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ABSTRACT 

 

 

 

 

Homogeneous charge compression ignition (HCCI) and the exploitation of 

ethanol as an alternative fuel is one way to explore new frontiers of internal combustion 

engines with an objective towards maintaining its sustainability. Here, a 0.3 liter single-

cylinder direct-injection diesel engine was converted to operate on the alternative mode 

with the inclusion of ethanol fuelling and intake air preheating systems. The main HCCI 

engines parameters such as indicated mean effective pressure, maximum in-cylinder 

pressure, heat release, in-cylinder temperature and combustion parameters, start of 

combustion, 50% of mass fuel burnt (CA50) and burn duration were acquired for 100 

operating conditions. They were used to study the effect of varying input parameters such 

as equivalence ratio and intake air temperature on exhaust gas emission, temperature and 

ethanol combustion, experimentally and numerically. The study primarily focused on 

HCCI exhaust gas temperature and understanding and detecting misfire in an ethanol 

fuelled HCCI engine, thus highlighting the advantages and drawbacks of using ethanol 

fuelled HCCI. The analysis of experimental data was used to understand how misfire 

affects HCCI engine operation. A model-based misfire detection technique was 

developed for HCCI engines and the validity of the obtained model was then verified 

with experimental data for a wide range of misfire and normal operating conditions. The 

misfire detection is computationally efficient and it can be readily used to detect misfire 

in HCCI engine. The results of the misfire detection model are very promising from the 

viewpoints of further controlling and improving combustion in HCCI engines.  
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ABSTRAK 

 

 

 

 

Nyalaan Mampatan Caj Homogen (HCCI) dan penggunaan etanol sebagai bahan 

api alternatif adalah salah satu kaedah untuk mempelbagaikan penggunaan enjin 

pembakaran dalam, dalam usaha melestarikan penggunaannya di masa hadapan. Dalam, 

kajian ini sebuah enjin diesel satu silinder jenis semburan terus dengan isipadu 0.3 liter, 

telah diubahsuai untuk beroperasi menggunakan bahan api etanol. Enjin telah melalui 

pengubahsuaian sistem bahan api dan pemasangan sistem prapemanasan udara masuk di 

samping pengubahsuaian kecil yang lain. Parameter utama seperti tekanan berkesan 

purata tertunjuk, haba keluaran, suhu kebuk pembakaran, tekanan pembakaran 

maksimum, permulaan pembakaran, 50%  jisim bahan api yg terbakar (CA50) dan masa 

pembakaran telah diperolehi bagi 100 keadaan operasi enjin. Parameter ini digunakan 

untuk mengkaji kesan perubahan parameter masukan seperti nisbah persamaan dan suhu 

masukan udara ke atas keluaran ekzos, suhu dan pembakaran secara ujikaji dan juga 

analisis berangka. Secara amnya, kajian tertumpu kepada ramalan suhu ekzos enjin serta 

pemahaman dan pengesanan fenomena salah-nyalaan apabila menggunakan bahan api 

etanol. Usaha ini memperlihatkan beberapa kebaikan serta kekurangan penggunaan etanol 

dalam enjin HCCI. Analisis data yang diperolehi telah membantu penyelidik memahami 

bagaimana salah-nyalaan mempengaruhi operasi enjin HCCI. Satu teknik berunsurkan 

model simulasi untuk mengesan salah-nyalaan telah dibangunkan dan telah terbukti 

keberkesanannya setelah dibuat pelbagai perbandingan dengan hasil ujian yang 

dilaksanakan di makmal. Teknik ini telah terbukti efisien dalam meramalkan salah-

nyalaan di dalam enjin HCCI ini. Keputusan yang dihasilkan oleh model ini amat 

berpotensi untuk membantu mengawal dan meningkat kecekapan pembakaran di dalam 

enjin HCCI. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Internal combustion engines (ICEs) are devices in which the combustion of 

fuel, specifically fossil fuel, with an oxidizer (air) takes place inside the engine‘s 

combustion chamber. The result of detonation of the mixture, heat energy will be 

created which the detonation force will be applied onto the piston surface areas 

resulting in the production of mechanical energy. 

 

 

 There are three types of reciprocating ICEs i.e: i) spark ignition (SI), ii) 

compression ignition (CI) and iii) homogeneous charge compression ignition (HCCI) 

engines respectively.  The differences are based on several factors but namely on fuel 

preparation and ignition. However the principle of operating is the same (Basshuysen 

and Schäfer, 2004). Figure 1.1 shows the four-stroke cycle SI engine where the 

piston and valve movements during the intake, compression, expansion, and exhaust 

strokes are shown.  

 

 

The first engine operating process is the intake stroke as the piston is pulled 

downward towards its lower position, the bottom dead center (BDC). At this lower 



 

 

 

2 

 

position, air and fuel will be induced into the combustion chamber through intake 

manifold and opened intake valve. 

 

 

The second process is the compression stroke in which both intake and 

exhaust valves are closed and as piston is pushed towards its upper position, top dead 

center (TDC), the volume is reduced, thus the air-fuel mixture is compressed. Highly 

depends on engine type, the charge is ignited near to TDC. 

 

 

The third process is the power stroke which takes place after compression 

stroke and continues sometime into the expansion stroke and followed by a 

rapid combustion. During combustion the fuel releases heat in a totally enclosed 

(nearly constant volume) vessel which produces burned or unburned exhaust gases in 

combustion chamber and work is generated. 

 

 

 The last process is the exhaust stroke in which the engine’s exhaust valve 

will be activated by the cam pushing on the rocker arm and the exhaust and the 

burned are pushed by the piston to goes out and exit from the cylinder through the 

opened exhaust valve. These four strokes are repeated continuously to make engine 

running. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 SI engine fundamental (James, 2013). 



 

 

 

3 

 

1.1.1 Spark ignition engine 

 

 

In a spark ignition (SI) engine premixed air-fuel mixture is induced into the 

cylinder from intake manifold. In port fuel injected (PFI) system, fuel is atomized 

and vaporized by using injector and mixed with the air behind the intake valve. 

Before arriving piston to the TDC, charge is ignited with using spark plug (Figure 

1.1), thus a turbulent flame is produced through the combustion chamber. The 

important characteristics of a SI engine are listed as follows (Stone, 1992): 

 

 

 SI engine operates close to stoichiometric air-fuel ratio (AFR). 

 In SI engine flow rate of air is controlled by throttling. 

 Fuel consumption is influenced by efficiency directly, which results in 

higher carbon dioxide (CO2) emissions. 

 With using 3-way catalysts in SI engine, carbon monoxide (CO), nitrogen 

oxides (NOx) and unburned hydrocarbons (uHC) emissions decrease. 

 

 

1.1.2 Compression ignition engine  

 

 

In a compression ignition (CI) engine or better known as diesel engine, fuel is 

directly injected during intake stroke where air is induced into the cylinder (Figure 

1.2). During the compression stroke due to the high compression ratio, the air 

temperature will become high and near to TDC, fuel is atomized and injected to the 

hot air and creates combustion with a diffusive flame. The important characteristics 

of a CI engine are listed as follows (Vressner, 2007): 

 

 

 High compression ratio and low fuel consumption. 

 CI engines operate unthrottled which results in less pumping losses. 

 The load is controlled by the amount of injected fuel. 
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 NOx emissions and particulate matter is highly generated due to diffusive 

combustion. New after-treatment systems are designed to reduce NOx.  

 Increasingly popular for using in passenger car due to lower fuel 

consumption and higher power output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 CI engine (James, 2013). 

 

 

1.1.3 Homogeneous charge compression ignition engine 

 

 

The homogeneous charge compression ignition (HCCI) engine is relatively a 

new concept recently being developed by researchers as the ‘next-generation’ of 

ICEs. It synergizes the best features of diesel and gasoline engines. It is stated to be 

compatible with wide variety of bio-fuels. HCCI engines are said to be of higher 

thermal efficiency than diesel and gasoline engines of similar displacement, with 

promising low ultra NOx and PM (Particulate matter) emission indexes. Fuel 

autoignition take places through the compression due to increased pressure and 

temperature history. Diluted mixtures are needed in HCCI engine to keep the 

pressure rise rates at acceptable levels due to high combustion rate (Zhao, 2007). 
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HCCI characterized by the merging of the best elements of diesel and 

gasoline behaviors respectively. The characteristic of HCCI engine is similar to CI 

for high compression ignition feature and SI counterpart for its mixture homogeneity. 

As shown in Figure 1.3, autoignition takes places simultaneously at several locations 

in combustion chamber with no external ignition source (spark in SI and fuel 

injection in CI engines). The HCCI engine runs unthrottled similar to the CI engine 

and with comparing to the SI engine, the pumping losses are reduced. HCCI engine 

like CI have high compression ratio (CR) to create fast combustion near TDC to 

improve efficiency. If above take into account, these limitations make HCCI to be a 

combustion concept instead of an engine type (Stanglmaier and Roberts, 1999). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 HCCI combustion versus tradition CI and SI combustion (Marshall, 

2006). 

 

 

In general the merits of HCCI engine are:  

 

 

1. Using very lean mixture (high diluted) in HCCI engine makes it as low fuel 

consumption engine (Sankaran et al., 2007).  

2. Using the diluted mixture in HCCI engine makes it having low combustion 

chamber’s temperature and keep temperature combustion down which results 

in decreasing the amount of NOx and PM during HCCI engine running 

(Aceves et al., 2001). 
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3. Higher thermal efficiency and as most of the combustion energy is released 

during the combustion and expansion stroke, HCCI has less waste exhaust 

energy compared to SI and typical CI engines (Shahbakhti et al., 2010) 

4. The results from other research showed that HCCI engines can be capable to 

operate with several fuels such as gasoline, diesel fuel and most alternative 

and renewable fuels (Epping et al., 2008). 

 

 

On the other hand the demerits of HCCI combustion:  

 

1. Achieving high load for this kind of engine is difficult due to an increase in 

pressure. Using this engine should be common with a CI or SI switching to 

HCCI (Santoso et al., 2005). 

2. Controlling ignition timing (start of combustion (SOC)) is a major problem 

because it governed by the temperature, pressure history and needs a new 

electronic control unit (Blom et al., 2008).  

3. HC and CO emissions are typically higher in HCCI than that of diesel 

engines due to low temperature combustion (Aceves et al., 2004) but CO and 

HC emissions can be decreased by using an oxidation catalytic converter in 

HCCI engine. 

4. Cold start is the main problem for HCCI engine and this problem is recently 

weakened by using a dual mode SI-HCCI (Santoso et al., 2005, Koopmans et 

al., 2003) or CI-HCCI (Canova et al., 2007) technique where the engine starts 

in the SI/CI mode for engine warm up.  

 

 

 

 

1.2 Problem Statement 

 

 

Globalization and the rise in mobility, price variation of the fuels based on 

crude oil, more stringent environmental regulations for engine makers and the 

exhaust emission problem have urged and have motivated internal combustion 
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engine (ICEs) designers to overcome these challenges. This is merely to confirm that 

future ICEs will be more sustainable and adaptable for economical and robust 

operations.  

 

 

Some of the ways of overcoming these are through the adoption of new 

engine. HCCI engine is a new technology that is adaptable for use with wide range of 

fuels.  The other factor that is suitable for air pollution is using of ethanol as an 

alternative fuel.  

 

 

Despite lower NOx and PM, the level of HC and CO emissions are high due 

to lean burn and low temperature combustion (Shudo et al., 2007). Exhaust after-

treatment system is needed to help an HCCI engine to mitigate high amount of HC 

and CO. Taking the catalyst converter to the light off temperature (250-300 °C) (Jean 

et al., 2007) plays an important role for realizing HCCI engines as a practical 

solution. As the catalyst temperature drops below the light-off, the converter 

becomes ineffective in reducing exhaust emissions (Tanikawa et al., 2008). 

Therefore, it is essential to understand and analyzing exhaust temperature (Texh) for 

an ethanol fuelled HCCI engines. 

 

 

Also, delayed combustion phasing and unstable combustion can cause HCCI 

misfire resulting in high HC and CO emissions (Ghazimirsaied and Koch, 2012). The 

unburned fuel from engine misfire will enter into the catalytic converter, and this can 

have a cooling effect on the catalyst (Baghi Abadi et al., 2011). Misfire can be 

generated in several ways in HCCI engines, which makes analyzing of misfire 

essential for engine developers. 

 

 

Thus, it is necessary to investigate the effect of input variable such as intake 

temperature and air-fuel ratio, on the Texh and understanding and detecting misfire in 

an ethanol fuelled HCCI due to lack of accurate study on misfire in HCCI engine. 
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1.3 Objectives of Research 

 

 

This research focuses on the effect of operating parameters on HCCI engine 

exhaust gas temperature and the effect of misfire on HCCI engine operation. Hence, 

three main objectives of this investigation are as follows:  

 

 

 To convert a CI engine to operate on HCCI mode. 

 

 

 To study the effect of varying operating parameters on HCCI engine 

performance, Texh and emissions and also the ethanol combustion 

characteristic. 

 

 

 Understanding and analyzing misfire in an ethanol fuelled HCCI 

engine and to develop a model for fast detection of misfiring in 

HCCI engine. 

 

 

 

 

1.4 Scope of Research 

 

 

The scope of this research comprises of the following aspects: 

 

a) To convert a single-cylinder diesel engine to operate in HCCI mode and 

to undertake modifications such as: 

 

 

 To develop new intake manifold for HCCI engine for containing 

preheating and fuelling system. 
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 To develop heating system. 

 To develop new fuel system for ethanol port fuel injection. 

 To develop electrical circuit for controlling fuelling and fuel injection 

system. 

 

 

b) To perform numerical analysis for defining heat release, ethanol 

combustion characteristics and find combustion timing characteristic such 

as start of combustion (SOC), 50% of mass fraction burnt (CA50) and 

burn duration (BD). 

 

 

c) Experimental investigation on the HCCI engine fuelled ethanol operation 

such as: 

 

 Effect of input parameters on HCCI performance, operation and 

engine out emissions. 

 Study on Texh of HCCI engine. 

 Develop model for fast prediction Texh in HCCI engine. 

 

 

d) Experimental investigation on the effect of misfire on HCCI engine, such 

as: 

 

 Investigate into the engine characteristics for misfire detection. 

 Statistical analysis for misfire detection in HCCI engine. 

 Develop model for fast detection of misfire in HCCI engine. 
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1.5       Research Methodology 

 

 

The flowchart presented in Figure 1.4 describes the research methodology 

considered in this thesis. First, an introduction as well as a literature study is 

presented. Then, an attempt to prepare laboratory setup and the engine modifications 

such as electrical circuit for fuel  injecting, intake manifold for containing heater, 

fuel system for ethanol injection as port fuel injector and chassis for joining engine 

and encoder. Next, do the experimental work and get desire data. A comparative 

study among the proposed scheme should be carried out to highlight the effect of 

initial condition on HCCI performance, exhaust gas temperature and emission. 

Develop model for determining ethanol combustion characteristics and ignition 

timing. Study on the effect of misfire in HCCI engine operation and develop model 

to present an appropriate computational for fast detecting misfire in HCCI engine. 

 

 

 

 

1.6       Significance of Research 

 

 

Low exhaust temperature in HCCI significantly limits efficiency of an 

exhaust after-treatment system to mitigate high HC and CO emissions in HCCI 

engines. Thus, an efficient investigation should be done for Texh of HCCI to develop 

method to improve exhaust after-treatment systems. Also, delayed combustion 

phasing leads to autoignition which occurred with the downward movement of the 

piston and makes HCCI engine operates near misfire region which result in 

producing partial-burn and misfire cycles with too much CO and HC emission. 

Furthermore, understanding the HCCI operation change during misfire is very 

essential. However, new methods to detect HCCI misfire help researcher and 

factories to overcome this problem. Consequently, a specific attention for designing 

effective misfire detection systems is required. To the best of the authors’ 

knowledge, this study is the first study undertaken to develop a misfire detection 

technique for HCCI engines.   
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Figure 1.4 Research procedure flowchart. 
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