Remark 5.3.1.

5.3.2 Observer-based access to the partial state

Let us consider a more realistic case in which the partial state can not be
directly accessed. So, the observer structure have to be used in order to
recover ξ as shown in Figure 5.3.

The relations between the input signals [di ξd]T and the output signals
[u y]T can be derived from Figure 5.3 after some straightforward algebra:

[
u
y

]
=
[ −MrRYrNrM

−1
r MrR

Nr(I − R)M−1
r + NrRXr NrR

] [
di

ξd

]
(5.15)

with R and I − R defined in (5.10) and (5.11) respectively.

The resulting input/output relations (5.15) for the observer-based con-
trol scheme in Figure 5.3 are almost identical to the relations (5.9) for the
direct access scheme in Figure 5.2. The only difference is the transfer matrix
function from the disturbances di to the outputs y in which a new addend,
NrRXr, appears due to the observer.

The optimization problem (5.13) proposed for the direct access case, may
also be posed here. Alternatively, as it was performed in (5.14), the weighted
transfer function from the disturbances di to the output y may be minimized,

∥∥W (Nr(I − R)M−1
r + NrRXr)

∥∥
∞ (5.16)

Remark 5.3.2. The transfer matrix function from the disturbances di to the
outputs y is to be minimized by means of solving the optimization problem
(5.16). This allows to design the feedback controller K1 and to find coprime
factors Nr, Mr, Xr and Yr such that the observer-based structure in Figure
5.3 approximates as much as possible the ideal structure in Figure 5.6. In
other words, the relation from the desired partial state ξd to the outputs y
approximates as much as possible NrR.
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5.3.3 Design procedure

The feedback control structure based on the direct access to the partial state
(Figure 5.2) has been dealt and input/output relations have been developed
in (5.9). As long as the the partial state can not be directly accessed dealing
with the real plant, an observer-based control scheme has been used (Figure
5.3) and its input/output relations have been developed in (5.15). We have
seen that the usage of the observer-based structure entails the appearance
of an extra term in the transfer function from di to y, that is NrRXr.

As it has been pointed out in Remark 5.3.2, the design procedure could
be based on minimizing the transfer matrix functions from the disturbances,
di, to the output, y, in order to force the relations from the desired partial
state, ξd, to the output, y, to match the ideal transfer function, i.e., NrR.

Robust stability

In Section 2.3 we showed that a multiplicative input uncertainty description,
as the one considered in (5.8), imposes a bound on the frequency response
of the transfer matrix function from the input disturbances signal, di, to the
control signal, u. This fact restricts the design of the feedback controller K1

and the right coprime factors Nr, Mr, Xr and Yr.

The uncertainty description assumed in (5.8) allows us to redraw the
observer-based feedback control configuration. Figure 5.7 shows the resulting
weighted observer-based feedback control scheme.

K1

W1

Xr

�

Yr

Po

di

xd

xo

-

ue1

u’

y

Figure 5.7: Observer-based feedback control scheme with the uncertain plant.
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From the overall control scheme in Figure 5.7 we can compute the transfer
matrix function, say N , that relates the input signals [di ξd]T with the
weighed control signals and the output signal, [u′ y]T ,

N =
[ −W1MrRYrNrM

−1
r W1MrR

Nr(I − R)M−1
r + NrRXr NrR

]
(5.17)

where R and I − R are defined in (5.10) and (5.11) respectively.
Considering unstructured uncertainty, e.g., ∆ is a full complex matrix

of appropriate dimensions, Theorem 2.3.1 imposes a condition on the ∞-
norm of the transfer matrix function from the input disturbance, di, to the
weighted control signal, u′, i.e., N11

.= M, in order for robust stability to be
guaranteed. From (5.17) we have that

‖M‖∞ =
∥∥−W1MrRYrNrM

−1
r

∥∥
∞ (5.18)

Therefore, form (5.18) and condition (2.23) we have robust stability iff,

∥∥−W1MrRYrNrM
−1
r

∥∥
∞ < 1 (5.19)

Pole placement

It seems obvious that the problem is to find an optimal feedback controller
K1 by solving the optimization problem (5.16) subject to the constraint
(5.19) for given coprime factors Nr, Mr, Xr and Yr. Nevertheless, as we
are mainly interested in making the most of the coprime factorization, the
optimization problem is posed in a different way. It is considered next.

We showed by means of Theorem 3.3.1 that a proper choice of the state
feedback gain matrix, F , and the state observation gain matrix, L, allows
to fix, in an appropriate manner, the resultant poles of Mr and Nr — see
equation (3.16) — and the poles for Xr and Yr — equation (3.17). The state
feedback gain, F , and the state observation gain, L, are free assignable ma-
trices that provides an additional degree of freedom with the only restriction
that A + BF and A + LC must be asymptotically stable. This degree of
freedom is to be used in the optimization procedure.

The proposed design procedure does not consist on solving the optimiza-
tion problem (5.16) subject to (5.19) for K1 with given coprime factors Nr,
Mr, Xr and Yr. Instead, a feasible shape for I − R is proposed, say
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Sd .= I − R (5.20)

and the following constrained optimization problem is solved being I −R an
initial fixed entry and the poles for Nr Mr, Xr and Yr the unknowns:

min
pi

∥∥Nr(I − R)M−1
r + NrRXr

∥∥
∞

subject to (5.21)∥∥−W1MrRYrNrM
−1
r

∥∥
∞ < 1

Here, pi = [pFi pLi ]
T ∈ C−, being pFi the assigned eigenvalues of A + BF

and pLi the assigned eigenvalues of A + LC. In other words, pFi are the
placed poles for Nr and Mr, and pLi the placed poles for Xr and Yr.

Actually, Nr and also Mr are unknowns but they are not entirely free
since the coprime factorization in equation (3.16) and (3.17) constrains them.
The same happens with the Bezout complements Yr and Xr, which are linked
by means of the Bezout identity (3.12).

An asymptotic plot over the frequency of the desired Sensitivity function
is illustrated in Figure 5.8.
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Figure 5.8: Exact and asymptotic plot of Sd(jω).

A usual shape for Sd may be represented by

Sd =
s + ωbε

s/g + ωb
(5.22)
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It is observed that |Sd(jω)| is equal to ε 
 1 at low frequencies and it is
equal to g ≥ 1 at high frequencies. The asymptote crosses 1 at ωb, which is
approximately the bandwidth requirement.

To finish the design procedure, the feedback controller K1 must be re-
covered. Note that we have followed an indirect design approach: first a
transfer matrix function Sd is set and then, the feedback controller K1 that
assures such transfer matrix function Sd is to be found by means of isolating
it from equation (5.11). The design equation for K1 is

K1 = MrR(I − R)−1 (5.23)

For the design procedure, a desired shape for Sd must be provided. This
shape will be the target for the optimization problem (5.21). Nevertheless,
fixing the shape for Sd determines, indirectly, the shape for R i.e., the trans-
fer matrix function from ξd to ξ. Then, as pointed out in Remark 5.3.1, the
resulting shape for R and the achieved optimal coprime factor Nr determines
the input/output dynamics for the nominal feedback controller structure.

Remark 5.3.3. The minimization problem (5.21) has to find optimum co-
prime factors, Nr, Mr and Xr, to minimize

∥∥Nr(I − R)M−1
r + NrRXr

∥∥
∞

constrained with ‖−W1MrRYrNrM−1‖∞ < 1. It should be noted that the
high-pass shape Sd can not be chosen arbitrarily: if Sd was such that σ̄(R) >
1/σ(W1), the optimization problem would have to try very hard to fulfill the
constraint ‖−W1MrRYrNrM−1‖∞ < 1 and this fact would be in expenses of∥∥Nr(I − R)M−1

r + NrRXr

∥∥
∞ which would not be, probably, minimized to a

sufficient degree. Therefore, the high-pass shape Sd may be chosen such that

σ̄(R) ≤ 1/σ(W1) (5.24)

Design outline

The feedback controller design constitutes the first step for the proposed
2-DOF control configuration. Here, we briefly describe the important points
in the design procedure.

1. Uncertainty description: Assume that the plant P to be controlled
is unknown but belonging to a set of plants P build around the nominal
model Po, as in (5.8).
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2. Initial factorization: Provide pFo ∈ C− and pLo ∈ C−, i.e., initial
stable eigenvalues for the right coprime factorization of the nominal
model of the plant, Po = M−1

r Nr, and initial stable eigenvalues for the
associated Bezout components Xr, Yr, respectively.

3. Desired sensitivity: Impose the desired high-pass shape Sd = I −R
using equation (5.22).

4. Constrained optimization problem: Solve the constrained opti-
mization problem (5.21) with Sd, pFo and pLo as initial guesses.

5. Design of K1: Recover the feedback controller K1 by means of the
design equation (5.23), with Sd and the optimum solution M−1

r .

6. Implementation: Implement the feedback controller scheme shown
in Figure 5.3 with the recovered K1 and the optimum right coprime
solutions, i.e., Nr, Mr, Xr and Yr.

We next present an example to illustrate the above procedure for the
design of the feedback controller scheme shown in Figure 5.3.

Example 5.3.1. Consider that the feedback controller scheme in Figure 5.3
is used to control a system that is described by the following nominal model

Po =
5(s + 1.3)

(s + 1)(s + 2)
(5.25)

The uncertainty in the model is parametrised by a multiplicative input
uncertainty as in (5.8) with

W1 =
3(s + 1)
(s + 20)

(5.26)

To design the elements of the feedback controller scheme, a desired sen-
sitivity function Sd is imposed from (5.22) with ε = 0, g = 1 and ωb = 3:

Sd =
s

s + 3
(5.27)

The shape (5.27) provides a first order response with time constant 1/3
seconds. The choice for Sd assures |R(ω)| < 1/|W1(ω)| as we pointed out in
Remark 5.3.3.
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To proceed with the example, it is necessary to initialize the optimization
problem (5.21) with values for the pole placement. We try with pFo =
[−10 − 10]T and pLo = [−20 − 20]T .

The optimization procedure gives the following optimal right coprime
factorization, Po = M−1

r Nr,

Nr =
3(s + 1.3)

(s + 100.0159)(s + 100.0139)
(5.28)

M−1
r =

(s + 100.0159)(s + 100.0139)
(s + 1)(s + 2)

(5.29)

and the corresponding Bezout transfer functions,

Xr =
s(s + 199.7791)
(s + 1.3746)2

(5.30)

Yr =
3317.8(s + 1.4606)

(s + 1.3746)2
(5.31)

The desired sensitivity Sd selected in (5.27) and the optimum coprime
factor Mr in (5.29) are substituted into equation (5.23) to obtain the final
feedback controller K1. Note that Sd .= I −R as we pointed out in equation
(5.20). Therefore,

K1 =
(s + 1)(s + 2)(s + 30000)

10000s(s + 1.0002)2
(5.32)

The optimization problem (5.21) provides optima Nr, Mr, Xr and Yr such
that the maximum of the magnitude of Nr(I − R)M−1

r + NrRXr over all
frequencies is minimized. The achieved frequency response for the resulting
magnitude is shown in Figure 5.9, in solid line. It is also shown the frequency
response of the magnitude of NrRXr, in dashed line, and the magnitude
of the proposed shape, Sd, in dotted line. It should be noted that the
optimization problem (5.21) tends to find solutions for Xr and Nr such that
the addend NrRXr is minimized with fixed R. At the same time, it tends
to find solutions for Nr and Mr such that the addend Nr(I − R)M−1

r is
minimized with fixed I − R.
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Figure 5.9: Magnitude plots after the optimization problem (5.21): |Nr(I −
R)M−1

r + NrRXr| (solid) and |NrRXr| (dashed). |Sd| (dotted).
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Figure 5.10: Bound for robust stability |−W1MrRYrNrM
−1
r | (solid). |R| (dotted)

and |W1|−1 (dash-dotted)
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Figure 5.11: Bezout identity (5.2) (solid), |NrYr| (dashed) and |MrXr| (dotted).

Figure 5.10 shows the bound for robust stability. The solid line illus-
trates that | − MrRYrNrM

−1
r | < 1 ∀ω, i.e., the constraint on the optimiza-

tion problem (5.21) is not failed. The dotted line shows the, indirectly fixed,
magnitude of R. It is seen that the optimization problem (5.21) finds so-
lutions for Nr, Mr, Xr and Yr such that | − MrRYrNrM

−1
r | approximates

|R|. Since the plant is SISO, we have that | − MrRYrNrM
−1
r | ≡ |RNrYr|.

The term NrYr, one of the addends of the Bezout identity (5.2), usually
has a low-pass shape as it can be seen in Figure 5.11. This fact hinders
| − MrRYrNrM

−1
r | from matching |R| for all frequencies.

The fulfillment of the Bezout identity (5.2) is shown in Figure 5.11 by
means of solid line. The magnitude of NrYr and MrXr are depicted in
dashed and dotted lines, respectively.

�

5.4 Reference controller design

Once the feedback controller K1 is obtained with the approach presented
above, a prefilter controller K2 has to be found. This controller is in charge
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of adapting the reference signal r and providing the desired partial state ξd.
The proposed 2-DOF control configuration is shown in Figure 5.4.

A simple constant prefilter K2 allows for the commands, r, to enter the
feedback control scheme keeping the steady-state accuracy. However, for
many tracking problems this will not be sufficient and a dynamic design for
the prefilter K2 is required. Both the design for the static case and for the
dynamic case is addressed next.

5.4.1 Static controller

A static inverse-based prefilter can be easily found to accommodate the
reference signal r and to provide the desired partial state ξd. It can be
implemented, as

K2
.= [Nr(0)R(0)]−1 (5.33)

This simple choice for the prefilter controller K2 as scaling factor assures that
the nominal closed-loop transfer matrix function from r to the controlled
output signal y has unity steady-state gain. It is illustrated by means of an
example.

Example 5.4.1. Consider the SISO feedback control system in Example
5.3.1 described by the nominal model Po (5.25) and the multiplicative un-
certainty description characterized by the weight W1 (5.26). The feedback
controller K1 (5.32) was designed for robust stability together with optima
right coprime factors Nr, Mr, Xr and Yr in (5.28 – 5.31).

The inverse-based prefilter K2 in equation (5.33) is just used to adapt the
reference signal r and to guarantee unity steady-state gain. The optimum
right coprime factor Nr (5.28) evaluated at ω = 0 has a value of Nr(0) =
3.8988 · 10−4. The value of R from (5.27), being R = 1 − Sd, evaluated at
ω = 0 is R(0) = 1. Therefore,

K2 = 2564.9 (5.34)

Figure 5.12 shows the closed loop step responses for the nominal plant,
Po, and for the uncertain plant, P ∈ P, with the static prefilter K2 in
(5.34). The step response dynamics are those given by the feedback con-
troller scheme designed in Example 5.3.1.
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Figure 5.12: Closed loop step responses with the static prefilter K2 (5.34): nominal
plant (solid) and uncertain plant with W1∆ = diag{0.2, −0.2} (dashed)

�

5.4.2 Dynamic controller

We have pointed out in Example 5.4.1 that a static prefilter controller K2

allows for the reference signal r to be introduced into the feedback control
scheme guaranteeing unity steady-state gain. The resultant step response
dynamics are those fixed by the feedback controller structure. Note that in
the nominal case, i.e., P = Po, the prefilter controller K2 sees just NrR.
Therefore, the relation from the references r to the outputs y reads as

y = NrRK2 r (5.35)

It should be noted that the right coprime factor Nr contains the zeros of Po

and the poles pFi achieved with the optimum pole placement; R has been
fixed as a design parameter.

To include different and independent dynamics for the step response, we
have to take advantage of the second degree of freedom that K2 provides.
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Therefore, the prefilter controller K2 is designed to force the response of the
closed-loop system for all plants P ∈ P described in (5.8) to follow that of
a specified model, Tref , often called the reference model. The overall design
problem is shown in Figure 5.13.

K1

Tref

K2

y

-

xdb ue1
r e2’e2

Xr Yr

xo

aIaI

W1 �

Po

di

u’

Figure 5.13: The two degrees-of-freedom design problem.

Let us assume that Tref is the desired closed-loop transfer matrix function
selected to introduce the desired step response characteristics into the design
process (time-domain specifications). Then, the design problem is to find a
reference controller K2 so that the relation form the reference, r, to the
output, y, behave as close as possible to that of the reference model, Tref .
The design of the reference controller will depend upon the performance
criterion chosen for the desired closeness to the reference model Tref . We
address the problem to optimal Model Reference controller specifications in
an ∞-norm sense. This way, the design of the reference controller turns out
to be a Model Matching Problem.

From the overall scheme in Figure 5.13, we can compute the transfer
matrix function Ñ that relates the inputs [di r]T , i.e., the disturbances di

and the command signal r, with the outputs [u′ e′2]T , i.e., the weighted
control signal u′ and the weighted Model Matching error, e′2,

Ñ =
[ −W1MrRYrNrM

−1
r αW1MrRK2

Nr(I − R)M−1
r + NrRXr α2(NrRK2 − Tref )

]
(5.36)
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Remark 5.4.1. The relations from the disturbances signal, di, are not de-
pendent on the prefilter controller K2. Moreover, if r = 0 and α = 1 we have
that e′2 = y. Then, the relations from di are the same as those computed in
the first step of the design, i.e. the feedback controller structure, as it can be
seen in equation (5.17).

The scaling parameter α is used to place more attention in model match-
ing, i.e., the (2,2) block, rather than in transfer matrix function from r to
u′, i.e., the (1,2) block.

In view of Remark 5.4.1, the H∞ norm of the complete transfer matrix
function (5.36) is minimized to find K2 without modifying the robust sta-
bility margins provided by the feedback controller scheme in the first step of
the design, i.e., the (1,2) block.

The 2-DOF design problem shown in Figure 5.13 can be easily cast into
the general control configuration shown in Figure 5.14(a).

D
z1

z2

v

w1

w2

u

K2

G

(a)

D
z1

z2

w1

w2 �

(b)

Figure 5.14: General interconnection of system with uncertainty.

The interconnection matrix G in Figure 5.14(a) contains the feedback
control scheme with the optimum right coprime factors Nr, M−1

r , Xr and Yr;
the controller K1; the uncertainty weights W1, W2 and the scaling factors
αI. Comparing Figure 5.13 with the scheme in Figure 5.14(a) we define
w1 = di, w2 = r, z1 = u′, z2 = e′2, v = β and u = ξd. The augmented plant
G and the controller K2 are related by the following lower linear fractional
transformation:
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F�(G,K2)
.= G11 + G12K2(I − G22K2)−1G21 (5.37)

The lower LFT (5.37) is represented in Figure 5.14(b) by the matrix transfer
function Ñ , calculated in (5.36).

The partitioned generalized plant G is:


 u′

e′2
β


 =


G11 G12

G21 G22






di

r

ξd


 (5.38)

=


 −W1MrRYrNrM

−1
r 0 W1MrR

Nr(I − R)M−1
r + NrRXr −α2Tref αNrR

0 αI 0






di

r

ξd




The generalized plant (5.38) is to be solved suboptimally for the prefilter
controller K2 using standard algorithms (Doyle et al., 1989).

Remark 5.4.2. The reference signals r must be scaled by a constant matrix
Wr to make the closed-loop transfer function from r to the controlled output
y match the desired reference model Tref exactly at steady-state. This is not
guaranteed by the optimization problem which aims to minimize the ∞-norm
of the error, i.e.,

∥∥α2(NrRK2 − Tref )
∥∥
∞. The required scaling is given by

Wr
.= [K2(0)Nr(0)R(0)]−1Tref (0) (5.39)

Therefore, the resulting reference controller is K2Wr.

We next present an example to illustrate the design procedure for the
model reference robust controller K2.

Example 5.4.2. To illustrate the design procedure for the dynamic pre-
filter K2, let us use the feedback structure designed for the SISO system in
Example 5.3.1. It was described by the nominal model Po (5.25) and the
multiplicative uncertainty description characterized by weight W1 (5.26).
The feedback controller K1 (5.32) was designed for robust stability together
with the optima right coprime factors Nr, Mr, Xr and Yr in (5.28 – 5.31).

The following Reference Model is chosen:
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Tref (s) =
7

s + 7
(5.40)

Such Reference Model (5.40) provides first order responses with time con-
stant 1/7 seconds.

To complete the design procedure, an appropriate value for the scalar
parameter α have to be selected. A compromise between the relations from
the command signal r, i.e., the (1,2) and (2,2) blocks in the transfer matrix
(5.36), have to be found. Figure 5.15 represents the magnitude over the fre-
quency of the product MrRK2, where K2 has been computed for increasing
values of α, i.e., α = 1, 2, 4, 6, 8and10. Bottom line corresponds to |MrRK2|
for α = 1; the top line corresponds to |MrRK2| for α = 10. We can observe
that, for α = 10 we have that |MrRK2| > 1. Since we are not interested in
amplifying the control signal u, we will not chose values for α greater than
8.

Figure 5.16 illustrates the magnitude of the closed-loop relation from
r to y, i.e., NrRK2, over the frequency, where K2 has been computed for
α = 1, 2, 4, 6, 8and10. The curve with the largest peak at 2.85 corresponds
to α = 1. We see that the larger the value of α, the smaller the peak of
the closed loop relation and the better the model matching. Therefore, we
choose α = 8 which assures a good model matching without amplification of
the control signal.

The reference model Tref , the optimum right coprime factorization Mr,
Nr in (5.29 – 5.28), the corresponding Bezout components Xr, Yr in (5.30 –
5.31) and the desired sensitivity Sd in (5.27) are used to build the generalized
plant P as that in (5.38). The controller K2 is designed by applying standard
H∞ algorithms to the generalized plant P (Balas et al., 1998), (Chiang and
Safonov, 1992).

The achieved prefilter controller K2 has 11 states. A balanced realization
and an optimal Hankel norm approximation on the state-space of K2 provide
a 4th order controller. The bode plots for the achieved controller and the
reduced controller are shown in Figure 5.17. A state-space realization of the
4th order reduced controller is given in Table C.3.

Figure 5.18 illustrates the closed loop time responses to a unity setpoint
change. The response for the nominal plant is shown in solid line and that
for the uncertain system is in dashed line. The response for the target model
(5.40) is shown in crosses.
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Figure 5.15: Relation from r to u: |MrRK2| for α = 1, 2, 4, 6, 8 and 10.
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Figure 5.16: Relation from r to y: |NrRK2| for α = 1, 2, 4, 6, 8 and 10 (solid).
Target model, (5.40) (croses).
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Figure 5.17: Frequency Bode plot for the 11th order prefilter controller K2 (solid)
and its 4th order optimal Hankel norm approximation (crosses).
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Figure 5.18: Closed loop step responses with the dynamic prefilter controller K2

given in (C.3): nominal plant (solid) and the uncertain plant (dashed). Step re-
sponse for of the target model (5.40) (crosses) �.
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In Example 5.3.1, we showed the design methodology for the feedback
control scheme. A feedback controller K1 was found by fixing a desired sen-
sitivity transfer matrix function Sd and solving a H∞ optimization problem
for the poles of the right coprime factors Nr, Mr, Xr and Yr to assure robust
stability. In Example 5.4.1, we showed how a constant prefilter controller
could be used to adapt the reference command, i.e., ξd = K2 r, provid-
ing input/output unity steady-state gain. The dynamics of such a 2-DOF
control configuration were provided by the feedback control structure with
y = NrR ξd for the nominal case. In Example 5.4.2, we showed how a pre-
filter controller could be designed to provide extra input/output dynamics to
those given by the feedback control structure. In fact, this is the task of this
prefilter controller and has been designed to provide robust model reference
responses. Next Section evaluates the proposed design methodology to the
control of the distillation column described in Appendix B.2.

5.5 Application Example

The proposed approach is applied to the control of a high purity distillation
system to illustrate the design procedure. The original control problem was
formulated by (Skogestad et al., 1988) as a bound on the weighted sensi-
tivity with frequency bounded input uncertainty. The optimal solution to
this problem is provided by the one degree-of-freedom µ−optimal controller
discussed in Example 2.4.1.

The following is an idealized dynamic model of the distillation column
described in detail in Appendix B.2,

Po =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
(5.41)

A relative uncertainty on each manipulated variable is considered with
magnitude

wI = 0.2
5s + 1

0.5s + 1
(5.42)

The weight wI in (5.42) may approximately represent a 20 % gain error
and a neglected time delay of 0.9 min. |wI(jω)| levels off at 2 (200 % un-
certainty) at high frequencies. This description of the uncertainty is the one
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selected for our control system. This relative uncertainty can be written in
terms of two scalar multiplicative perturbations ∆L and ∆V

dL = (1 + wI∆L)dLc, |∆L| ≤ 1 ∀ω
dV = (1 + wI∆V )dLc, |∆V | ≤ 1 ∀ω

(5.43)

where dL and dV are the actual inputs, while dLc and dVc are the desired
values of the flow rates as computed by the controller K1. Equation (5.43)
can be approximated by an ”unstructured” single perturbation,

(
dL
dV

)
= (I + W2∆W1)

(
dLc

dVc

)
, σ̄(∆) ≤ 1 ∀ω (5.44)

where ∆ is a ”full” 2 × 2 matrix, W1 = wII and W2 = I.

Either the original control problem by (Skogestad et al., 1988) and several
similar formulations (Green and Limebeer, 1995), (Morari and Zafirou, 1989)
among others, considered a bound on the weighted sensitivity, which allowed
responses with closed-loop time constant of 20 min.

Our design procedure starts by choosing the following desired sensitivity
function Sd:

Sd =
s

s + 1.5
I2 (5.45)

This corresponds to a first order response with time constant of approxi-
mately 1 minute. The choice for Sd satisfies σ̄(R) ≤ 1/σ(W1) we pointed
out in Remark 5.3.3.

To initialize the optimization problem (5.21) we choose pFo = [−1 −
1]T and pLo = [−10 − 10]T as values for the pole placement. State-space
realizations of the optimal right coprime factors, M−1

r , Nr, are given in
(C.6) and (C.5); state-space realizations of the optimal associated Bezout
complements, Xr, Nr, are given in (C.7) and (C.8).

The feedback controller K1 is achieved by substituting the optimal solu-
tion M−1

r (C.7) and Sd (5.45) in to equation (5.23), where Sd = I −R as we
pointed out in equation (5.20). A state-space realizations of K1 is given in
(C.9).
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Figure 5.19: Largest singular values plot after the optimization problem (5.21):
σ̄(Nr(I − R)M−1

r + NrRXr) (solid) and σ̄(NrRXr) (dashed). σ̄(Sd) (dotted).
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Figure 5.20: Robust stability bounds: σ̄(MrRYrNrM
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R ) (solid) and σ̄(W−1
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Figure 5.21: Bezout identity (5.2) (solid), σ̄(NrYr) (dashed) and σ̄(MrXr) (dot-
ted).

Figure 5.19 shows, in solid line, the achieved largest singular values plot
of transfer matrix function between di and y, i.e., σ̄(Nr(I−R)M−1

r +NrRXr).
The resultant largest singular values plot of the addend NrRXr is also plot-
ted over the frequency in dashed line. The frequency response of the de-
sired sensitivity in (5.45) is also shown in dotted line. Figure 5.20 illus-
trates, in solid line, the fulfillment of the robust stability condition, i.e.,
σ̄(MrRYrNrM

−1
R ) < σ̄(W−1

1 ). The curve in crosses illustrates the frequency
response of σ̄(R) which is linked up with the desired sensitivity Sd by
means of (5.20). Since Sd is chosen such that σ̄(R) < σ̄(W−1

1 ), the op-
timization problem (5.21) has to compute Nr, Mr, Xr and Yr such that
σ̄(Nr(I −R)M−1

r +NrRXr) is minimized and σ̄(MrRYrNrM
−1
r ) < σ̄(W−1

1 ).
The Bezout identity is shown in Figure 5.21. Also, the largest singular values
of NrYr, e, and MrXr, in dashed line and in dotted line, respectively.

To proceed with the second step of our design methodology, the reference
model for the step response is selected as

Tref =
0.12

s + 0.12
I2 (5.46)
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which is the same chosen in (Limebeer et al., 1993) and provides a first
order response with a time constant of approximately 8 minutes. The design
procedure is completed by choosing an appropriate value for the scalar α.
We choose α = 10.

The achieved prefilter controller K2 has 14 states. A balanced realization
and an optimal Hankel norm approximation of order 6 on the state-space of
K2 provides a controller with a state-space realization given in (C.10).
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Figure 5.22: Frequency Bode plot for the 14th order prefilter controller K2 (solid)
and its 6th order optimal Hankel norm approximation (crosses).

Figure 5.22 shows, in solid line, the singular values Bode plot for the 14th
states prefilter controller K2 and the 6th states reduced controller in crosses.

As it is pointed out in Remark 5.4.2, it is necessary to scale the command
signal r for steady-state accuracy. From equation (5.39) we chose the matrix
Wr to be

Wr =
[

42.1863 −32.1447
−32.1437 27.7045

]
(5.47)

The time responses of y1 and y2 for setpoint change in y1 is shown in
Figure 2.15 for the nominal and the six perturbed plants P (s) = Po(s)EIi
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given in (B.11) and (B.12). The responses for the nominal plant are illus-
trated in solid lines and the time responses for the perturbed plants appear
in dashed lines. The responses are not completely decoupled but show no
strong sensitivity to the uncertainty. The step responses of the reference
model Tref are depicted with crosses.
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Figure 5.23: Closed-loop setpoint change: response for the nominal plant Po

(solid) and for the uncertain plants Pi = PoEIi , i = 1, . . . , 6 (dashed). Step re-
sponse of the targed model Tref (crosses).

5.6 Summary

A new 2-DOF control configuration based on a right coprime factorization
of the model of the plant has been presented by using the partial state as
controlled variable. The approach has been presented as an alternative to
the commonly encountered strategy of setting the two controllers arbitrarily,
with internal stability the only restriction, and parameterizing the controller
in terms of the Youla parameter.

An observer-based feedback control scheme has been designed first to
guarantee some levels of stability robustness. A feedback controller K1 has
been found by fixing a desired sensitivity transfer matrix function Sd and
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solving a constrained H∞ optimization problem for the poles of the right
coprime factors Nr, Mr, Xr and Yr.

Then, a prefilter controller has been computed. We have seen how to
use a constant prefilter controller to adapt the reference command, i.e., ξd =
K2r, providing input/output unity steady-state gain. In such a case, we have
seen that the dynamics of the 2-DOF control configuration are provided by
the feedback control structure with y = NrR ξd for the nominal case. We
have shown how to design a prefilter controller to provide extra input/output
dynamics to those given by the feedback control structure. Since this is the
task of this prefilter controller it has been designed to provide robust model
reference responses.

The proposed 2-DOF has been evaluated on a high purity distillation
system. We have shown that our design procedure may be used to meet a
demanding mixture of robust stability and robust performance specifications.



Chapter 6

Conclusions and Further
Research

In this Chapter we recall the main conflicting objectives and the trade-offs that
have to be done when a control system is to be designed and we summarize
the main contributions presented in this work. In addition, some proposals for
further research are introduced.

6.1 Conclusions

Control system analysis and design have to consider the existence of two dif-
ferent classes of properties, say open-loop and feedback properties. Whereas
the former are concerned with the system responses to commands, the later
are related to stability and disturbances rejection.

It is well-known that many design methodologies are focused on feedback
control design. Nevertheless, what some approaches do is simply to design
a feedback controller but not necessarily the feedback properties. For this
reason, if we design for open-loop specifications, the final achieved feedback
properties may not be satisfactory. Therefore, a trade-off have to be made
in order to attain both kind of specifications.

Another point to consider in the analysis and design of a control system
is the presence of some kind of uncertainty associated with the model of
the plant. Effectively, such inherent uncertainty will affect both the open-
loop and feedback properties. However, uncertain is usually considered as

123
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affecting the feedback properties. The reason is obvious: a deterioration
of feedback properties may cause more harmful operating conditions than
an impairment of open-loop properties, i.e., instability is always undesirable
while a deterioration of the command responses may be, in some cases,
tolerated.

In this work we have presented two different approaches to figure out
the above mentioned problems. We have referred them as the robustness
enhancement and the 2-DOF approach.

6.1.1 The Robustness Enhancement approach

The Observer-Controller configuration for Robustness Enhancement allows a
two-step design procedure: first, an initial feedback control system is set for
high performance in terms of nominal command responses and second, the
resulting robustness properties properties, which are associated with feed-
back properties, are conveniently enhanced while leaving unaltered the step
responses provided by the initial controller.

Main points and contributions

The most important contributions with the robustness enhancement config-
uration are summarized next:

The presented approach is not based on reformulating a central controller
in the Youla parametrisation of the stabilizing controllers from a nominal
plant and then optimizing for the Youla parameter to get the final, robusti-
fied, controller.

Instead, an initial feedback control system is set for the nominal plant to
satisfy some step response requirements. In the second stage of the design,
the resulting robustness properties are conveniently enhanced while leaving
unaltered the step responses provided by the initial controller. Therefore,
1.- The Observer-Controller configuration for Robustness Enhancement al-
lows to take profit of the well established feedback design methodologies for
the nominal feedback controller.

The resulting control configuration can be seen as a double feedback con-
trol configuration. The former stands for high performance nominal require-
ments in terms of step response; the later accounts for stability in presence
of uncertainty.



Sec. 6.1. Conclusions 125

We have pointed out that many standard design methodologies are mainly
concentrated on the design of a one degree-of-freedom feedback control sys-
tem. Such a control configuration cannot perform a separation between
open-loop and feedback requirements. Nevertheless, classical control ap-
proaches tend to stress the use of feedback to modify open-loop properties.
For such a reason,
2.- The Observer-Controller configuration for robustness enhancement con-
tributes in avoiding the conflicting objectives in standard 1-DOF feedback
control configuration.

The resulting two-step design control configuration can be seen as a two
degrees-of-freedom control configuration. Strictly speaking, we have pre-
sented the 2-DOF control configurations as an structure that is able to per-
form a completely separation of properties in terms of a different processing
for both the command signals and the output signals. Nevertheless, the
separation principle can also be interpreted in a different direction, that is
to say, a separation in terms of a different processing for the nominal high
performance properties and the robustness properties.

For all this reasons,
3.- The Robustness Enhancement approach is presented as an alternative to
the design of a robust feedback control system.

6.1.2 The 2-DOF approach

Two degrees-of-freedom controllers turns up to be a solution to avoid the de-
pendence between open-loop and feedback properties, inherent in standard
feedback control. It is known that 2-DOF control configurations have the
attribute to deal separately with performance, in terms of command track-
ing, and robustness properties. Nevertheless, 2-DOF control configurations
are not used as expected due to the lack of methodologies for an straight-
forward design of both compensators. Actually, the approaches found in the
literature are mainly based on setting the two controllers arbitrarily, with
internal stability the only restriction, and parameterizing the controller in
terms of the Youla parameter.

In this work we have presented a new 2-DOF control configuration within
the framework of fractional representation. By using the partial state as
controlled variable, we have developed an observer-based feedback control
scheme to guarantee some levels of stability in presence of uncertainty, i.e.,
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robust stability. Since uncertainty also affects the command response per-
formance, a prefilter controller has been designed to cope with the command
responses for the uncertain system, i.e., robust performance.

Main points and contributions

Some important contributions can be drawn from the way to the solution:
The feedback controller has been found by fixing a desired sensitivity

transfer (matrix) function and solving a constrained H∞ optimization prob-
lem. The arguments of the optimization problem are the poles of the right
coprime factors of the plant and the observer. Therefore,

1.- The feedback control configuration is made up with an optimum right
coprime factorization of the model of the plant and an optimum observer.

The prefilter controller has been computed by means of a Model Refer-
ence problem. Therefore,

2.- The prefilter controller is designed by solving a model matching prob-
lem such that the response of the overall close-loop system match that of the
reference model.

Finally,
3.- The approach to design the 2-DOF control configuration can be seen

as an alternative to the design methodologies mainly based on optimization
problems in terms of a Youla parameterization.

6.2 Further research

CDC benchmark problem1: The original high-purity distillation column
benchmark problem has been used in the literature to test robust control ap-
proaches. Likewise, it has been employed through this work to experiment
with the proposed design procedures. The original benchmark problem for-
mulation is unrealistic since there is no bound on the input magnitudes and
the bounds on the performance and uncertainty are given in the frequency
domain (in terms of weighted H∞ norm). A different formulation is that
of the CDC benchmark problem, where the uncertainty is defined in terms
of parametric gain and delay uncertainty and the control objectives are a

1(Limebeer, 1991)
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mixture of time domain and frequency domain specifications. Such specifi-
cations cannot be directly transformed into frequency dependent weights and
have to be approximated to fit into our design procedure. Imminent research
is focused on evaluating our controller configurations with the CDC bench-
mark problem and comparing the results with that of similar approaches in
the literature.
Parametrization of Linear Observers: The Bezout identity represents
the basic equation for the reconstruction of the controlled signal, i.e., the
partial state. We have pointed out that, by application of a Youla type
parametrization, it is possible to characterize the set of linear observers
(that gives the partial state) as the set of solutions to the Bezout identity.
In broad terms, further research may be focused on analyzing in depth the
characterization of the set of linear observers achieved through the pole
placement procedure instead of the usual Youla parametrization.
Adaptive pole placement: The feedback control structure of the pro-
posed 2-DOF control configuration is designed by solving a constrained
H∞ optimization problem over the poles of the right coprime factors of
the plant and the observer. Then, it seems interesting to study the appli-
cation of recent advances in adaptive control theory for the arguments, i.e.,
the poles, of the right coprime factors of the plant and the observer.
Adaptive reference controller: Application of adaptive control tech-
niques could also be applied to the prefilter controller in order to enhance
the robust tracking performance.
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Appendix A

Background matrix theory

This Appendix reviews some basic topics of matrix theory and they are included
as background material. A very extensive treatment of the issues dealt in this
Appendix can be found, for example, in (Gantmakher, 1990).

A.1 Eigenvalues and eigenvectors

Let A ∈ Cn×n. Then the eigenvalues of A, i.e., λi, i = 1, . . . , n, are the n
solutions to the n’th order characteristic equation

det(A − λI) = 0 (A.1)

A nonzero vector x ∈ Cn that satisfies

Ax = λx (A.2)

is referred to as right eigenvector, or simply eigenvector, of A. Dually, a
nonzero vector y is called left eigenvector of A if

yHA = λyH (A.3)

The set of eigenvalues of A is called the spectrum of A. The magnitude
of the largest eigenvalue of the matrix A is called spectral radius, denoted by
ρ(A) .= maxi |λi(A)| (See Section A.2.5 for more).
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A.2 Norms

Let V be al vector space over the field C of complex numbers and let x ∈ V be
a vector, matrix, signal or system. Then, a norm on V of x is a real number,
denoted ‖x‖, if and only if the the following properties are satisfied:

‖x‖ > 0 ∀x ∈ V, x �= 0 (Positivity) (A.4)

‖x‖ = 0 iff x = 0 (Positivedefiniteness) (A.5)

‖αx‖ = |α| ‖x‖ ∀α ∈ C, ∀x ∈ V (Homogeneity) (A.6)

‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V (Triangle inequality) (A.7)

Therefore, a norm is a single number that measures the “size” of an element
of V . We will briefly deal with the norm on four different objects, i.e.,
norms on four different vector spaces: vectors x, constant matrices A, time
dependent signals x(t) and transfer functions G(s).

A.2.1 Vector norms

Let us consider the vector space V over the field Cn. A vector x ∈ Cn means
that x = [x1 x2 . . . xn] with xi ∈ C,∀i. Then, the vector p-norm is:

‖x‖p
.=

(
n∑

i=1

|xi|p
)1/p

∀p ≥ 1 (A.8)

Three commonly used norms on Cn are:
Vector 1-norm:

‖x‖1
.=

n∑
i=1

|xi| (A.9)

Vector 2-norm (Euclidean norm): This is the most common vector
norm and corresponds to the shortest distance between two points.
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‖x‖2
.=

(
n∑

i=1

|xi|2
)1/2

(A.10)

Vector ∞-norm: This is the largest element magnitude in the vector.

‖x‖∞ .= max
1≤i≤n

|xi| (A.11)

A.2.2 Matrix norms

Let us consider the vector space V over the field Cm×n be the set of all
m × n matrices A with elements in C. Then, a norm on V of a matrix
A is a matrix norm if, in addition to the four properties, i.e., positivity,
positive definiteness, homogeneity and triangle inequality, it also satisfies
the multiplicative property,

‖AB‖ ≤ ‖A‖ · ‖B‖ Multiplicative (A.12)

Four commonly used norms on Cm×n are:
Sum matrix norm: This is the sum of the element magnitudes.

‖A‖sum
.=

m∑
i=1

n∑
j=1

|aij| (A.13)

Frobenius matrix norm (or Euclidean norm): This is the square root
of the sum of the squared element magnitudes.

‖A‖F
.=


 m∑

i=1

n∑
j=1

|aij|2



1/2

=
√

tr(AHA) (A.14)

where tr(·) is the trace of a matrix i.e., the sum of the diagonal elements,
and AH denotes the complex conjugate transpose of A.
Max element norm: This is the largest element magnitude.

‖A‖max
.= max

i,j
|aij | (A.15)
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This norm is not a matrix norm as it does not satisfy the multiplicative
property A.12. It can be shown that

√
nm ‖A‖max is a matrix norm.

We have considered matrices as elements of a linear space. Next, we will
consider matrices as representation of linear applications and will relate the
matrix norms to the vector norms.

Let ‖·‖ be a norm on V1 over Cn and a norm on V2 over Cm. Let A be a
linear application from V1 into V2,

A : V1 �→ V2 (A.16)

Then, the induced norm is defined as

‖A‖ip
.= max

x �=0

‖Ax‖p

‖x‖p

(A.17)

where ‖x‖p is the vector p-norm defined in (A.8).
The vector x may be interpreted as a signal entering a linear system

represented by the matrix A. The output signal may be represented by the
vector y = Ax. The “gain” of the matrix A may be considered as the ratio
‖y‖ / ‖x‖. Then, the maximum gain for all possible input directions is given
by the induced norm in (A.17), i.e., the direction of the vector x such that
the ratio ‖y‖p / ‖x‖p is maximized. The induced norm in (A.17) can be
equivalently represented as

‖A‖ip = max
‖x‖p = 1

‖Ax‖p (A.18)

A.2.3 Signal norms

A temporal norm on a time-varying (or frequency-varying) signal is com-
puted by summing up the channels at a given time (or frequency) using a
vector norm and, then summing up in time (or frequency) using a tempo-
ral norm. Usually, the same norm is employed for both the vector and the
signal. A temporal p-norm may be defined as:

�p norm : ‖x(t)‖p
.=

(∫ ∞

−∞

n∑
i=1

|xi(τ)|p dτ

)1/p

∀p ≥ 1 (A.19)
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Three temporal norms of signals are commonly used:
�1 norm: Known as integral absolute error (IAE).

‖x(t)‖1
.=
∫ ∞

−∞

n∑
i=1

|xi(τ)|p dτ (A.20)

�2 norm: Known as quadratic norm or integral square error(ISE).

‖x(t)‖2
.=

(∫ ∞

−∞

n∑
i=1

|xi(τ)|p dτ

)
(A.21)

�∞ norm: This is the pack value in time.

‖x(t)‖∞ .= sup
τ

( max
1≤i≤n

|xi(τ)|) (A.22)

A.2.4 System norms

A frequency domain analysis of a scalar system, e.g., the study of the gain
variation through the frequency, allows to determine its performance and
stability characteristics. Such analysis procedures can be extended to mul-
tivariable systems through the concept of the matrix norm induced by a
vector norm. As we saw above, the induced norm provides a “size” gener-
alization of a liner application. This generalization is done by relating the
“size” (norms) we have defined for the related vector spaces.

A matrix transfer function F (s) can be seen as a linear application be-
tween two spaces, i.e.,

F (s) : U �→ Y (A.23)

where U contains the set of input signals and Y contains the set of output
signals. In fact, there is one linear application for each value of the frequency.

From a system theory point of view the spaces U and Y represents the
sets of physical signals and the application F (s) represents the system. In
such case, relevant system norms are the H2 and H∞.
H2 norm: Assuming a strictly proper system F (s), the H2 norm is defined
as
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‖F (s)‖2
.=
(

1
2π

∫ ∞

−∞
tr(G(jω)HG(jω)) dω

)1/2

(A.24)

For numerical computation of the H2 norm (A.24), the state-space real-
ization of F (s) = C(sI − A)−1B is considered and then

‖F (s)‖2 =
√

tr(BTQB) (A.25)

where Q is the observability Gramian obtained as solution a Lyapunov equa-
tion (Doyle et al., 1989).

The standard H2 optimal control problem is to find a stabilizing con-
troller K for the plant P which minimizes ‖F (s)‖2 with F

.= F�(P,K). See
for example, (Doyle et al., 1992) or (Zhou et al., 1996).
H∞ norm: Assuming a proper system F (s), the H∞ norm is defined as

‖F (s)‖∞
.= max

ω
σ̄(F (jω)) (A.26)

where the singular value (induced 2-norm) is used spatially, i.e., for the
matrix, and the resultant peak value, as a function of the frequency, is
picked out.

For numerical computation of H∞ norm (A.26), the state-space realiza-
tion of F (s) = C(sI − A)−1B is considered. The smallest γ is found such
that the Hamiltonian matrix H has no eigenvalues on the imaginary axis,
where

H =
[

A + BR̂−1DTC BR̂−1BT

−CT (I + DR̂−1DT )C −(A + BR̂−1DT C)T

]
(A.27)

and R̂ = γ2I−DT D. This is an iterative procedure in which a large value of
γ is used to start and it is reduced until imaginary eigenvalues for H appear.
This can be solved using standard algorithms (Doyle et al., 1989).

The standard H∞ optimal control problem is to find a stabilizing con-
troller K for a plant P such that ‖F (s)‖∞ < γ with F

.= F�(P,K). The
H∞ norm (A.26) is the peak of the maximum singular values of the transfer
function. By introducing weights, the H∞ norm can be interpreted as the
magnitude of some close-loop transfer function relative to a specified upper
bound. See for example, (Doyle et al., 1992) or (Zhou et al., 1996).
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A.2.5 The spectral radius

The spectral radius ρ(A) is the magnitude of the largest eigenvalue of the
matrix A,

ρ(A) = max
i

|λi(A)| (A.28)

The spectral radius is not a norm as it does not satisfy the properties
(A.5) and (A.7). Nevertheless, it provides a lower bound on any matrix
norm as it is stated by the following Theorem.

Theorem A.2.1. Let ‖A‖ represent either a matrix norm or an induced
norm. Then,

ρ(A) ≤ ‖A‖ (A.29)

Proof: Let as assume that λi(A) is an eigenvalue of A. Then, from equation
(A.2) and the homogeneous property (A.6) we can write

|λi| · ‖xi‖ = ‖λixi‖ = ‖Axi‖ ≤ ‖A‖ · ‖xi‖ (A.30)

The last inequality follows from the multiplicative property (A.12) in with we
choose the matrix B to be a vector, i.e., B = xi. Thus, for any matrix norm
|λi(A)| ≤ ‖A‖ and as long as it holds for all eigenvalues, the result follows.

�

A.3 Singular Value Decomposition

A very useful tool in matrix analysis is the Singular Value Decomposition
(SVD). The singular values of a matrix are good measures of the “size” of
the matrix and that the corresponding singular vectors are good indicators
of strong/weak input or output directions.

Definition A.3.1. (SVD) Any complex n×m matrix A may be factorized
into a singular value decomposition

A = UΣV H =
k∑

i=1

σi(A)uiv
H
i (A.31)
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where U and V are unitary matrices, i.e., UH = U−1 and V H = V −1, with
column vectors denoted by

U = [u1 u2 . . . un] (A.32)

V = [v1 v2 . . . vm] (A.33)

and the n×m matrix Σ contains a diagonal matrix Σ1 of real, non-negative
singular values, σi, arranged in a descending order as in

Σ =
[

Σ1

0

]
; n ≥ m (A.34)

or
Σ = [Σ1 0] ; n ≤ m (A.35)

where
Σ1 = diag{σ1, σ2, . . . , σk}; k = min(n,m) (A.36)

and
σ̄

.= σ1 ≥ σ2 ≥ . . . ≥ σk
.= σ (A.37)

�

The column vectors of U (A.32), denoted ui are called left or output
singular vectors (output directions). It should be noted that this standard
notation is unfortunate as it is also standard notation to use u to represent
the input signals. By bearing this fact in mind, the column vectors of U are
orthogonal and of unit length (orthonormal), that is

‖ui‖ =
√

|ui1|2 + |ui2|2 + . . . + |uin|2 = 1 (A.38)

uH
i ui = 1, uH

i uj = 0, i �= j (A.39)

Likewise, the column vectors of V (A.33), denoted vi are called right or input
singular vectors (the input directions). This input and output directions are
related through the singular values. Since V is unitary we have V HV = I,
so the SVD of A (A.31) may be written as AV = UΣ, which for column i
becomes

Avi = σiui (A.40)
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That is, if we consider an input in the direction vi, then the output is in
the direction ui. Furthermore, since ‖vi‖2 = 1 and ‖ui‖2 = 1 it can be seen
that the i’th singular value σi gives directly the gain of the matrix A in this
direction, that is,

σi(A) = ‖Avi‖2 =
‖Avi‖2

‖vi‖2

(A.41)

The singular values are the positive square roots of the k = min(n,m)
largest eigenvalues of both AAH and AHA. We have

σi(A) =
√

λi(AHA) =
√

λi(AAH) (A.42)

The matrix of eigenvectors of AAH is U and σ2
i are the corresponding

eigenvalues. Similarly, the matrix of eigenvectors of AHA is V .
The SSV presents some advantages over the eigenvalue decomposition for

multivariable plants: the singular values provides better information about
the gain of the plants; the plant directions obtained from a SVD are orthog-
onal and the SSV also applies directly to non-squared plants.

For squared, non-singular m × m matrices A = UΣV H , we can write

A−1 = V Σ−1UH (A.43)

This is the SVD of A−1 but with the order of the singular values reversed.
Let j = m − i + 1. Then, from (A.43) it follows that

σi(A−1) = 1/σj(A), ui(A−1) = vj(A), vi(A−1) = uj(A) (A.44)

In particular,

σ̄(A−1) = 1/σ(A) (A.45)

Finally, from (A.29) it follows that the singular values bound the magnitude
of the eigenvalues, i.e.,

σ(A) ≤ |λi(A)| ≤ σ̄(A) (A.46)
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A.4 The condition number

The condition number of a matrix A can be defined as the ratio

γ(A) = σ1(A)/σk(A) = σ̄(A)/σ(A) (A.47)

where k = min(l,m). For a nonsingular (squared) matrix we have σ(A) =
σ̄(A−1), so

γ(A) = σ̄(A)σ̄(A−1) (A.48)

It can be seen that the condition number is large if both A and A−1

have large elements. A matrix with large condition number is said to be
ill-conditioned.

The condition number has been used as an input-output controllability
measure. It has been postulated (Skogestad and Morari, 1987b) that a large
condition number indicates sensitivity to uncertainty. This is not true in
general but the revere holds: if the condition number is small, then the
multivariable effects of uncertainty are not likely to be serious (Skogestad
and Morari, 1987b).

The condition number depends strongly on the scaling of the inputs and
outputs. If D1 and D2 are diagonal scaling matrices, then the condition
number or the matrices A and D1AD2 may be arbitrarily far apart. The
minimized or optimal condition number is obtained by minimizing the con-
dition number for all possible scalings. We have,

γ∗(A) .= min
D1, D2

γ(D1AD2) (A.49)

A.5 Relative Gain Array

The Relative Gain Array (RGA) of a complex non-singular m × m matrix
A, denoted RGA(A) or Λ(A), is a complex m × m matrix defined by

RGA(A) ≡ Λ(A) .= A × (A−1)T (A.50)

where the operation × denotes element by element multiplication. For a
2 × 2 matrix with elements aij the RGA is
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RGA(A) =
[

λ11 λ12

λ21 λ22

]
=
[

λ11 1 − λ11

1 − λ11 λ11

]
(A.51)

where
λ11 =

1
1−a12a21

a11a22

(A.52)

Example A.5.1. Consider again the distillation process described in Ap-
pendix B.2 for which we have at steady-state

Po =
[

87.8 −86.4
108.2 −109.6

]
, P−1

o =
[

0.399 −0.315
0.394 −0.320

]
, (A.53)

Therefore

Λ(Po) =
[

35.1 −34.1
−34.1 35.1

]
(A.54)

�

A.6 Useful matrix identities

Lemma A.6.1. Matrix inversion lemma Let A1, A2 and A3 and A4 be
matrices with compatible dimensions such that A2A3A4 and A1 + A2A3A4

are defined. Also assume that the inverses given bellow exists. Then

(A1 + A2A3A4)−1 = A−1
1 − A−1

1 A2(A4A
−1
1 A2 + A−1

3 )−1A4A
−1
1 (A.55)

Proof: The lemma is proved by pre-multiplying (or post-multiplying) the
right hand side of (A.56) by A1 + A2A3A4.

�

Lemma A.6.2. Matrix push-through lemma Let A1 and A2 be matrices
with compatible dimensions. Then

A1(I − A2A1)−1 = (I − A1A2)−1A1 (A.56)

Proof: The lemma is proved by pre-multiplying both sides by (I − A1A2)
and post-multiplying both sides by (I − A2A1).

�
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Appendix B

Distillation Column

A high-purity distillation process has been used in the literature as a benchmark
problem for comparing methods for robust controller design. This Appendix
introduces a typical distillation column of the type described in (Morari and
Zafirou, 1989), (Skogestad and Postlethwaite, 1997) and (Green and Limebeer,
1995), among others.

B.1 Introduction

The distillation process has been used as an illustrative example throughout
this work and this Appendix gives a brief description of it. For a general
discussion on distillation column control see, for example, (Skogestad and
Morari, 1987a).

A typical scheme of a distillation column is depicted in Figure B.1. The
objective of the distillation process is to separate the feed F into a distillate
product D, which contains most of the light component of the feed product,
and bottom product B, which contain most of the heavy component of the
feed product. The flow compositions, zF , yD and xB, refer to the mole
fractions of the light component. Then, perfect separation would be obtained
with yD = 1 and xB = 0. The difference in volatility between the light and
the heavy components is used to produce the desired separation.

The overall control problem for the distillation column has five inputs,

141
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L: reflux
V : boilup
D: distillate
B: bottom flow
VT : overhead vapour

and five outputs,

yD: top composition
xB : bottom composition
Md: condenser holdup
Mb: reboiler holdup
p: pressure

Mb

Md
Condenser
holdup

Condenser

Feed

Reboiler
holdup

Bottom product

Boilup

Reboiler

Reflux
Destilate

Overhead
vapor

1

2

3

N-1

N

p

F,zF

VT

D,yD
L

B,xB

V

Figure B.1: The distillation column system.

This problem usually has no inherent control limitations caused by RHP-
zeros, but the plant has poles in or close to the origin and needs to be
stabilized. In addition, for high-purity separations the 5 × 5 RGA-matrix
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may have some large elements. Another complication is that measurements
are often expensive and unreliable.

The distillation column can be first stabilized by choosing three decen-
tralized SISO loops for level and pressure, y2 = [Md Mb p]T , and the re-
maining outputs, y1 = [yD xB ]T . The SISO loops for controlling y2 usually
interact weakly and may be tuned independently of each other. Neverthe-
less, since the composition dynamics are usually much slower than the flow
dynamics, the simplifying assumption of perfect control of holdup, i.e., Md,
Mb and p constant, is usually made. Also, instantaneous flow responses in
the column are assumed.

Different control configurations are obtained by choosing different input
pairs, i.e., u1 = [L V ]T or u1 = [D V ]T , among others, for composition
control y1. The remaining three manipulated inputs are then determined by
the requirement of keeping y2 under perfect control. With the additional
assumption of constant molar flows this implies that the following three
relationships must hold:

dV = dVT , dD = −dB = dV − dL (B.1)

The LV -configuration refers to a partially controlled system in which
u1 = [L V ]T is used to control y1. The above assumptions on y2 are supposed
to be hold by means of u2 = [D B VT ]T . With a LV -configuration the control
of y1 using u1 is nearly independent of the control loop involving y2 and u2.
Nevertheless, the problem of controlling y1 with u1 in such a configuration
is often strongly interactive with large steady-state RGA-elements.

B.2 Idealized LV-configuration

The following idealized LV-model of the distillation process was originally
presented by (Skogestad et al., 1988):

Po(s) =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
(B.2)

The inputs are the reflux, L, and boilup, V , and the controlled outputs are
the top product composition, yD, and the bottom product composition, xB.
This is a very crude model of the distillation process but it is exhibited to
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provide an excellent example of an ill-conditioned process where control is
difficult, primarily due to the presence of input uncertainty. It is known that
ill-conditioned plants may cause control problems

The singular value decomposition (SVD) of the steady-state gain matrix
of the plant (B.2) is

Po = UΣV H (B.3)

where

Σ = diag{σ̄, σ} = diag{197.2, 1.39} (B.4)

V = [v̄ v] =
[ −0.707 0.708

0.708 0.707

]
(B.5)

U = [ū u] =
[ −0.625 0.781
−0.781 −0.625

]
(B.6)

From the first input singular vector, v̄ = [−0.707 0.708]T , we can see
that the gain is 197.2 when one input is decreased and the other input is
increased by a similar amount. On the other hand, from the second input
singular vector, v = [0.708 0.707]T , we can see that the gain is only 1.39 if
both input are increased by approximately the same amount. The reason
for this is that the plant is such that the two inputs counteract each other.
Thus the distillation process is ill-conditioned, at least at steady state, and
the condition number is γ = 197.2/1.39 = 141.7.

The control of the distillation process was first formulated by (Skogestad
et al., 1988) in which the overhead composition is to be controlled at yD =
0.99, output y1, and the bottom composition at xB = 0.01, output y2, using
the reflux L, input u1, and boilup V , input u2, as manipulated variables.
The 1,1-element of the steady-state gain matrix in (B.2) is 87.8. This implies
that an increase in the input u1 by 1, holding u2 constant, yields a large
steady-state change in y1 of 87.8. That is, the outputs are very sensitive to
changes in u1. Similarly, an increase in u2 by 1, holding u2 constant, yields
a change in y1 of -86.4. This is a very large change, now in the opposite
direction of that for the increase in u1. It is seen that changes in u1 and u2

counteract each other. If u1 and u2 are simultaneously increased by 1, the
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overall steady-state change in y1 is only 87.8 − 86.4 = 1.4. The reason for
this small change is seen from the smallest singular value, σ(Po) = 1.39. It
is obtained for inputs in the direction v = [0.708 0.707]T . From the output
singular vector u = [0.781 −0.625]T it can be seen that the effect is to move
the output in different directions, that is to change y1 − y2. Therefore, it
takes a large control action to move the compositions in different directions,
i.e., to make both products pure simultaneously.

On the other hand, the distillation column is very sensitive to changes
in external flows, i.e., increase u1 − u2 = L − V . This can be seen from
the input singular vector v̄ = [−0.707 0.708]T associated with the largest
singular value, and is a general property of the distillation processes where
both products are of high purity.

B.3 Other configurations

Another configuration is the DV -configuration in which u1 = [D V ]T is used
to control y1 and, then y2 is controlled by means of u2 = [L B VT ]T .

The following idealized DV-model of the distillation process was also
originally presented by (Skogestad et al., 1988):

Po(s) =
1

75s + 1

[ −87.8 1.4
−108.2 −1.4

]
(B.7)

In this configuration, the steady-state interactions from u1 to y1 are
generally much less with smaller RGA-elements, about 0.5. The condition
number γ = 70.8 is still large and the overall control configuration depends
strongly on u2.

There are also many other possible configurations. Nevertheless, the
two mentioned above are the most popular for the control of a high-purity
distillation column.

B.4 The benchmark problem

The benchmark problem introduced here corresponds to the control problem
formulated originally by (Skogestad et al., 1988). It considers the distillation
column described in B.2 where the overhead composition is to be controlled
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at yD = 0.99 and the bottom composition at xB = 0.01 using the reflux L
and boliup V as manipulated variables. The linear model is

Po(s) =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
(B.8)

The uncertainty with respect to the manipulated inputs may be repre-
sented as multiplicative input uncertainty (See Figure 2.6) in which the set
of possible plants P are

P = {P : P = Po(I + ∆W1)} , σ̄(∆) ≤ 1 ∀ω (B.9)

where W1 = wII2 gives the magnitude of the relative uncertainty on each
manipulated input. The weight

wI(s) =
s + 0.2
0.5s + 1

(B.10)

represents an input error of up to 20 percent in the low frequency range,
which increases at high frequencies, reaching a value of one (100 percent
uncertainty) at about ω = 1 Rad/min. This increase with frequency may
take care of neglected flow dynamics. For example, it allows for a time delay
of about 1 min in the responses between L and V and the outputs yD and
xB . The magnitude of W1 over frequency is shown in Figure B.2.

An unstructured uncertainty description may be assumed. That is, the
perturbation ∆ is a full 2 × 2 matrix. The off-diagonal terms allowed in ∆
imply that a change in the one input may result in an undesirable change
in the other one. This may be the case for some plants, for example, if the
actuators are located very close toe each other. However, for the distillation
column, it is more reasonable to assume that actuators are independent,
that is, ∆ diagonal. For mathematical convenience, ∆ could be assumed to
be a full matrix and this assumption does not make any difference for the
LV -configuration (Skogestad et al., 1988).

The following input gain perturbations are allowable (Skogestad and
Postlethwaite, 1997):

EI1 =
[

1.2 0
0 1.2

]
EI2 =

[
0.8 0
0 1.2

]
EI3 =

[
1.2 0
0 0.8

]
EI4 =

[
0.8 0
0 0.8

]
(B.11)
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where EIi = I + ∆WI . The perturbations in (B.11) do not make use of the
fact that W1(s) increases with frequency. Two allowed dynamic perturba-
tions are:

EI5 =

[
f1(s) 0

0 f1(s)

]
EI6 =

[
f2(s) 0

0 f1(s)

]
(B.12)

with

f1(s) = 1 − s − 0.2
0.5s + 1

= 1.2
−0.417s + 1

0.5s + 1
(B.13)

and

f2(s) = 1 − s + 0.2
0.5s + 1

= 0.8
−0.633s + 1

0.5s + 1
(B.14)

Therefore, the six perturbed plants belonging to the set (B.9) can be
considered:

Pi(s) = Po(s)EIi(s) (B.15)

for i = 1, . . . , 6 and with nominal EI0 = I.

The performance specification is simply

σ̄(So) < |wp|−1 (B.16)

where So = (I + PoK)−1 and the weight is chosen as Wp = wpI2,

wp(s) = 0.5
10s + 1

10s
(B.17)

The performance weigh (B.17) means that integral action is required,
i.e., |wp(0)|−1 = 0, and that disturbances are amplified at high frequencies
by a factor of 2 at most, i.e., |wp(j∞)|−1 = 2. The magnitude over frequency
is shown in Figure B.2.
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Figure B.2: Uncertainty and performance weights.



Appendix C

State-space solutions

This Appendix provides the solutions of several examples carried out along this
work. The solution are given in state-space realizations, where any transfer
function K(s) is represented as K(s) = C(sI − A)B−1 + D.

A =

�
����������

−85.2341 0.0242 −0.0001 31.4754 7.1400 0.0017 −0.0001 −0.0000
0 −22.3525 21.9877 −0.0029 0.0010 −1.7958 −0.0000 0.0000
0 0 −6.3626 −0.0001 −0.0012 1.0870 0.0000 −0.0000
0 0 0 −3.0692 −1.3699 −0.0004 0.0000 0.0000
0 0 0 0 −0.1994 −0.0000 −0.0000 0.0000
0 0 0 0 0 −0.0554 0.0000 −0.0000
0 0 0 0 0 0 −0.0000 −0.0000
0 0 0 0 0 0 0 −0.0000

�
����������

B =

�
����������

−8.7336 6.9804
2.5721 3.2176

−0.9577 −1.1997
1.2563 −1.0041
0.5604 −0.4482
0.1273 0.1592
0.1624 −0.1301
0.0874 0.1088

�
����������

D =

�
0.0494 −0.0395
0.0493 −0.0394

�

C =

�
7.8116 −2.5915 1.7037 −1.6593 −0.6243 −0.2076 −0.1472 −0.0988
7.7972 2.5949 −1.7079 −1.6559 −0.6234 0.2078 −0.1471 0.0986

�

Table C.1: One degree-of-freedom µ-optimal controller Kopt found in Example
2.4.1.

149



150 State-space solutions

A =

�
��������������

−0.007 0.107 −0.083 0.183 −0.009 0.076 −0.476 0.867 −0.031 0.005
−0.106 −0.191 0.135 −0.077 0.011 −0.481 2.641 −4.590 0.178 −0.045
0.0776 0.329 −0.376 0.836 −0.167 1.481 −7.712 3.238 −0.425 0.045
−0.178 −1.140 1.565 −4.255 0.950 −6.161 0.746 −2.223 1.547 −0.051

0.011 0.032 0.049 −0.492 −0.096 2.554 −0.913 6.322 −0.371 −0.014
0.102 0.677 −1.093 3.843 −2.469 −7.112 2.051 −2.287 3.736 0.015

−0.408 −1.873 1.861 −3.661 1.361 7.786 −6.579 0.523 −6.105 0.007
0.505 1.305 0.625 −8.806 −7.174 −1.239 4.442 −5.305 4.583 −0.014

−0.013 −0.013 −0.076 0.513 0.430 1.871 −4.178 7.678 −2.532 0.089
0.007 0.040 −0.055 0.166 −0.058 −0.862 5.960 −1.520 0.550 −0.176

�
��������������

B =

�
��������������

0.099 −0.166
0.568 −0.449

−0.750 0.325
2.367 −0.621
0.089 0.216

−0.332 1.481
−2.544 −8.300

7.904 13.148
−0.280 −0.378
−0.026 0.088

�
��������������

D =

� −0.974 0.003
0.003 −1.001

�

C =

�
0.003 −0.228 −0.252 1.600 −0.209 1.006 9.3782 −0.2042 −0.0603 −5.4225
−0.193 0.688 −0.778 1.852 −0.105 1.137 −6.779 12.140 −0.424 0.070

�

Table C.2: H∞ controller K2 found in Example 4.5.

A =

�
���

−304381.591 −553369.047 548.413 −347.007
0 −251507.875 498.498 −315.429
0 0 −3.809 0.002
0 0 0 −1.131

�
��� B =

�
���

−111386.744
−101176.531

51.541
−33.321

�
���

C =
	 −111312.310 −101258.416 51.652 −33.437



D = −12.972

Table C.3: Robust Model Reference Controller K2 found in Example 5.4.2.
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A =

�
��������������

−0.01 −0.28 −0.46 −0.01 −0.03 −0.03 0.32 −0.03 0.05 0.00
0.25 −0.62 −0.62 −0.12 0.04 −0.43 3.44 −0.35 0.61 0.050
0.34 −2.15 −3.65 −0.34 −0.59 −1.11 9.12 −0.70 1.09 0.082
0.01 0.03 0.18 −0.01 0.02 −0.15 0.77 −0.08 0.14 0.011
0.05 −0.56 −1.13 −0.07 −0.45 −0.88 4.99 −0.03 −0.23 −0.02

−0.03 0.28 0.60 0.14 1.02 −0.32 5.98 −0.41 0.82 0.07
0.17 −3.47 −9.24 −0.39 −6.96 −1.37 −27.28 4.54 −9.22 −0.77

−0.03 0.28 0.60 0.07 0.51 −0.47 3.40 −1.06 2.84 0.29
0.08 −0.43 −0.78 −0.15 −0.86 1.09 −6.46 2.77 −8.72 −1.11
0.00 −0.03 −0.07 −0.01 −0.07 0.09 −0.69 0.30 −1.10 −0.22

�
��������������

B =

�
��������������

0.01 0.20
0.89 −0.68
2.24 −1.06

−0.04 −0.08
0.30 −0.41
0.03 0.34
2.07 −1.79

−0.05 0.32
−0.02 −0.65

0.00 −0.05

�
��������������

D =

� −0.99 0.00
−0.00 −1.00

�

C =

�
0.130 0.46 1.97 0.03 0.50 0.19 −1.52 0.03 0.039 0.00
0.16 1.03 1.50 0.09 −0.10 0.29 −2.27 0.32 −0.65 −0.05

�

Table C.4: µ-“optimal” controller K2 found in Example 4.5.

A =

� −1340.660 0
0 −1340.687

�
B =

�
120.886 10−3 −107.331 10−3

−107.331 10−3 −120.886 10−3

�

C =

�
101.465 10−3 5.208 10−3

126.752 10−3 8.346 10−3

�
D =

�
0 0
0 0

�

Table C.5: Optimum Bezout factor Nr found in Section 5.5.
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A =

� −0.013 0
0 −0.013

�
B =

� −120.886 10−3 107.331 10−3

107.331 10−3 120.886 10−3

�

C =

� −6201.462 5506.230
5506.120 6201.586

�
D =

�
1 0
0 1

�

Table C.6: Optimum Bezout factor M−1
r found in Section 5.5.

A =

� −2000.116 0
0 −2000.156

�
B =

� −0.121 0.107
0.107 0.121

�

C =

� −6201.462 5506.230
5506.120 6201.589

�
D =

�
1 0
0 1

�

Table C.7: Optimum Bezout factor Xr found in Section 5.5.

A =

� −2000.116 0
0 −2000.156

�
B =

� −8.943 104 5.581 104

135.815 104 −108.721 104

�

C =

� −6201.462 5506.230
5506.120 6201.586

�
D =

�
0 0
0 0

�

Table C.8: Optimum Bezout factor Yr found in Section 5.5.

A =

�
���

0 0 0 0
0 0 0 0

−0.148 0.132 −1340.660 0
0.132 0.148 0 −1340.687

�
��� B =

�
���

−1.225 0
0 −1.225

1.209 10−5 −1.073 10−5

−1.073 10−5 −1.209 10−5

�
���

C =

� −1.225 0 −6201.462 5506.230
0 −1.225 5506.120 6201.586

�
D =

�
10.001 10−5 0

0 10.001 10−5

�

Table C.9: Feedback controller K1 found in Section 5.5.
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A =

�
������

−12074.802 −0.001 0 −42.965 −28.213 0
0 −4.237 −2.127 0 0 −0.374
0 0 −1.035 0 0 −0.413
0 0 0 −0.206 −0.196 0
0 0 0 0 − 0.121 0
0 0 0 0 0 −0.127

�
������

B =

�
������

−7274.600 5818.278
15.676 19.601
32.730 40.922

−16.440 13.149
−239.044 191.189

46.843 58.569

�
������

D =

�
175.863 −140.657
175.584 −140.433

�

C =

� −6592.470 41.860 −39.007 181.236 −87.819 34.919
−6582.147 −41.928 39.068 180.952 −87.681 −34.974

�

Table C.10: Robust Model Reference Controller K2 found in Section 5.5.



154 State-space solutions



List of Acronyms

1-DOF One degree-of-freedom

2-DOF Two degrees-of-freedom

iff if and only if

LCF Left coprime factorization

LFT Linear fractional transformation

MIMO Multi-input multi-output

RCF Right coprime factorization

RGA Relative Gain Array

RHP Right-Half Plane

SISO Single-input single-output

SSV Structured singular value
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Notation and Symbols

C− The open left-half plane

RH∞ The set of all rational stable transfer functions

F�(P,K) Lower LFT

Fu(P,K) Upper LFT

A−1 Inverse of the matrix A

AT Transpose of the matrix A

AH Complex conjugate transpose of the matrix A

σ̄(A) Maximum singular value of A

σ(A) Minimum singular value of A

ρ(A) Spectral radius of A

tr(A) Trace of A

deg(n) Degree of n

Adj(A) Adjoint of A

det(A) Determinant of A
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158 Notation and Symbols

∈ Belong to
.= Defined as

≈ Approximated to

≡ Equivalent to

� End of Example

� End of Proof

� End of Definition
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