
Int. J. Advance Soft Compu. Appl, Vol. 8, No. 1, March 2016

ISSN 2074-8523

Trade-off Between Automated and Manual

Testing: A Production Possibility Curve Cost

Model

Rafaqut Kazmi1, Imran Ghani1, Radziah Mohamad1, Murad Tariq1, Imran

Sarwar Bajwa2, and Seung Ryul Jeong3

1Faculty of Computing,

UniversitiTeknologi Malaysia (UTM),
Johor Bahru 81300, Malaysia

e-mail: rafaqutkazmi@gmial.com, imran@utm.my,
radziahm@utm.mymuradtariq.tk@gmail.com

2Department of Computer Science& IT,
Islamia UniversityBagdad ul Jadeed

Campus Bahawalpur Pakistan
e-mail: imran.sarwar@iub.edu.pk

3School of Management Information Systems,
Kookmin University, Seoul, Korea

e-mail: srjeong@kookmin.ac.kr

Abstract

 Testing is always important for Software Quality Assurance
(SQA) activities and key cost multiplier in software development. The
decision to automate or not to automate a test case is critical. In this
paper we discuss the possibility of test automation and in relation to
the trade-off between manual and automated test cases. We purpose
a Production cost frontier based technique to distinguish the point of
automation and manual test within the cost constraints. Our
objective is to identify the facts that up to what extant a testing
process can be automated. In this paper a cost model is proposed for
deciding the proportion of automated and manual testing. The
objective is to find best possible combination of these two and
production possibility in one type by eliminating the other type of
testing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199239684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rafaqut Kazmi 13

1 Introduction

Since the beginning of software history, the quality, cost and time to development
of software applications is the prime concerns [1, 2]. Irrespective of the methods
and techniques evolved for software construction, ensuring quality is functional
testing through automation. However, the oldest and still most widely used is
manual testing [3, 4]. Efforts have been made to increase the coverage and
throughput of these techniques [5]. The challenging aspect is that some tests
cannot or should not be made automatable[6] because some tasks needs extensive
knowledge of domain like exploratory testing, user acceptance testing, release and
deployment testing. With all of the techniques for automation little has been
contributed to improve the effectiveness of manual testing. Testing teams always
have to manipulate the test scripts, test data and bug tracking systems. The
software application under test consuming time by switching resources. It also
makes room for mistakes like inputting incorrect data[6]. Delayed Failures in
Software Using High Volume Automated Testing or test process violations. The
exact or approximate proportion between automated and manual testing
techniques may increase the productivity and outcomes of testing process.

The automation techniques are the proposed solution for this problem, this study
presents a roadmap for testing and argue that quality and cost of software is
dependent on effective testing[7].This study explains that less error in a software
means improved quality by automated testing[8].These studies relate
coverage(branch, code, statement and path) to quality by automated testing[9].In
this study focus on testing time and argue that automated techniques reduce
testing time substantially specially in regression testing[10].Testing tools
supplier’s claims “Automated testing enable the firms to reduce the testing cost,
effort and increase the productivity of testing process by reusability of the
tests[11],automation can reduce the human effort required in testing[12],
automation testing can increase the fault detection of testing process[13]. At the
same time, though, industry reports many failures in automating testing
efforts[14].The few reasons of failed automation are replacing manual testing by
automation[6, 15],wrong expectations from automated tools[16],problems with
maintenance of test automation[17] and most important of all is inexperience
testing teams with automated tools[18].Testing a software is a considerable
expense, but so do the cost due to faults in software applications. For example, a
study says that, 60% of software developers said that testing activities are the first
to neglect in case of over budget situation in a project[19]. The following study
summaries thirty years of software problems from 1982 to 2012 shows that
software system failures in all type of applications are increased in number and
damage over time. The main reasons of failures are shifted from hardware to
software problems. The common reasons of failures are security failures which
threats human lives, spreadsheet failures which harm financial damages,
infrastructure failures which causes damage in property and human lives. Failure
in automotive cars and plain systems damages human life and business goodwill

Trade-off Between Automated and Manual 14

of the operating companies[20].Development teams in medium and large
organizations often tests functionality by manual testing, the advantage of manual
testing is testers learn applications which should help them in future releases,
however testing teams apply semi-automatic testing even when automatic
functional testing tools are available[21]. These semi-automatic techniques are
useful for continuous and quick feature testing, short time slots of testing, less
frequent tests and bug reporting. The decision about trade-off between automated
and manual techniques should be made early in the project to avoid the problems
[16]. In order to apply any such techniques, it is appropriate to follow a model.
One such model was proposed by [22, 23],devised model helps to decide test
automation ROI.

The objective of this paper is to identify the possibility of automation of manual
test cases and attempt to simplify the purposed method to find trade-off between
automated and manual testing with single and multiple goals of testing imposed
due to cost, time and environmental constraints.

The organization of this paper is as follows. Section 2 discusses simple cost
model about automation decision making. In section 3 we describe production
possibilities curve frontier (PPF) in context of decision making for automating a
test case. In section 4 the concept of establish a proportion between automated and
manual test cases and also enlist some of limitations, objectives and benefits of
this approach. Finally in section 5 we sum up the discussion and work.

2 Critiques on Cost Models

If the same function, feature or piece of code is tested in the same way by
automation then there comes a point during the automation process when the
tester stops finding the bugs. It is also worth to mention that 70% to 90% of new
defects are found by manual testing. But Automation is necessary for continuous
integration and regression testing .The model presented[22, 23] works fair enough
for simple projects, however it should be flawed due to following observations.

1. The automated testing is not replacement of manual testing because all the
testing steps may not be automated for example where the change
frequency of requirement is high or where the extensive domain
knowledge is for testing is required[6, 24].

2. Test suites needs time to produce valuable results. That is reason upfront
cost of automated testing always high.[25]

3. All test executions supposed to be equally consume the resources.[26]

4. All the assumptions are made for a single type of project; even multiple
releases of a single project can change the cost of testing.

Rafaqut Kazmi 15

The authors of this paper searched for information from many software houses
about their quality process. The following trends were found in the day to day
business of software houses.

1. N-release during a day.

2. Automation as a business logo.

3. Continuous development.

4. Continuous integration.

5. Exploratory testing

6. Testing before release

7. Shrinking QA team agenda’s

Based on our observation of real life testing environments, it has been noticed that
while performing automated testing, most of the testers just check if a given
functionality is working; instead of actually testing that given functions. They
conduct tests to verify a checklist of that piece of software under test. Another
observation is that if they re-run the tests, they perform the same steps and nothing
different or unexpected happens between the two executions,. The results are
exactly the same. The alarming situation was discarding exploratory testing with
automated tools. In order to reduce cost by discarding some testing phase is
adding faults to released product. A research by [27]highlights this issue and
explains the difference between automated and manual testing. The research says
that automation testing is used to prevent further errors, while manual testing is a
better choice to find new and unexpected errors. However, in the real life
environment, we found out that the main misunderstanding found among the
testers was to replace manual testing with automation. Automated and manual
techniques are not replacement of each other. They should complement each
other. Avoiding this principle causes cost issue.

The Return on investment (ROI) of test automation requires the analysis of cost
and benefit involved. Nevertheless, test automation cost is hard to estimate due to
changing factors[28]. Many industrial studies conducted include cost for testing
tools, the labor for automating the tests, maintaining the automated testing
framework. A case study which was published by [22] is presented [this sentence
is a bit confusing] as fellows, This case study establish the testing costs by using
universal cost formula. This model constructs cost for test automation as fallows.

� = ������	
���	���	
��
	������	��
	��	���		�������
�
	��

 D:	=	Expenditure	for	single	test	execution	

According to above supposition, the cost for one automated test-case (Aa)

Trade-off Between Automated and Manual 14

 '� ≔)� + � ∗ ,� (1)

Where “Va” represent the cost for specification and automating the test case. “Da”
is the cost for executing the test case one time, the “n” represent the number of
executions of automating a test case.

By using this technique, to calculate break-even point for test automation, the cost
for manual test case execution is (Am). It is calculated as

 '� ≔)� + �,� (2)

Here Vm is cost to specify the test case. Dm is cost to execute a test case
manually and “n” is number of runs of a test case manually. The break-even point
is computed, comparing cost of automated test case executions with the cost of
manual test case executions.

 �-�. ≔
/0

/1
= -)� + �,�./-)� + �,�. (3)

By using this model, the test automation benefits are visible enough. In [15]
elaborates that with economic point of view it is meaningful to automate a given
test only, when the cost of automation is less than the cost of manual execution of
the same or equal test case or test cases.

Fig 1: Break-Even Point with manual and automated test cases.

Fig: 1 represents the relationship between automated and manual testing trade-off.
The x-axis represents the number of test runs and the Y-axis represents the cost of
testing in hours in this this case. The two curves show how the cost increases with
each test run. On the other hand the curve for manual testing cost increases
gradually. It is fact that automated test suite setup consumes much more cost at

Rafaqut Kazmi 17

beginning as compared to manual test execution. As shown in Figure-1 break-
even point reached at the intersection of two lines. This formula is known as
universal formula which is reported many times in literature [29, 30] . Some other
studies which support test automation[22, 31] are also mention the need of trade-
off between automated and manual test cases. Depending on the author[22] , to
achieve the break-even point, the number of test runs fluctuates between 2 to
20.The application of this formula in narrow context is fairly correct. They[14]
apprehend the common observations that automated tests have high initial cost as
compared to manual testing but provide reduced running cost of the test projects.

In the next section, present Production Possibility Curve(PPF) to estimate the
trade-off between manual and automated testing with a single goal imposed here
in terms of time(hours).

3. Production possibility curve for test

In this section a fictional example to elaborate possibilities of automation in
testing, this example attempts to simplify a complex model to elaborate and
clarify some primary ideas. We use the linear optimization model or linear
programming method to solve this problem[32]. A mathematical optimization
problem is one in which one function is maximized or minimized with respect to
some there function within the same mathematical problem. The function is said
to be objective function which is maximized or minimized under some certain
constraints. The alternatives are said to constraints regions are alternative
functions with respect to objective function. The production possibility
frontier(PPF) is hypothetical representation of the amount of two different
variables[33]. This PPF curve obtained by shifting resources from the production
of one , to the production of other[33]. In this study we use PPF curve to find the
trade-off between automated test cases to manual test cases. Linear programming
or linear optimization method is very useful to solve optimization problems. A
few examples where linear optimization is useful are resource allocation[34],
layout [35], production scheduling[36], warehousing and inventory[37]. We also
try to add some reasoning in coming sections and purpose influencing factors
which typically found in real world projects.

Testing based on code coverage provides the indicator of how much effort is
required to enhance the reliability of software. Some studies show that high code
coverage can improve the application reliability and decrease bug rate[38]. The
information collected by code coverage is used to select the test case for future
run to achieve some specific goal[39]. The cost of testing is influenced by code
coverage measure in many ways for example reliability, test suite completeness,
fault detection efficiency, magnitude of changes in software build and risk
severity[40]. Let us consider only one factor bug rate for code coverage parameter
to clarify its relationship with situation under consideration.

Trade-off Between Automated and Manual 14

The cost is varying with type of the software under development. But one
common attribute all these types should carry substantial increase in project costs
by carrying bugs or problems from one development phase to another or one
release to another release. According to a study[41] cost of finding and fixing a
bug during implementation phase is $977. Thus total cost of finding and fixing
200 critical bugs is 200X977 = $195,400. Similarly the cost of fixing a bug during
system testing is $7,136, if system testing finds only 50 critical bugs then cost to
fix these bugs is $356,800. So this indicates that that healthy bug rate can save
already shrinking costs of testing.

In this example we consider small software system. The effort to run a test case
with manual technique is 0.25 hours in average. To keep this discussion simple we
assume that initial cost is zero for test case specification and definition.
Automation cost of a test case is 1 hour in average. This should include the cost of
implementation and maintenance cost of automated test cases in reply to
specifications changes. Here we assume that no extra cost is required for test case
execution after automation. According to the above mentioned universal formula,
the break-even point for a single test is reached when a test has been run five
times.

In this example, let us suppose that there are 100 test cases. These 100 test cases
are sufficient to acquire 100% requirement coverage. In order to test the software
to acquire 100% coverage, (we need 20 hours with manual testing or 100 hours of
automated testing). By comparison of these (Figure-2), the time necessary to
automate all the test cases is equal to execute all the test cases manually five
times.

If we suppose that project follows an iterative development[42] or agile
development[43], we may need to test consecutive releases. For the simplicity, we
suppose that there are 8 releases which we may test. Each release needs the same
test cases. So to test all 8 releases require 160 hours of manual testing or 100
hours to automate these tests.

It is a common observation in industrial projects that average time and budget
available for testing is less than actually estimated time and budget. In most of the
cases it is 75% of actually estimated time and budget. In this example we suppose
that there are 75 hours available for testing.

Rafaqut Kazmi 19

Fig: 2 Break-Even Point keeping automated Tests without overhead costs.

There is also one more point of view that 100% testing is not possible. There are
many projects in industry which are survived with such limitations. Some
common pressures observed during testing projects are limited budget, less time
to market and strict deadlines. These projects are survived only by producing
quality by balancing and combining automated and manual testing techniques.

This hypothetical situation for the project under test neither possible, testing all
releases manually nor automatically. Measuring the trade-off between automated
and manual testing is required for such situation. One such measurement of trade-
off is known as Production Possibilities Frontier (PPF) mentioned by[44].

Fig: 3 presents the combination of manual and automated test cases by which
testing can possibly carried out, within the limits of available budget and possible
choices from automated and manual tests. Any combination of automated and
manual test cases proportion on or inside the frontier is possible. Points outside
the frontier are not feasible due to the budget restriction. The combinations of
points on the graph line are called efficient points because of maximum possible
utilization of the resources while the points inside the graph are inefficient
because some resources may waste.

The production possibilities curve represents the trade-off between automated and
manual tests carried out with the given budget. As we reached the efficient point
on the curve by automating test case which in turn reduce the manual test cases
and vice versa. Here few questions seem relevant.

Trade-off Between Automated and Manual 14

Fig 3: Production Possibilities Frontier Curve for budget of 75 hours.

1. If we automate a test case, what portion of manual tests we lose or skip?

2. What we will gain by automation?

3. Is there any exact proportion between automated and manual test cases
on the production possibilities curve?

If we move from point “A” to point “B” on the production curve, there is
possibility of more and more test cases are automated on the expense of less
manual tests. In order to move from point “A” to point “B”. There are almost 100
manual test executions can be eliminated. We can say that by automating one test
case reduce the cost of 4 manual test runs.

4. A Proportion Ratio Based on Production Possibility
Curve

Based on the example scenario elaborated in previous section. We propose a
model from linear optimization[37]. This model in our case uses the concept of
opportunity cost to find a trade-off between automated and manual testing. This
model sustained in automating a test case is estimated on basis of replacing the
manual test cases. This is done with keeping the budget limits under
consideration. The model presented in Section:2, which focuses on single test case
run. Proposed model focus on all potential test cases. Furthermore it optimizes the
ROI in automated testing.

4.1 Test Automation Limits

In this section, analyses the different possibilities on PPF curve and relate them
with projected goal which is in this particular case is time in hours .The slope of
the production possibilities indicates the best possible proportion between
automated and manual test cases as shown in Figure-4 below . For All this

Rafaqut Kazmi 21

discussion depends solely on the example we have described in Section: 3. It is
also explained in section:3 that if we automate one test case can skip 4 manual test
cases in general. It is assumed that we should ignore cost variables for the sake of
simplicity. Thus the opportunity cost for one automated test case is 5 manual test
executions.

In Fig 4, the x-axis is representing manual test executions (Am). Where 300
manual test executions are possible in 75 hours as assumed in our case. The Y-
axis is representing automated test executions; there are 75 manual test executions
possible in 75 hours. The points “A”, “B”, “E” and “F” on PPF curve are efficient
points and achievable in current restrictions. The point “C” which inside is inside
the PPF curve is possible to achieve but inefficient point because some resources
will be wasted with this combination of automated and manual test cases. The
point “G” outside the PPF curve will not be achieved within the current
restrictions. The line “OG” is indicating the objective line of the project, the
desired ratio between “Aa” and “Am” under restriction of specific to project
conditions.

Fig 4: Production Possibilities Frontier Curve for Aa to Am Proportion.

Case I: If we move on the curve from point A to point “B”, reducing a small
number of automated test cases can results to vacate the resources for a large
number of manual test execution within the same cost limits. It is shown that in
Figure 4, at the top of the curve, small reduction in “Aa” producing a big increase
in “Am”.

Case II: If we move from point “E” to “F”, replacing a large number of automated
tests, there is small change in the manual test executions. At the bottom of the
curve a big decrease in automated test produces a small increase in manual test
executions.

Trade-off Between Automated and Manual 14

5. Result and Discussion

From economic point of view it seems reasonable to automate a desired number of
test cases. In this particular scenario, it is clear that moving on the curve from Aa
maximum to “A”, produces a big reduction in “Am” on x-axis and it is far away
from the project goal which is in this case is testing time. Consider moving from
“Am” maximum to “E” produce small change in manual test cases in number and
create a big addition in automated test and it is also far away from the project
goal. So keeping this model we conclude that the best possible ratio for automated
and manual tests is from point “H” to point “B” which is in this case is 50% to
70%. This is possible to make it further narrow down by adding more constraint.
Few of which are

1. System architecture under testing.

2. QA team skills.

3. Requirement stability.

4. Coverage objectives of Testing.

5. Available testing time and budget.

5.1 The Benefits and objectives

To understand this alternative based on PPF opportunity cost model, we evaluate
benefits each of them. The test case execution benefits are measured on the basis
of information that is reveals by its execution. The information mainly consist of
bug detection, requirement conformance to specification, coverage details etc.
This information is used by SQA decision making process as well as test
execution results.

In this study we suppose that the test case benefit is its risk mitigation capability,
fault detection capability of testing strategy and coverage criterion n of testing
techniques. It is also worth to mention that automated and manual tests are
addressing different risk types, fault range and coverage goals. Automated test are
best suitable for repetitive tasks usually regression tasks while manual tests can be
suitable for new classes of risks, bugs and changed specifications related to
functional testing. We suggest risk mitigation, bug detection criteria and code or
functional coverage can be measured on the basis of risk exposure[45]. The risk
mitigation also depends upon test case ordering with respect to their risk exposure
contribution[46] which may further refined with respect to code and functional
coverage and code and specification changes.

The budget and time limitations put the restrictions over number of test cases
selected and executed for defect detection. This restriction will never allow for a
project to test completely. Project estimates put additional constraints over
minimum and maximum level of testing. There are detailed discussions on risk

Rafaqut Kazmi 23

based testing in[46, 47], fault detection capability[48],code and specification
changes[49],function coverage[50] and code coverage[51].

6. Conclusion

The manual and automated testing is being used in exact proportion. The decision
of automating the test cases or not to automate them is always important and
critical for the success of automation projects. There is need for research on trade-
off between automated and manual test cases contrast with test case selection, test
case reduction, test case prioritization and test case augmentation techniques. The
rationale behind this merger is to identify those already automated test cases to
execute manually or some manual test cases in previous test suite need to
automate for new objectives like code changes, specification changes, coverage
criterion or cost and time issues. This dynamic trade-off between automated and
manual test cases may enhance the fault identification capability, risk mitigation
and cost and time issues with these techniques. The PPF curve shows the
possibility of best proportions of automating test case with manual test cases. In
this study we conclude the following

1. Cost of testing is considered and indirect costs are not included in this
study.

2. This model considers only a single project decision making.

3. Indicating the best possible proportions between two testing types manual
and automated.

4. Comparing replacement of one type, production possibility of the type of
testing with the other.

5. A single objective testing time considered in this study.

On later stages the addition of cost variables and multiple objectives cost
proportions between the automation and manual test may increase the usefulness
of this model. This is also possible to make this method part of existing test suite
optimization techniques to enhance their capabilities. The decision of automation
of some or all test cases in a test suite is not one time decision. This decision may
be needed before each execution of a test suite.

ACKNOWLEDGEMENTS.

We would like to thank Universiti Teknologi Malaysia and Ministry of Science,
Technology and Innovation (MOSTI) Malaysia (Vot No: 4S113)

References

[1] Birmingham, H. and F. Taylor, A design philosophy for man-machine control
systems. Proceedings of the IRE, 1954. 42(12): p. 1748-1758.

Trade-off Between Automated and Manual 14

[2] Royce, W.W. Managing the development of large software systems. in
proceedings of IEEE WESCON. 1970: Los Angeles.

[3] Gollomp, B. and P. Gallo, Test Procedure Language Development. Aerospace,

IEEE Transactions on, 1963. 1(2): p. 1327-1334.

[4] Haugk, G., S. Tsiang, and L. Zimmerman, System testing of the no. 1
electronic switching system. Bell System Technical Journal, 1964. 43(5): p.
2575-2592.

[5] Naik, S. and P. Tripathy, Software testing and quality assurance: theory and

practice. 2011: John Wiley & Sons.

[6] Kazmi, R., R.M. Afzal, and I.S. Bajwa. Teeter-totter in testing. in Digital

Information Management (ICDIM), 2013 Eighth International Conference on.
2013: IEEE.

[7] Harrold, M.J. Testing: a roadmap. in Proceedings of the Conference on the

Future of Software Engineering. 2000: ACM.

[8] Saglietti, F. and F. Pinte. Automated unit and integration testing for
component-based software systems. in Proceedings of the International

Workshop on Security and Dependability for Resource Constrained Embedded

Systems. 2010: ACM.

[9] Kansomkeat, S. and W. Rivepiboon. Automated-generating test case using
UML statechart diagrams. in Proceedings of the 2003 annual research

conference of the South African institute of computer scientists and

information technologists on Enablement through technology. 2003: South
African Institute for Computer Scientists and Information Technologists.

[10]Coelho, R., et al. Jat: A test automation framework for multi-agent systems. in
Software Maintenance, 2007. ICSM 2007. IEEE International Conference on.

2007: IEEE.

[11]Dallal, J. Automation of object-oriented framework application testing. in
GCC Conference & Exhibition, 2009 5th IEEE. 2009: IEEE.

[12]Leitner, A., et al. Reconciling manual and automated testing: The autotest
experience. in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on. 2007: IEEE.

[13]Shan, L. and H. Zhu, Generating structurally complex test cases by data
mutation: A case study of testing an automated modelling tool. The Computer

Journal, 2009. 52(5): p. 571-588.

[14]Kaner, C., J. Bach, and B. Pettichord, Lessons learned in software testing.
2008: John Wiley & Sons.

Rafaqut Kazmi 25

[15]Karhu, K., et al. Empirical observations on software testing automation. in
Software Testing Verification and Validation, 2009. ICST'09. International
Conference on. 2009: IEEE.

[16]Persson, C. and N. Yilmazturk. Establishment of automated regression testing
at ABB: industrial experience report on'avoiding the pitfalls'. in Automated

Software Engineering, 2004. Proceedings. 19th International Conference on.
2004: IEEE.

[17]Liu, C. Platform-independent and tool-neutral test descriptions for automated
software testing. in Proceedings of the 22nd international conference on

Software engineering. 2000: ACM.

[18]Fecko, M.A. and C.M. Lott, Lessons learned from automating tests for an
operations support system. Software: Practice and Experience, 2002. 32(15):
p. 1485-1506.

[19]Torkar, R. and S. Mankefors. A survey on testing and reuse. in Software:
Science, Technology and Engineering, 2003. SwSTE'03. Proceedings. IEEE

International Conference on. 2003: IEEE.

[20]Ko, A.J., B. Dosono, and N. Duriseti. Thirty years of software problems in the
news. in Proceedings of the 7th International Workshop on Cooperative and

Human Aspects of Software Engineering. 2014: ACM.

[21]Mahmud, J., et al., Design and industrial evaluation of a tool supporting semi‐

automated website testing. Software Testing, Verification and Reliability,
2014. 24(1): p. 61-82.

[22]Linz, T. and M. Daigl, GUI Testing Made Painless. Implementation and

results of the ESSI Project, 2007(24306).

[23]Hoffman, D., Cost benefits analysis of test automation. 1999.

[24]Berner, S., R. Weber, and R.K. Keller. Observations and lessons learned from
automated testing. in Proceedings of the 27th international conference on

Software engineering. 2005: ACM.

[25]Dustin, E., J. Rashka, and J. Paul, Automated software testing: introduction,
management, and performance. 1999: Addison-Wesley Professional.

[26]Ramler, R. and K. Wolfmaier. Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost. in Proceedings

of the 2006 international workshop on Automation of software test. 2006:
ACM.

[27]Ramler, R., G. Czech, and D. Schlosser, Unit testing beyond a bar in green
and red, in Extreme Programming and Agile Processes in Software

Engineering. 2003, Springer. p. 319-321.

Trade-off Between Automated and Manual 14

[28]Boehm, B.W., Value-based software engineering: Overview and agenda, in

Value-based software engineering. 2006, Springer. p. 3-14.

[29]Link, J., Unit testing in Java: how tests drive the code. 2003: Morgan

Kaufmann.

[30]Fewstar, M. and D. Graham, Software Testing Automation: Effective use of
test execution tools. 1999, ACM Press, Addison Wesley.

[31]Schwaber, C. and M. Gilpin, Evaluating automated functional testing tools.
Forrester Research, 2005.

[32]Bertsimas, D. and J.N. Tsitsiklis, Introduction to linear optimization. Vol. 6.

1997: Athena Scientific Belmont, MA.

[33]MANNING, R., production-possibility frontier. Production Sets, 2014: p. 51.

[34]Shen, Z., J.G. Andrews, and B.L. Evans, Adaptive resource allocation in
multiuser OFDM systems with proportional rate constraints. Wireless

Communications, IEEE Transactions on, 2005. 4(6): p. 2726-2737.

[35]Reinschmidt, K.F. and A.D. Russell, Applications of linear programming in
structural layout and optimization. Computers & Structures, 1974. 4(4): p.
855-869.

[36]Simon, F.Y.-P. and Y. Takefuji. Integer linear programming neural networks
for job-shop scheduling. in Neural Networks, 1988., IEEE International

Conference on. 1988: IEEE.

[37]Ramanathan, R., ABC inventory classification with multiple-criteria using
weighted linear optimization. Computers & Operations Research, 2006. 33(3):
p. 695-700.

[38]Cai, X. and M.R. Lyu. The effect of code coverage on fault detection under
different testing profiles. in ACM SIGSOFT Software Engineering Notes.

2005: ACM.

[39]Elbaum, S., A. Malishevsky, and G. Rothermel. Incorporating varying test
costs and fault severities into test case prioritization. in Proceedings of the
23rd International Conference on Software Engineering. 2001: IEEE
Computer Society.

[40]Elbaum, S., et al., Understanding the effects of changes on the cost ‐

effectiveness of regression testing techniques. Software Testing, Verification

and Reliability, 2003. 13(2): p. 65-83.

[41]Lazic, L. and N. Mastorakis, Cost effective software test metrics. WSEAS

Transactions on Computers, 2008. 7(6): p. 599-619.

[42]Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3/e. 2012: Pearson Education
India.

Rafaqut Kazmi 27

[43]Hanssen, G.K., A longitudinal case study of an emerging software ecosystem:
Implications for practice and theory. Journal of Systems and Software, 2012.
85(7): p. 1455-1466.

[44]Nicholson, W. and C. Snyder, Microeconomic theory: basic principles and

extensions. 2011: Cengage Learning.

[45]Fairley, R.E., Software risk management. IEEE SOFTWARE, 2005. 22(3): p.
0101.

[46]Rothermel, G. and S. Elbaum, Putting your best tests forward. Software,

IEEE, 2003. 20(5): p. 74-77.

[47]Biffl, S., et al., Value-based software engineering. Vol. 1. 2006: Springer.

[48]Jeffrey, D. and R. Gupta, Improving fault detection capability by selectively
retaining test cases during test suite reduction. Software Engineering, IEEE

Transactions on, 2007. 33(2): p. 108-123.

[49]Ryder, B.G. and F. Tip. Change impact analysis for object-oriented programs.
in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. 2001: ACM.

[50]Gross, F., G. Fraser, and A. Zeller. Search-based system testing: high
coverage, no false alarms. in Proceedings of the 2012 International

Symposium on Software Testing and Analysis. 2012: ACM.

[51]Kaur, A. and S. Goyal, A genetic algorithm for regression test case
prioritization using code coverage. International journal on computer science

and engineering, 2011. 3(5): p. 1839-1847.

